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ABSTRACT

Polarimetry has been studied for many years in SAR.
Due to the enormous quantity of SAR images acquired
by satellites or airborne systems, there is an evident need
for efficient automatic analysis tools. Classification algo-
rithms are one of the main applications for PoLSAR data.
Nowadays, fully polarimetric high resolution sensors can
commonly reach up to decimeter resolutions. This yields
a higher heterogeneity in the clutter, especially in urban
areas, where the clutter can no longer be modeled as a
Gaussian process. Recent advances in the field of SIRV
(Spherically Invariant Random Vectors) allow the mod-
eling of non-Gaussian clutter as a compound Gaussian
process. In this paper, we propose to apply a region grow-
ing process as an initialization to a SIRV based classifi-
cation technique. As the region growing process is shape
constrained, spatial features are better delineated and the
samples used for the estimation of the coherency matrices
are more adapted. Then a statistical clustering technique
adapted to the SIRV model is applied to retrieve similari-
ties between regions in the whole image.

Key words: SAR, polarimetry, non-Gaussian, classifica-
tion, segmentation.

1. INTRODUCTION

Polarimetric unsupervised classification technics have
been a topic of interest for the past decade. Most of
the classification algorithms involve classical polarimet-
ric decomposition [1] [2] as an initial image classification
and then apply an iterative and self converging statistical
classification (K-mean Wishart). Among them the most
commonly used is known as H-Alpha Wishart classifica-
tion. It was shown in [3] that the H-Alpha initialisation is
not meaningful as the criterion used to describe the data

∗The author would like to thank the DGA for funding this research.

in the H-Alpha space is drastically different from the ones
used afterwards in the Wishart clustering process. In the
present paper we propose instead to apply a spatial im-
age partition, results of a region growing process, to ini-
tialize the classification algorithm. The principle of the
hierarchical region growing method is explained by the
flowchart in Fig.1. It is a recursive algorithm that involves
iterative region merging based on statistical considera-
tions and, in our case, shape control. The initial parti-
tion is usually a thin grid partition of the studied image;
each region seeds the region growth and, at every step,
the two regions with the closest statistical and shape cri-
teria are merged. Defining an appropriate stop criterion
is difficult when region growing is applied to segmenta-
tion/classification. Here, as the goal is to provide a good
estimation of the PolSAR parameters for each region, we
end the iterative process when an average region size has
been reached.

The proposed classification algorithm involves the same
statistical model as in [3], but this time a K-means++ al-
gorithm [4] is adapted to the SIRV distribution model and
applied after the initial image partition.

This paper is organized as follows: in the first part the
region growing algorithm is briefly described and results
on a PolSAR image from Toulouse are presented. Then
the statistical framework and the classification algorithm
are described and tested on an image sample. Finally, re-
sults on a large image acquired by the ONERA RAMSES
system at X band are presented.

2. STATISTICAL DISTANCES FOR REGION
GROWING

In order to implement our region growing process, we
must define a statistical criteria and shape constraints.
A statistical criterion requires the definition of a statisti-
cal distance based on a hypothesis test and a distribution
model to describe our measurements. Based on theori-
cal and experimental considerations, the Kullback Leibler
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Figure 1. Recursive principle of the hierarchical region
growing method.

divergence was chosen for slightly outperforming other
classical distances in the given range of sample number
and dimension.

The previous hierarchical polarimetric segmentation al-
gorithms used on PolSAR images [5, 6] and presented
in the literature mainly focus on the texture information,
with ever increasing model precision. However, they re-
main highly dependent on the a priori texture model. In
most cases, as the complexity of the model increases, so
does the computing time. Since very high resolution sen-
sors produce very large volumes of data, practical appli-
cations must be cautiously set up to prevent unrealistic
time costs. Hence the SIRV model, introduced to po-
larimetry by Vasile and Ovarlez [7], was chosen to handle
non gaussian high resolution sensors data while preserv-
ing acceptable time efficiency.

3. SHAPE CONSTRAINT

Shape information can play a determinant role in a seg-
mentation process. When studying an image, human op-
erators can make full use of their a priori shape knowl-
edge to identify items of interest. In a SAR image,

even an untrained human eye can easily identify build-
ings or roads, because of their rectangular shape or lin-
earity. An expert eye could even use its knowledge on
backscattering effects such as double bounces and shad-
ows to improve the interpretation of building shapes and
sizes. Shape constraint region growing techniques use
that prior knowledge on the shape to guide the growth of
the region during the segmentation process. Depending
on the concerned application, more specific shape rules
can be introduced. Beaulieu and Touzi already introduced
shape information for PolSAR segmentation [5] where
they have shown noticeable improvement over unsuper-
vised techniques.

