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EXCEPTIONALLY SMALL BALLS IN

STABLE TREES
∗

Thomas Duquesne† Guanying Wang ‡

November 14, 2011

Abstract

The γ-stable trees are random measured compact metric spaces that appear
as the scaling limit of Galton-Watson trees whose offspring distribution lies in a
γ-stable domain, γ ∈ (1, 2]. They form a specific class of Lévy trees (introduced
by Le Gall and Le Jan in [24]) and the Brownian case γ = 2 corresponds to
Aldous Continuum Random Tree (CRT). In this paper, we study fine properties
of the mass measure, that is the natural measure on γ-stable trees. We first
discuss the minimum of the mass measure of balls with radius r and we show
that this quantity is of order r

γ
γ−1 (log 1/r)−

1
γ−1 . We think that no similar result

holds true for the maximum of the mass measure of balls with radius r, except in
the Brownian case: when γ = 2, we prove that this quantity is of order r2 log 1/r.
In addition, we compute the exact constant for the lower local density of the mass
measure (and the upper one for the CRT), which continues previous results from
[9, 10, 13].

AMS 2000 subject classifications: Primary 60G57, 60J80. Secondary 28A78.
Keywords: Continuum Random Tree; Lévy trees, stable trees; mass measure;
small balls.

1 Introduction

Stable trees are particular instances of Lévy trees that form a class of random com-
pact metric spaces introduced by Le Gall and Le Jan in [24] as the genealogy of
Continuous State Branching Processes (CSBP for short). The class of stable trees
contains Aldous’s continuum random tree that corresponds to the Brownian case (see
Aldous [2, 3]). Stable trees (and more generally Lévy trees) are the scaling limit of
Galton-Watson trees (see [11] Chapter 2 and [8]). Various geometric and distributional
properties of Lévy trees (and of stable trees, consequently) have been studied in [12]
and in Weill [28]. Stable trees have been also studied in connection with fragmentation
processes: see Miermont [25, 26], Haas and Miermont [20], Goldschmidt and Haas [18]
for the stable cases and see Abraham and Delmas [1] for related models concerning
more general Lévy trees. To study Brownian motion on stable trees, D. Croydon in
[7] got partial results on balls with exceptionnally small mass measure.

Before stating the results, let us briefly explain the definition of stable trees before
stating the main results of the paper. Let us fix the stable index γ ∈ (1, 2] and
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let X = (Xt)t≥0 be a spectrally positive γ-stable Lévy process that is defined on
the probability space (Ω,F ,P). More precisely, we suppose that E[exp(−λXt)] =
exp(tλγ), t, λ ∈ [0,∞). Note that X is a Brownian motion when γ = 2 and we shall
refer to this case as to the Brownian case. As shown by Le Gall and Le Jan [24] (see
also [11] Chapter 1), there exists a continuous process H = (Ht)t≥0 such that for any
t ∈ [0,∞), the following limit holds true in probability

Ht := lim
ε→0

1

ε

∫ t

0

1{Is
t <Xs<Is

t +ε} ds. (1)

Here Ist stands for infs≤r≤t Xr. The process H is the γ-stable height process. Note
that in the Brownian case, H is simply a reflected Brownian motion. Theorems 2.3.2
and 2.4.1 in [11] show that H is the scaling limit of the contour function (or the depth-
first exploration process) of a i.i.d. sequence of Galton-Watson trees whose offspring
distribution is in the domain of attraction of a γ-stable law.

As in the discrete setting, the process H encodes a family of continuous trees: each
excursion of H above 0 corresponds to the exploration process of a single continuous
tree of the family. Let us make this statement more precise thanks to excursion theory.
Recall that X has unbounded variation sample paths. We set It = infs∈[0,t] Xs, that
is the infinimum process of X . Basic results on fluctuation theory (see Bertoin [4]
VII.1) entail that X − I is a strong Markov process in [0,∞) and that 0 is regular for
(0,∞) and recurrent with respect to this Markov process. Moreover, −I is a local time
at 0 for X − I (see Bertoin [4] Theorem VII.1). We denote by N the corresponding
excursion measure of X − I above 0. We denote by (aj , bj), j ∈ I, the excursion
intervals of X − I above 0, and by Xj = X(aj+·)∧bj − Iaj

, j ∈ I, the corresponding

excursions. Next, observe that if t ∈ (aj , bj), the value of Ht only depends on Xj.
Moreover, one can show that

⋃

j∈I (aj , bj) = {t ≥ 0 : Ht > 0}. This allows to define
the height process under N as a certain measurable function H(X) of X , that we
simply denote by (Ht)t≥0. For any j ∈ I, we then set Hj = H(aj+·)∧bj and the point
measure

∑

j∈I
δ(−Iaj

,Hj) (2)

is distributed as a Poisson point measure on [0,∞)×C([0,∞),R) with intensity ℓ⊗N,
where ℓ stands for the Lebesgue measure on [0,∞). Note that X and H under N are
paths with the same lifetime given by

ζ := inf{t ∈ [0,∞) : ∀s ∈ [t,∞) , Hs = Ht} .

Standard results in fluctuation theory imply that 0 < ζ < ∞, N-a.e. and that

N
(

1− e−λζ
)

= λ1/γ , λ ∈ [0,∞) .

Thus, N(ζ ∈ dr) = C r−
1
γ
−1ℓ(dr), where 1/C = γΓ(1− 1

γ ) (here, Γ stands for Euler’s

Gamma function). Note that N-a.e.Ht > 0 iff t ∈ (0, ζ) and H0 = Ht = 0, for any
t ∈ [ζ,∞). We refer to Chapter 1 in [11] for more details.

The excursion (Ht)0≤t≤ζ under N is the depth-first exploration process of a con-
tinuous tree that is defined as the following metric space: for any s, t ∈ [0, ζ], we
set

b(s, t) = min
s∧t≤r≤s∨t

Hr and d(s, t) = Ht +Hs − 2b(s, t) . (3)

The quantity b(s, t) is the height of the branching point between the vertices visited
at times s and t and d(s, t) is therefore the distance in the tree of these vertices. We
easily show that d is a pseudo-metric and we introduce the equivalence relation ∼ on
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[0, ζ] by setting s ∼ t iff d(s, t) = 0. We then define the γ-stable tree as the quotient
metric space

(

T , d
)

=
(

[0, ζ]/∼ , d
)

.

We denote by p : [0, ζ] → T the canonical projection. It is easy to see that p is
continuous. Thus the γ-stable tree (T , d) is a (random) connected compact metric
space. More precisely, Theorem 2.1 in [12] asserts that (T , d) is a R-tree, namely a
metric space such that the following holds true for any σ, σ′ ∈ T .

(a) There is a unique isometry fσ,σ′ from [0, d(σ, σ′)] into T such that fσ,σ′(0) = σ
and fσ,σ′(d(σ, σ′)) = σ′. We set [[σ, σ′]] = fσ,σ′([0, d(σ, σ′)]) that is the geodesic
joining σ to σ′.

(b) If g : [0, 1] → T is continuous injective, then g([0, 1]) = [[g(0), g(1)]].

We refer to Evans [16] or to Dress, Moulton and Terhalle [6] for a detailed account
on R-trees. An intrinsic approach of continuous trees has been developped by Evans
Pitman and Winter in [17] (see also [12]): Theorem 1 in [17] asserts that the set of
isometry classes of compact R-trees equipped with the Gromov-Hausdorff distance (see
Gromov [19]) is a Polish space. This geometric point of view has been used in [12] and
[15] to study Lévy trees.

We need to introduce two additional features of γ-stable trees. First, we distinguish
a special point ρ := p(0) in T , that is called the root. We also equip T with the measure
m that is induced by the Lebesgue measure ℓ on [0, ζ] via the canonical projection p.
Namely, for any Borel subset A of (T , d),

m(A) = ℓ
(

p−1(A)
)

.

The measure m is called the mass measure of the γ-stable tree T . Note that m(T ) = ζ.
One can prove that m is diffuse and that its topological support is T . Moreover, m
is carried by the set of leaves of T that is the set of the points σ such that T \{σ}
remains connected (see [12] for more details). The measured tree (T , d,m) is thus a
continuum tree, as defined by Aldous in [3].

Let us discuss briefly the scaling property of T . From the scaling property of X

and from (1), we see that for any r ∈ (0,∞), under P, (r
γ−1
γ Ht/r)t≥0 has the same

distribution as H . Then, by (2), (r
γ−1
γ Ht/r)0≤t≤rζ under r−

1
γ N has the same "dis-

tribution" as (Ht)0≤t≤ζ under N. Thus, the rescaled measured tree (T , r
γ−1
γ d , rm)

under r−
1
γ N has the same "distribution" as (T , d,m) under N. This allows to define

for any r ∈ (0,∞), a probability distribution N( · | ζ = r) on C([0,∞),R) such that
r 7→ N( · | ζ = r) is weakly continuous and such that

N =

∫ ∞

0

N( · | ζ = r)N(ζ ∈ dr) .

Moreover, (r
γ−1
γ Ht/r)0≤t≤r under N( · | ζ = 1) has the same distribution as (Ht)0≤t≤r

under N( · | ζ = r). Since m(T ) = ζ, the tree T under N( · | ζ = 1) is interpreted as
the γ-stable tree conditioned to have total mass equal to 1 and it is simply called the
normalised γ-stable tree. When γ = 2, it corresponds (up to a scaling constant) to
Aldous Continuum Random Tree as defined in [2] (see also Le Gall [22] for a definition
via the normalised Brownian excursion). The normalised γ-stable tree is the weak
limit when n goes to infinity of a rescaled Galton-Watson trees conditionned to have
total size n and whose offspring distribution belongs to the domain of attraction of a
γ-stable law: see Aldous [3] for the Brownian case and see [8] for the general case.
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The mass measure m is in some sense the most spread out measure on T and
it plays a crucial role in the study of stable trees. For instance Theorem 1.1 in [10]
asserts that for any γ ∈ (1, 2], N-a.e. the mass measure m is equal to a deterministic
constant times the gγ-packing measure where the gauge function is given by

gγ(r) =
r

γ
γ−1

(log log 1/r)
1

γ−1

, r ∈ (0, e−1) . (4)

Actually, this result holds true for general Lévy trees (with a more involved gauge
function). Here, the power exponent γ/(γ − 1) reflects the scaling property. This
value is also equal to the packing dimension of T , and to its Hausdorff and its box
counting dimensions (see [12]). The function gγ is also the lower density of m at
typical points. More precisely, denote by B(σ, r) the open ball in T with center σ ∈ T
and radius r ∈ (0,∞). Then, Theorem 1.2 in [10] asserts that there exists a constant
Cγ ∈ (0,∞) such that

N-a.e. for m-almost all σ, lim inf
r→0

m
(

B(σ, r)
)

gγ(r)
= Cγ . (5)

Theorem 1.2 in [10] also holds true for general Lévy trees and the constant is unknown.
However, in the stable cases, we are able to compute explicitely Cγ , as shown by the
following proposition.

Proposition 1.1 For any γ ∈ (1, 2], Cγ = γ − 1.

We also discuss the balls with exceptionally small mass measure. More precisely, we
investigate the behaviour of infσ∈T m

(

B(σ, r)
)

when r goes to 0. Our main result is
the following.

Theorem 1.2 For any γ ∈ (1, 2], we set

fγ(r) =
r

γ
γ−1

(log 1/r)
1

γ−1

, r ∈ (0, 1) . (6)

Then, there exist kγ ,Kγ ∈ (0,∞) such that N-a.e.

kγ ≤ lim inf
r→0

1

fγ(r)
inf
σ∈T

m
(

B(σ, r)
)

≤ lim sup
r→0

1

fγ(r)
inf
σ∈T

m
(

B(σ, r)
)

≤ Kγ . (7)

To study Brownian motion on stable trees, D. Croydon in Proposition 5.1 [7] states a
partial lower bound for infσ∈T m

(

B(σ, r)
)

that is sufficient to his purpose (but that
does not provide the right scale function).

When 1 < γ < 2, there is no exact upper density of m at typical points (see
Proposition 1.9 in [9]). Moreover, Theorem 1.10 in [9] shows that T has no exact
Hausdorff measure whose gauge function is regularly varying. We also strongly believe
that there is no exact asymptotic function for r 7→ supσ∈T m

(

B(σ, r)
)

, when r goes
to 0, but we will not consider this problem in this paper.