Handling multiple shape rules can be a difficult task, as
increasing the number of rules can often lead to interfer-
ence and unexpected segmentation behavior. The rela-
tive weight between the statistical distance and the shape
rule criterion is also a tricky parameter. In this paper we
propose to use fuzzy logic and fuzzy inference systems
to handle shape rules, their parameters and their relative
weights. The main advantage of fuzzy logic is its sim-
plicity, as it permits to translate if-then rules on linguistic
variables into fuzzy shape rules and parameters. Com-
putational effort is also very low if the shape parameter
estimation remains simple enough. System adjustment
by tuning rule weights and settings is also much easier to
handle compared to alternatives such as trained networks.

3.1. Shape rules examples

Figure 2. ”Small” regions having a ”High” Boundary
/ Perimeter ratio lead to a ”Very Low” shape criterion.
They are then merged with their surrounding neighbors
even if the statistical distance remains too high.

Figure 3. ”Small” regions having a ”Low” linear an-
gle difference lead to a ”Low” shape criterion. They are
merged together even if the statistical distance is slightly
too high to enhance and preserve linear items.

In this paper, two rule examples are briefly explained on
Fig. 2 and Fig. 3. More details regarding the shape rules



design and balance can be found in a more detailed paper
[8].

3.2. Results on PolSAR images

Figure 4. PolSAR X-band image from SETHI over
Toulouse. Pauli representation of the coherency matrix
estimated on the initial image by a 5×5 averaging box-
car).

Figure 5. PolSAR X-band image from SETHI over
Toulouse. Pauli representation of the coherency matrix
estimated on the region growing segmentation results.

4. THE SIRV MODEL

Spherically Invariant Random Vectors (SIRV) were first
introduced by Yao [9] for estimation and detection in
communication theory. A SIRV is a compound Gaussian
vector, defined as the product of a m-dimensional com-
plex circular Gaussian vector x and the square root of a
positive scalar random variable τ . Then the target vector
k can be rewritten as:

k =
√
τx (1)

where x ∼ N (0,M).

This models allows to take the heterogeneity of the scene
into account thanks to the texture variable τ . Indeed, the
texture models the local variations of power from cell to
cell, that are the consequences of the heterogeneity.

The speckle variable x, on the other hand, contains the
polarimetric information through the covariance matrix
M that describes it.

The texture Probability Density Function (PDF) is not ex-
plicitly specified. This results in a large class of stochastic
processes describable by this model, including the Gaus-
sian one. Other classical distributions the SIRV model
can describe are the K-distribution for a Gamma dis-
tributed texture, Chi, Rayleigh, Weibull or Rician PDFs
[10]. This model has furthermore been validated by nu-
merous measurements campaigns [11]. With the SIRV
model and a deterministic texture assumption, Gini et al.
[12] derived the Maximum Likelihood (ML) estimate of
the covariance matrix M as the solution of the following
equation:

M̂FP = f(M) =
m

N

N∑
i=1

ki kH
i

kH
i M̂−1

FP ki

. (2)

Conte et al. proposed in [13] a recursive algorithm to es-
timate the Fixed Point Estimate (FPE), M̂FP , as the fixed
point of the function f of Eq. (2). This work was com-
pleted in [12] [13] to extend this estimation scheme to the
stochastic texture hypothesis. Under this assumption, the
FPE is an Approximate ML estimator. Pascal et al. re-
cently established very important properties of the recur-
sive algorithm in [14]. The existence and uniqueness of
the solution is proven, as well as the convergence what-
ever the initialisation. In [15], properties of the FPE are
provided: it is unbiased, consistent and asymptotically
Wishart-distributed.

When replacing the scattering vectors ki in Eq. (2) by
their expression of Eq. (1), the FPE becomes:

M̂FP = f(M) =
m

N

N∑
i=1

xi xH
i

xH
i M̂−1

FP xi

. (3)

thus removing the texture information from the expres-
sion of M̂FP .



5. CLASSIFICATION PROCEDURE

5.1. Statistical Test of Equality of Covariance Matri-
ces

The goal is to decide if the covariance matrices T1 and
T2 from 2 different populations are equal. The resulting
binary hypothesis test can be written as:{

H0 :T1 = T2

H1 :T1 6= T2

The resulting test statistic is given by the following equa-
tion:

λ =

∣∣∣T̂1

∣∣∣N1
2
∣∣∣T̂2

∣∣∣N2
2

∣∣∣T̂∣∣∣N2 (4)

where Ni is the size of the population i and T̂ =
1
N

(N1T̂1 +N2T̂2).

Bartlett proposed in [16] alternative exponents by replac-
ing the samples size by the degree of freedom of the esti-
mators T̂i. Eq. (4) then becomes:

t =
|T̂1|

ν1
2 |T̂2|

ν2
2

|T̂|
νt
2

(5)

where νi = Ni − 1 are the degrees of freedom of T̂i and
νt = N − 2, the degree of freedom of T̂.