In the Brownian case, Theorem 1.1 in [13] asserts that N-a.e. the mass measure m

is equal to a deterministic constant times the g-Hausdorff measure where the gauge
function g is given by

g(r) = r2 log log 1/r , r ∈ (0, e−1) .

In the proof of Theorem 1.1 [13], it is proved that g is the upper density of m at
typical points. In this paper we obtain the following specific constant.
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Proposition 1.3 Consider the Brownian case: γ = 2. Then

N-a.e. for m-almost all σ, lim sup
r→0

m
(

B(σ, r)
)

g(r)
=

4

π2
. (8)

Moreover, in the Brownian case, the balls with exceptionally large mass have also an
exact asymptotic function as shown by the following theorem.

Theorem 1.4 Consider the Brownian case: γ = 2. Let us set

f(r) = r2 log 1/r , r ∈ (0, e−1) .

Then, there exist k,K ∈ (0,∞) such that N-a.e.

k ≤ lim inf
r→0

1

f(r)
sup
σ∈T

m
(

B(σ, r)
)

≤ lim sup
r→0

1

f(r)
sup
σ∈T

m
(

B(σ, r)
)

≤ K . (9)

Observe that, in the Brownian case, Theorem 1.2 and Theorem 1.4 immediately imply
the following result.

Corollary 1.5 Consider the Brownian case: γ = 2. Then, there are two constants
c, C ∈ (0,∞) such that

N-a.e. ∃r0∈(0,∞) : ∀r∈(0, r0), ∀σ∈T ,
c

log 1/r
≤ r−2

m
(

B(σ, r)
)

≤ C log 1/r.

Note that Proposition 1.1, Theorem 1.2, Proposition 1.3, Theorem 1.4 and Corol-
lary 1.5 hold true under the normalised law N( · | ζ = 1).

The paper is organised as follows. Section 2 recalls useful technical results on the
height process and basic geometric properties of stable trees. Section 3 is devoted to
the tail estimates of the mass measure of specific subsets of stable trees. Section 4 is
devoted to the proof of the results.

2 Preliminaries and basic results.

2.1 Results on the stable height process.

Local times of the height process. Let H be the γ-stable height process under
its excursion measure N as defined in the introduction. It is possible to define the
local times of H under the excursion measure N as follows. For any b ∈ (0,∞), let
us set v(b) = N(supt∈[0,ζ] Ht > b). The continuity of H under P and the Poisson
decomposition (2) obviously imply that v(b) < ∞, for any b > 0. It is moreover clear
that v is non-increasing and limb→∞ v(b) = 0. For every a ∈ (0,∞), we then define
a continuous increasing process (La

t )0≤t≤ζ , such that for every b ∈ (0,∞) and for any
t ∈ [0,∞), one has

lim
ε→0

N

(

1{supH>b} sup
0≤s≤t∧ζ

∣

∣

∣

∣

1

ε

∫ s

0

dr1{a−ε<Hr≤a} − La
s

∣

∣

∣

∣

)

= 0. (10)

See [11] Section 1.3 for more details. The process (La
t )0≤t≤ζ is the a-local time of the

height process. For any a, λ, µ ∈ [0,∞), we set

κa(λ, µ) := N

(

1− e−µLa
ζ−λ

∫
a

0
1{Ht<a}dt

)

. (11)
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The function κ is the Laplace exponent of a specific additive functional of a γ-stable
Continuous States Branching Process (γ-stable CSBP, for short). An elementary result
on CSBPs, whose proof can be found in Le Gall [23] Section II.3, entails that a 7→
κa(λ, µ) is the unique solution of the following ordinary differential equation:

∂κa

∂a
(λ, µ) = λ− κa(λ, µ)

γ and κ0(λ, µ) = µ .

For more details, see [13] Section 4 page 405 or [9] Section 2.3 page 106. We note the
following: if µ = λ1/γ , then κa(λ, µ) = λ1/γ . If µ < λ1/γ , (resp. if µ > λ1/γ), then
a 7→ κa(λ, µ) is increasing (resp. decreasing). A simple change of variable implies that
κ satisfies the following integral equation

∫ κa(λ,µ)

µ

du

λ− uγ
= a, for any a, λ, µ ∈ [0,∞) such that µ 6= λ

1
γ . (12)

As a consequence, we get

κa+b(λ, µ) = κa

(

λ, κb(λ, µ)
)

, a, b, λ, µ ∈ [0,∞) . (13)

We also derive from (12) the following scaling property:

c
1

γ−1κa

(

c−
γ

γ−1λ, c−
1

γ−1µ
)

= κa/c(λ, µ) , a, c, λ, µ ∈ [0,∞) . (14)

When γ 6= 2 and λ > 0, it seems difficult to compute κ explicitly. However, when
λ = 0, (12) implies that for any a, µ ∈ [0,∞),

κa(0, µ) = N
(

1− e−µLa
ζ

)

=
(

(γ−1)a+
1

µγ−1

)− 1
γ−1

. (15)

It is convenient to interpret these quantities in terms of the γ-tree T . For any
a ∈ (0,∞), first define the a-local time measure ℓa as the measure induced by dLa

· via
the canonical projection p : [0, ζ] → T . Namely,

〈ℓa, f〉 =
∫ ζ

0

f(p(s)) dLa
s ,

for any positive measurable application f on T . Here dLa
· stands for the Stieltjes mea-

sure associated with the non-decreasing function s 7→ La
s . Note that the topological

support of ℓa is included in the a-level set

T (a) = {σ ∈ T : d(ρ, σ) = a} . (16)

Next, we set

Γ(T ) = sup
σ∈T

d(ρ, σ) (17)

that is the total height of T . Then, observe that

〈ℓa〉 = La
ζ , m

(

B(ρ, a)
)

=

∫ ζ

0

1{Ht<a}dt and Γ(T ) = sup
t∈[0,ζ]

Ht , (18)

where 〈ℓa〉 stands for the total mass of ℓa. This implies

κa(λ, µ) = N

(

1− e−µ 〈ℓa〉−λm(B(ρ,a))
)

. (19)

6



We recall from [11] Chapter 1 (proof of Corollary 1.4.2 page 41) that

N-a.e. 1{supH>a} = 1{La
ζ
6=0} . (20)

By letting µ go to ∞ in (15), we get

v(a) = N(Γ(T ) > a) = N(〈ℓa〉 6= 0) =
(

(γ−1)a
)− 1

γ−1 . (21)

For any a ∈ (0,∞), we next define the probability measure Na by setting

Na = N
(

·
∣

∣Γ(T ) > a
)

= N
(

·
∣

∣ 〈ℓa〉 6= 0
)

. (22)

This combined with (15) implies that

Na

(

e−µ〈ℓa〉) = 1−
(

1 +
1

(γ−1)aµγ−1

)− 1
γ−1

. (23)

By differentiating this equality at µ = 0, one gets

Na

(

〈ℓa〉
)

=
(

(γ−1)a
)

1
γ−1 =

1

v(a)
. (24)

The branching property. We now describe the distribution of excursions of the
height process above a given level (or equivalently of the corresponding stable subtrees
above this level). We fix a ∈ (0,∞) and we denote by (laj , r

a
j ), j ∈ Ja, the connected

components of the open set {t ∈ (0, ζ) : Ht > a}. For any j ∈ Ja, denote by Ha,j
. the

corresponding excursion of H that is defined by Ha,j
s = H(laj +s)∧raj

− a, s ∈ [0,∞).
This decomposition is interpreted in terms of the tree as follows. Denote the

closed ball in T with center ρ and radius a by B̄(ρ, a). Observe that the connected
components of the open set T \B̄(ρ, a) are the subtrees T a,o

j := p((laj , ra
j )), j ∈ Ja. The

closure T a
j of T a,o

j is simply {σa
j } ∪ T a,o

j , where σa
j = p(laj ) = p(ra

j ), that is the point
in the a-level set T (a) at which T a,o

j is grafted. Observe that the rooted measured
tree

(

T a
j , d, σa

j ,m( · ∩ T a
j )
)

is isometric to the tree coded by Ha,j
. .

We define the following point measure on [0,∞)× C([0,∞),R):

Ma(dxdH) =
∑

j∈Ja

δ(La
la
j
,Ha,j) (25)

For any s ∈ [0,∞), we also set H̃a
s = Hτa

s
, where the time-change τas is given by

τas = inf
{

t ≥ 0 :

∫ t

0

dr 1{Hr≤a} > s
}

, s ∈ (0,∞) .

The process H̃a = (H̃a
s )s≥0 is the height process below a and the rooted compact R-

tree (B̄(ρ, a), d, ρ) is isometric to the tree coded by H̃a. Let Ga be the sigma-field
generated by H̃a augmented by the N-negligible sets. From the approximation (10),
it follows that La

ζ is measurable with respect to Ga. Recall notation Na from (22).

The branching property at level a then asserts that under Na, conditionally given Ga,
Ma is distributed as a Poisson point measure with intensity 1[0,La

ζ
](x)ℓ(dx)⊗N(dH).

For more details, we refer to Proposition 1.3.1 in [11] or to the proof of Proposition
4.2.3 [11] (see also Theorem 4.2 [12]). We apply the branching property to prove the
following lemma.
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Lemma 2.1 For any a, b, λ ∈ (0,∞), we set

Φa,b(λ) = Na

(

e−λm(B(ρ,a+b))
)

.

Then,
Φa,b(λ) = v(a)−1

(

κa(λ,∞)− κa+b(λ, 0)
)

,

where κa(λ,∞) stands for limµ→∞ κa(λ, µ), which is well-defined and finite.

Proof: first note that

m(B(ρ, a+ b)) =

∫ ζ

0

1{Hr<a+b}dr =

∫ ζ

0

1{Hr<a}dr +

∫ ζ

0

1{a≤Hr<a+b}dr

=

∫ ζ

0

1{Hr<a}dr +
∑

j∈Ja

∫ ζa
j

0

1{Ha,j
r <b}dr ,

where ζaj = raj −laj stands for the lifetime of Ha,j . The branching property then implies
that

Na

(

e−λm(B(ρ,a+b))
∣

∣Ga

)

= e−λ
∫

ζ

0
1{Hr<a}dr exp

(

−La
ζN
(

1− e−λ
∫

ζ

0
1{Hr<b}dr

))

= e−κb(λ,0)L
a
ζ−λ

∫
ζ

0
1{Hr<a}dr .

Monotone convergence implies

Na

(

e−κb(λ,0)L
a
ζ−λ

∫
ζ

0
1{Hr<a}dr

)

= lim
µ→∞

v(a)−1
N
(

(1− e−µLa
ζ )e−κb(λ,0)L

a
ζ−λ

∫
ζ

0
1{Hr<a}dr

)

= lim
µ→∞

v(a)−1
(

κa

(

λ, µ+κb(λ, 0)
)

− κa(λ, κb(λ, 0)
) )

,

which easily implies the desired result thanks to (13). �

From Lemma 2.1 and the scaling property (14), we get

Φa,b(λ) = Φ1,b/a

(

a
γ

γ−1λ
)

,

which implies that for any a, b ∈ (0,∞),

m
(

B(ρ, a+ b)
)

under Na
(law)
= a

γ
γ−1m

(

B(ρ, 1 +
a

b
)
)

under N1 . (26)

Spinal decomposition. We recall another decomposition of the height process that
is proved in [11] Chapter 2 (see [12] for a more specific statement and see [14] for
further applications). This decomposition is used in the proof of Proposition 1.1 and
Proposition 1.3.

Let h : [0,∞) → [0,∞) be a continuous function with compact support. Let us
assume for clarity that h(0) > 0. We view h as the depth-first exploration process of
a tree. Thus, the exploration starts at a vertex with height h(0) > 0 that we call the
initial vertex. We obtain the subtrees grafted along the ancestral line of the initial
vertex as follows: set h(s) = inf [0,s] h and denote by (li, ri), i ∈ I(h), the excursion
intervals of h − h away from 0 that are the connected components of the open set
{s ∈ [0,∞) : h(s)− h(s) > 0}. For any i ∈ I(h), set

hi(s) =
(

(h− h)((li + s) ∧ ri)
)

s≥0
.

Then, the subtrees along the ancestral line of the initial vertex are coded by the
functions (hi ; i ∈ I(h)), and the tree coded by hi is grafted at distance h(0)−h(li) from
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the initial vertex. We next define N (h) as the point measure on [0,∞)×C([0,∞),R)
given by

N (h) =
∑

i∈I(h)
δ(h(0)−h(li) , hi) .