Box proposed in [17] a modification of the test statistic t
in:

u = −2(1− c1) ln(t) ∼ χ2(
1
2
(k − 1)m(m+ 1)) (6)

where χ2(a) denotes the χ2 distribution with a degrees
of freedom and

c1 =


k∑

i=1

1
νi
− 1

k∑
i=1

νi


(

2m2 + 3m− 1
6(k − 1)(m+ 1)

)

5.2. Algorithm

A k-means++ algorithm[4] is employed for the classifica-
tion procedure. It is a slight modification of the k-means
algorithm in its initialization process. Instead of choosing
the initial class centers at random among the data points,
the idea is to spread them as far away as possible from
one another. The initialization procedure is as follows:

1. The first center is chosen at random among the data
points.

2. For each data point, compute the distance between
itself and its closest class center.

3. Choose a new class center with a probability
weighted by the square of the distance computed in
step 2. This way, data points farther away have a
higher chance to be selected as class centers.

4. Repeat steps 2 and 3 until the desired number of
class has been reached.

In our case, the data points are the segments resulting
from the region growing procedure of Section II. They are
represented by the covariance matrices M̂FP estimated
using all the scattering vectors belonging to the segment.
The distance used in step 2 is the test statistic of Eq. (6).

After the initialization, a standard k-means procedure
is applied until convergence, that is when no segment
switch classes during an iteration.

The complete classification procedure is described be-
low:

1. Apply the region growing procedure to a PolSAR
image.

2. Compute the covariance matrices of each segment
using Eq. (2).

3. Initialize the class centers with the above procedure
with the desired number of classes.

4. For each segment, compute its distance to each class
center using Eq. (6) and take the minimum of those
distance.

5. If this minimum is below the threshold given by the
χ2-approximation, assign the segment to the corre-
sponding class. Else assign the segment to a rejec-
tion class.

6. Recompute the class centers as the mean of the co-
variance matrices of all the segments belonging to
the class.

7. Repeat steps 4-6 until convergence.

6. RESULTS ON REAL DATA

We present the results obtained on two data sets, the first
one being a subset of the second, larger one. They were
acquired in X-band by the ONERA RAMSES system in
the region of Brétigny, France. The resolution is approx-
imately 1.3m both in range and azimuth.



6.1. First dataset

The first dataset is a 451x451 pixels image extracted from
the larger, second dataset. Fig. 6 provides a representa-
tion of this image in the Pauli basis.

Figure 6. Pauli representation of the first dataset.

The region growing procedure results are presented on
Fig. 7.

Figure 7. Pauli representation of the region growing re-
sults (HH+VV / HH-VV / HV).

On Fig. 8 are represented the results of the classification
procedure.

Fig. 8 (a) represents the results of the classification pro-
cedure using the SCM and Fig. 8 (b) with the FPE. Us-
ing the SCM, all the man-made structures of the image
(buildings, parking lot on the right) are inside the rejec-
tion class. Using the FPE, the rejection class is much
smaller and the buildings stand out much better and in

(a)

(b)

Figure 8. Classification procedure with 8 classes and as-
sociated colormaps : (a) with SCM, (b) with FPE

separate classes. The classification in heterogeneous ar-
eas is then improved

6.2. Second dataset

The second data set is a much larger image (1500x3400
pixels) of the same area. The segmentation results on this
image are represented on Fig. 9.

Fig. 10 shows the result of the classification procedure
on this larger dataset using the FPE and 16 classes.

There is a good adequation between the Pauli represen-
tation of Fig. 9 and the classification results of Fig. 10.
Areas with a dominance of red (surface) are merged in the
class appearing in red after classification. Buildings and
urban areas are mostly represented by the blue classes.
Some segments are classified in blue and purple in the
bands at the top and at the bottom of the image. This is
due to the fact that there is very little power so the mea-
surements have little meaning. The rest of the image is
quite well separated as well. A formal classification ac-
curacy can not be performed because no ground truth is
available for this data set.



Figure 9. Region growing results in the Pauli basis (HH+VV / HH-VV / HV).

Figure 10. Classification results with 16 classes and the FPE.



7. CONCLUSION

This paper presented a classification procedure for high
resolution polarimetric SAR images. First, a region-
growing method to cluster pixels thanks to their polari-
metric properties under shape constraints was described.
Then, a statistical model adapted to the heterogeneous na-
ture of high resolution polarimetric SAR images was pre-
sented, along with the statistical test used in the classifi-
cation process. The algorithms have been tested on real
data and show the interest of using such a model. The
region-growing method allows to reduce drastically both
the computation time and the randomness of the subse-
quent classification algorithm, thus making it much more
robust.
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