Recall that H stands for the γ-height process under its excursion measure N. For
any t ∈ (0, ζ), we set Ĥt := (H(t−s)+)s≥0; here, ( ·)+ stands for the positive part

function. We also set Ȟt := (H(t+s)∧ζ)s≥0, and we define the random point measure
Nt on [0,∞)× C([0,∞),R) by

Nt = N (Ĥt) +N (Ȟt) :=
∑

j∈Jt

δ(rtj , H(t),j ) . (27)

This point measure records the subtrees grafted along the ancestral line of the vertex
visited at time t in the coding of T by H . Namely, set σ = p(t) ∈ T . Then, the geodesic
[[ρ, σ]] is the ancestral line of σ. Denote by T o

j , j ∈ J , the connected components of
the open set T \[[ρ, σ]] and denote by Tj the closure of T o

j . Then, there exists a point
σj ∈ [[ρ, σ]] such that Tj = {σj} ∪ T o

j . The specific coding of T by H entails that for
any j ∈ J there exists a unique j′ ∈ Jt such that d(σ, σj) = rtj′ and such that the

rooted compact R-tree (Tj , d, σj) is isometric to the tree coded by H
(t),j′
. .

The law of Nt when t is chosen "at random" according to the Lebesgue measure
is given as follows. To simplify the argument, we assume that the random variables
we mention are defined on the same probability space (Ω,F ,P). Let (Ut)t≥0 be a
(γ − 1)-stable subordinator with initial value U0 = 0, and whose Laplace exponent is
given by − logE[exp(−λU1)] = γλγ−1. Let

N ∗ =
∑

j∈I∗

δ(r∗j , H∗j) (28)

be a random point measure on [0,∞) × C([0,∞),R) such that a regular version of
the law of N ∗ conditionally given U is that of a Poisson point measure with intensity
dUr ⊗ N(dH). Here, dUr stands for the (random) Stieltjes measure associated with
the non-decreasing path r 7→ Ur. For any a ∈ (0,∞), we also set

N ∗
a =

∑

j∈I∗

1[0,a](r
∗
j ) δ(r∗j , H∗j). (29)

By Lemma 3.4 in [12], for any nonnegative measurable functional F ,

N

(

∫ ζ

0

F
(

Ht,Nt

)

dt

)

=

∫ ∞

0

E [F (a,N ∗
a )] da . (30)

We shall refer to this identity as to the spinal decomposition of H at a random time.

We use the spinal decomposition to compute the law of the mass measure of random
balls in T . To that end, we first fix t ∈ (0, ζ) and we express m

(

B(p(t), r)
)

in terms
of Nt as follows. First, recall from (3) the definition of b(s, t) and d(s, t). Note that
if Hs = b(s, t) with s 6= t, then p(s) cannot be a leaf of T . Let us fix a radius r in
[0, Ht]. Since the leaves of T have zero m-measure, we get

m
(

B(p(t), r)
)

=

∫ ζ

0

1{d(s,t)<r}ds =

∫ ζ

0

1{0<Hs−b(s,t)<r−Ht+b(s,t)}ds.

The definition of (N (Ĥt),N (Ȟt)) then entails

m
(

B(p(t), r)
)

=
∑

j∈Jt

1[0,r](r
t
j) ·
∫ ζt

j

0

1{H(t),j
s <r−rtj}

ds, (31)
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where ζtj stands for the lifetime of the path H∗ t,j . For any a ∈ (0,∞) and for any
r ∈ [0, a], we next set

M∗
r (a) =

∑

j∈I∗

1[0,r∧a](r
∗
j ) ·

∫ ζ∗
j

0

1{H∗j
s ≤r−r∗j }

ds , (32)

where ζ∗j stands for the lifetime of the path H∗j . Then, (M∗
r (a))0≤r≤a is a function of

N ∗
a . It is a cadlag non-decreasing process and the spinal decomposition (30) implies

for any bounded measurable functional F : D([0,∞),R) → R, we have

N

(

∫ ζ

0

F
(

(

m(B(p(t), r))
)

r≥0

)

dt

)

=

∫ ∞

0

E
[

F
(

(M∗
r (a))r≥0

)]

da ,

which can be rephrased as follows in terms of the tree

N

(
∫

T
F
(

(

m(B(σ, r))
)

r≥0

)

m(dσ)

)

=

∫ ∞

0

E
[

F
(

(M∗
r (a))r≥0

)]

da . (33)

For any 0 ≤ r′ ≤ r ≤ a, we next set

M∗
r′,r(a) =

∑

j∈I∗

1(r′,r](r
∗
j )

∫ ζ∗
j

0

1{H∗j
s <r−r∗j }

(34)

Note that M∗
r (a) = M∗

0,r(a). The random variables M∗
r′,r(a) play an important role

in the proof of Proposition 1.1 and Proposition 1.3. We gather in the following lemma
their basic properties that are easy consequences of the definition (we refer to Lemma
2.11 and to Remark 2.12 in [9] page 115 for more details).

Lemma 2.2 Let us fix a ∈ (0,∞). The following holds true.

(i) Let (rn)n≥0 be a sequence such that 0 < rn+1 ≤ rn ≤ a and limn→∞ rn = 0.
Then, the random variables (M∗

rn+1,rn(a))n≥0 are independent.

(ii) The increments of r ∈ [0, a] 7→ M∗
r (a) are not independent. However, for any

0 ≤ r′ ≤ r ≤ a, we have

M∗
r (a)−M∗

r′(a) = M∗
r′,r(a) +

∑

j∈I∗

1[0,r′](r
∗
j )

∫ ζ∗
j

0

1{r′−r∗j≤H∗j
s <r−r∗j }

.

It implies that M∗
r (a) ≥ M∗

r (a) − M∗
r′(a) ≥ M∗

r′,r(a). Note that M∗
r′,r(a) is

independent of M∗
r′(a).

The law of M∗
r′,r(a) is characterised by its Laplace transform:

E
[

exp(−λM∗
r′,r(a))

]

= 1− κr−r′(λ, 0)
γ

λ
, λ ∈ [0,∞) . (35)

Proof of (35): recall that conditionally given U , N ∗ is a Poisson point process with
intensity dUr ⊗N. Thus,

E
[

exp(−λM∗
r′,r(a))

∣

∣U
]

= exp
(

−
∫

(r′,r]

dUs κr−s(λ, 0)
)

.

We get E[exp(−λM∗
r′,r(a))] = exp(−γ

∫ r−r′

0 κs(λ, 0)
γ−1ds). By a change of variable

based on (12), we obtain γ
∫ r−r′

0
κs(λ, 0)

γ−1ds = logλ − log
(

λ − κr−r′(λ, 0)
)

, which
entails (35). �
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We also introduce the following notation:

M∗ := M∗
0,1(1) = M∗

1 (1) . (36)

Then, (35) and the scaling property (14) imply that for any 0 ≤ r′ ≤ r ≤ a,

(r − r′)−
γ

γ−1M∗
r′,r(a)

(law)
= M∗ . (37)

We see in particular that r−
γ

γ−1M∗
r (a) has the same law as M∗. The tail at 0+ of the

distribution of M∗ is studied in Section 3.

2.2 Balls and truncated subtrees.

Recall that (Ht)0≤t≤ζ stands for the excursion of the γ-stable process under N and
that (T , d) is the γ-stable tree coded by H . Recall that for any σ, σ′ ∈ T , [[σ, σ′]]
stands for the (unique) geodesic joining σ to σ′. For any σ ∈ T , we set

Tσ =
{

σ′ ∈ T : σ ∈ [[ρ, σ′]]
}

,

that is the subtree stemming from σ. We then set Γ(Tσ) = supσ′∈Tσ
d(σ, σ′) that is

the total height of Tσ. Next, for any a, ε ∈ (0,∞), we set

T (a) =
{

σ ∈ T : d(ρ, σ) = a
}

and T (a, ε) =
{

σ ∈ T (a) : Γ(Tσ) > ε
}

.

Since T is a compact metric space T (a, ε) is a finite subset and we set Za(ε) =
#T (a, ε). Then,

T (a, ε) =
{

σ1, . . . , σZa(ε)

}

,

where, the σi is the i-th point to be visited by H . For any η ∈ (0,∞), we set

Da,ε,η =
{

Ti ; 1 ≤ i ≤ Za(ε)
}

where Ti = Tσi
∩B(σi, η).

The Tis are the subtrees above level a that are higher than ε and that are truncated
at height η. We simply call them the (a, ε)-subtrees truncated at height η.

Recall from (21) that v(ε) = N(Γ(T ) > ε) = ((γ − 1)ε)−
1

γ−1 . Recall from the
subsection stating the branching property, that Ga stands for the sigma-field generated
by the height process below a. Recall from (22) that Na = N( · | supH > a). By the
branching property at level a,

(i) under Na and conditionally given Ga, Za(ε) is a Poisson random variable with
parameter v(ε)〈ℓa〉.

Moreover, each Tσi
is coded by an excursion above level a that is higher than ε.

Therefore,

(ii) conditionally given Za(ε), the truncated subtrees Ti are independent and dis-
tributed as B(ρ, η) under Nε.

Consequently, for any integer k ≥ 1, for any measurable functions F1, . . . , Fk : [0,∞) →
[0,∞), we have

Na

(

1{Za(ε)=k}
∏

1≤i≤k

Fi

(

m(Ti)
)

∣

∣

∣
Ga

)

=
(v(ε)〈ℓa〉)k

k!
e−v(ε)〈ℓa〉

∏

1≤i≤k

Nε

(

Fi

(

m(B(ρ, η)
))

. (38)

The distribution of m(B(ρ, η)) under Nε plays an important role in the proofs and it
is studied in Section 3.

The two following lemmas are used in the proofs of Theorem 1.2 and Theorem 1.4.
We first show that any ball contains a reasonably large truncated subtree.
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Lemma 2.3 Let r ∈ (0, 1/2). Let nr be the positive integer given by 2−nr < r ≤
2−nr+1. Let σ ∈ T be such that d(ρ, σ) ≥ 2.2−nr−2 and let k ≥ 1 be the integer such
that (k + 1)2−nr−2 ≤ d(ρ, σ) < (k + 2)2−nr−2.

Then, there exists a unique truncated subtree T ∈ Dk2−nr−2,2−nr−2,2−nr−2 such that
T ⊂ B(σ, r).

Proof: to simplify notation, we set a = k2−nr−2 and ε = η = 2−nr−2. There is a
unique i ∈ {1, . . . , Za(ε)} such that σi ∈ [[ρ, σ]] (and note that d(ρ, σi) = a = k2−nr−2).
Then, Ti = Tσi

∩ B(σi, η) ⊂ B(σ, r). Indeed, for any σ′ ∈ Ti, d(σ, σ′) ≤ d(σ, σi) +
d(σ′, σi). Since σ′ ∈ B(σi, η), d(σ

′, σi) ≤ η = 2−nr−2, and since σi ∈ [[ρ, σ]], we get

d(σ, σi) = d(ρ, σ) − d(ρ, σi) ≤ (k + 2)2−nr−2 − a = 2.2−nr−2.

Thus, d(σ, σ′) ≤ 3.2−nr−2 < r, which completes the proof. �

Conversely, one proves that any ball is contained in a reasonably small truncated
subtree.

Lemma 2.4 Let r ∈ (0, 1/2). Let nr be the positive integer given by 2−nr < r ≤
2−nr+1. Let σ ∈ T be such that d(ρ, σ) ≥ 2.2−nr+1 and let l ≥ 1, be the integer such
that (l + 1)2−nr+1 ≤ d(ρ, σ) < (l + 2)2−nr+1.

Then, there exists a unique truncated subtree T ∈ Dl2−nr+1,2−nr+1,3.2−nr+1 such
that B(σ, r) ⊂ T .

Proof: to simplify notation, we set a = l2−nr+1, ε = 2−nr+1 and η = 3ε. There is a
unique i ∈ {1, . . . , Za(ε)} such that σi ∈ [[ρ, σ]] (and note that d(ρ, σi) = a = l2−nr+1).
We check that B(σ, r) ⊂ Ti = Tσi

∩B(σi, η). Indeed, let σ′ ∈ B(σ, r) and let σ ∧σ′ be
the branching point of σ and σ′. Namely, [[ρ, σ ∧ σ′]] = [[ρ, σ]] ∩ [[ρ, σ′]]. We get

d(ρ, σ∧σ′) = min
(

d(ρ, σ), d(ρ, σ′)
)

> d(ρ, σ)−r ≥ (l+1)2−nr+1−2−nr+1 = l2−nr+1 .

Thus, d(ρ, σi) ≤ d(ρ, σ ∧ σ′) and since σi and σ ∧ σ′ belongs to [[ρ, σ]], it implies that
σ′ ∈ Tσi

. Moreover, d(σ′, σi) ≤ d(σ′, σ) + d(σ, σi) < r + 2.2−nr+1 ≤ 3.2−nr+1 = η,
which completes the proof. �

3 Tail estimates.

3.1 Tail of the distribution of m(B(ρ, 1 + c)) under N1.

Recall that v(1) = N(supH > 1) and that N1 = N( · | supH > 1). Recall from (11)
the definition of κa(λ, µ) and Lemma 2.1 that asserts that for any c ∈ [0,∞),

N1

(

e−λm(B(ρ,1+c))
)

= Φ1,c(λ) = v(1)−1
(

κ1(λ,∞) − κ1+c(λ, 0)
)

. (39)

Lemma 3.1 For any γ ∈ (1, 2] and any c ∈ [0,∞), we get

− log N1

(

m(B(ρ, 1 + c) ) ≤ y
)

∼
y→0+

(γ − 1

y

)γ−1

.

Proof: by De Bruijn’s Tauberian theorem, we only need to get an equivalent to
− logΦ1,c(λ) when λ goes to infinity. To that end, we use (39) and we first get an
estimate of κ1(λ,∞): we take a = 1 in (12) and we let µ go to infinity to obtain

∫ ∞

κ1(λ,∞)

du

uγ − λ
= 1 .
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We set a(λ) = log
(κ1(λ,∞)γ

λ −1
)

and we use the change of variable y = log(λ−1uγ −1)
in the previous integral equation to get

γλ1− 1
γ =

∫ ∞

a(λ)

dy

(1 + ey)1−
1
γ

.

Note that a(λ) decreases to −∞ when λ goes to ∞. Thus, there exists λ0 ∈ (0,∞)
such that a(λ) < 0, for any λ > λ0. Next, observe that

Q0(λ):=

∫ ∞

0

dy

(1 + ey)1−
1
γ

−
∫ 0

a(λ)

(

1− 1

(1 + ey)1−
1
γ

)

dy −−−→
λ→∞

Q0(∞) ∈ R , (40)

and that γλ1− 1
γ = Q0(λ)− a(λ), for any λ > λ0. Namely,

κ1(λ,∞) = λ
1
γ

(

1 + exp
(

Q0(λ) − γλ
γ−1
γ

)

)
1
γ

. (41)

Similarly, we get an estimate for κ1+c(λ, 0): we take a = 1 + c and µ = 0 in (12):

∫ κ1+c(λ,0)

0

du

λ− uγ
= 1 + c .

We set b(λ) = − log
(

1− κ1+c(λ,0)
γ

λ

)

and we take y = − log(1 − λ−1uγ) to get

(1 + c)γλ1− 1
γ =

∫ b(λ)

0

dy

(1− e−y)1−
1
γ

= b(λ) +Q1(λ) ,

where

Q1(λ) :=

∫ b(λ)

0

( 1

(1 − e−y)1−
1
γ

− 1
)

dy −−−→
λ→∞

Q1(∞) ∈ [0,∞) . (42)

Thus,

κ1+c(λ, 0) = λ
1
γ

(

1− exp
(

Q1(λ)− (1 + c)γλ
γ−1
γ

)

)
1
γ

. (43)

By (39), (40), (41), (42) and (43), we get

− logN1

(

e−λm(B(ρ,1+c))
)

∼
λ→∞

γλ
γ−1
γ ,

and De Bruijn’s Tauberian theorem entails the desired result (see Theorem 4.12.9 page
254 in [5]). �

In the Brownian case, computations are explicit: we easily derive from (12) that
for any a, λ, µ ∈ [0,∞) such that

√
λ 6= µ,

κa(λ, µ) =
√
λ · e

a
√
λ(
√
λ+ µ)− e−a

√
λ(
√
λ− µ)

ea
√
λ(
√
λ+ µ) + e−a

√
λ(
√
λ− µ)

. (44)

Recall that coth(x) = (ex + e−x)/(ex − e−x) = 1/ tanh(x), and note that v(1) = 1.
Thus, (39) implies that

N1

(

e−λm(B(ρ,1+c))
)

=
√
λ
(

coth(
√
λ)− tanh((1 + c)

√
λ)
)

.

We next use the well-known formulas

x tanh(x) =
∑

n≥0

2x2

x2 + π2

4 (2n+ 1)2
and x coth(x) = 1 +

∑

n≥1

2x2

x2 + π2n2
. (45)
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Therefore,

∫ ∞

0

N1

(

m(B(ρ, 1 + c)) ≥ y
)

e−λy dy = λ−1
(

1−N1

(

e−λm(B(ρ,1+c))
) )

=
2

1+c

∑

n≥0

1

λ+
(π(2n+1)

2(1+c)

)2 − 2
∑

n≥1

1

λ+ π2n2
.

This easily implies the following.

Lemma 3.2 Consider the Brownian case: γ = 2. Then, for any y ∈ [0,∞),

N1

(

m(B(ρ, 1 + c)) ≥ y
)

=
2

1+c

∑

n≥0

exp
(

− π2(2n+1)2

4(1+c)2
y
)

− 2
∑

n≥1

exp(−π2n2 y)

∼
y→∞

2

1+c
exp

(

− π2

4(1+c)2
y
)

.

This result shall be used in the proof of Therem 1.4.

3.2 Tail of the distribution of M∗.

Recall from (36) that M∗ = M∗
1 (1). We set L(λ) = E

[

exp(−λM∗)
]

and from (35), we
get

L(λ) = E
[

exp(−λM∗)
]

= 1− κ1(λ, 0)
γ

λ
, λ ∈ [0,∞) . (46)

The following lemma provides an equivalent of the tail at 0+ of the distribution of M∗
that is used in the proof of Proposition 1.1.

Lemma 3.3 For any γ ∈ (1, 2] we have the following estimate.

lim
y→0+

y−
γ−1
2 exp

( 1

yγ−1

)

P
(

M∗ ≤ (γ−1) y
)

= eCγ

√

γ(γ − 1)

2π
.

where Cγ is a constant given by

Cγ =

∫ 1

0

u−1
(

(1 − u)−
γ−1
γ − 1

)

du =
∑

n≥1

1

n

∣

∣

∣

∣

(1−γ
γ

n

)∣

∣

∣

∣

, (47)

Proof: first observe that for any u ∈ [0, 1), we have

(1− u)−
γ−1
γ =

∑

n≥0

(−1)n
(1−γ

γ

n

)

un = 1 +
∑

n≥1

∣

∣

∣

∣

(1−γ
γ

n

)
∣

∣

∣

∣

un . (48)

This easily entails the second equality in (47). For any y ∈ [0, 1), we set

F (y) =

∫ 1

y

du

u(1− u)
γ−1
γ

By (12) and by a simple change of variable, F (L(λ)) = γλ
γ−1
γ . Note that

F (y) =

∫ 1

y

u−1du +

∫ 1

0

u−1
(

(1− u)−
γ−1
γ − 1

)

du −
∫ y

0

u−1
(

(1− u)−
γ−1
γ − 1

)

du

= − log y + Cγ − h(y) .
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Here h : [0, 1] → [0,∞) is increasing, h(0) = 0, h(1) = Cγ , and h(y) =
∑

n≥1 any
n,

where for any n ≥ 1,

h(n)(0)

n!
=

1

n

∣

∣

∣

∣

(1−γ
γ

n

)
∣

∣

∣

∣

=
1

n

n
∏

k=1

(

1− 1

γ k

)

∈ (0, 1) . (49)

Thus,

L(λ) = eCγ exp
(

−γλ
γ−1
γ

)

exp (−h(L(λ))) . (50)

We next use Fubini for sums of nonnegative real numbers to prove that for any y ∈
[0, 1], and any integer m ≥ 1,

h(y)m=
∑

n≥m

yn ·
∑

q1,...,qm≥1
q1+...+qm=n

aq1 . . . aqm =
∑

n≥m

yn ·
∑

p1+...+pn=m
p1+2p2+...+npn=n

m!

p1! . . . pn!
ap1

1 . . . apn
n . (51)

Thus, for any y ∈ [0, 1], exp(h(y)) = 1 +
∑

n≥1 dny
n, dn =

∑

ap1

1 . . . apn
n /(p1! . . . pn!),

where the sum is over all the p1, . . . , pn ≥ 0 such that p1 + 2p2 + . . . + npn = n.
Standard arguments on analytic functions imply that there exists r1 > 0 such that

exp(−h(y)) = 1 +
∑

n≥1

cny
n , y ∈ [0, r1)

and (51) easily entails that for any n ≥ 1,

cn =
∑

p1,...,pn≥0
p1+2p2+...+npn=n

(−1)p1+...+pn

p1! . . . pn!
ap1

1 . . . apn
n .

Consequently, |cn| ≤ dn, and r1 ≥ 1, which implies that

∑

n≥0

|cn| ≤ exp(h(1)) = eCγ . (52)

The previous arguments and (50) imply

L(λ) = eCγ exp
(

−γλ
γ−1
γ

)

+
∑

n≥1

eCγ cn exp
(

−γλ
γ−1
γ

)

L(λ)n , λ ∈ [0,∞) . (53)

We next introduce a non-negative random variable S defined on (Ω,F ,P), that has a
stable distribution whose Laplace transform is given by

E
[

exp
(

−λS
)]

= exp
(

−γλ
γ−1
γ

)

.

We use the following standard tail estimate due to Skorohod [27] (see also Example
4.1 in [21]).

lim
y→0+

y−
γ−1
2 exp

( 1

yγ−1

)

P
(

S ≤ (γ−1) y
)

=

√

γ(γ − 1)

2π
. (54)

We denote by q the density of S and by µ the distribution of M∗. The bound (52)
implies that

R(dx) := eCγq(x)dx +
∑

n≥1

eCγ cn(q ∗ µ∗n)(dx)
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is a Borel signed measure on [0,∞) whose total variation is bounded by 2 exp(2Cγ).
Moreover (53), implies that

∫

[0,∞) e
−λxR(dx) = L(λ), λ ∈ [0,∞). Standard arguments

on Laplace transform imply that R = µ. Denote by (Yn)n≥1, a sequence of i.i.d. copies
of M∗ that are also independent of S. Since R = µ, for any y ∈ [0,∞),

P(M∗ ≤ (γ − 1)y) = eCγP(S ≤ (γ − 1)y) +
∑

n≥1

eCγcnP(S + Y1 + . . .+ Yn ≤ (γ − 1)y).

The obvious bound

P
(

S + Y1 + . . .+ Yn ≤ (γ − 1)y
)

≤ P
(

S ≤ (γ − 1)y
)

P
(

M∗ ≤ (γ − 1)y
)n

entails
∣

∣

∣

∣

P(M∗ ≤ (γ − 1)y)

eCγP(S ≤ (γ − 1)y)
− 1

∣

∣

∣

∣

≤
∑

n≥1

|cn| P
(

M∗ ≤ (γ − 1)y
)n −−−−−→

y→0+
0 ,

which entails the desired result thanks to (54). �

In the Brownian case, the computations are explicit. By (44), we get

∫ ∞

0

e−λy
P(M∗ ≥ y) = λ−1

(

1− L(λ)
)

= λ−1 tanh2(
√
λ) .

Observe that tanh2(x) = tanh′(0)− tanh′(x). If we set an = π2(2n+ 1)2/4, then (45)
implies

tanh2(x) =
∑

n≥0

2x2

an(x2 + an)
+

4x2

(x2 + an)2
.

Thus
∫ ∞

0

e−λy
P(M∗ ≥ y) =

∑

n≥0

2

an(λ+ an)
+

4

(λ+ an)2
,

which easily implies the following lemma.

Lemma 3.4 Consider the Brownian case: γ = 2. Then, for any y ∈ [0,∞),

P
(

M∗ ≥ y
)

=
∑

n≥0

4
( 2

π2(2n+1)2
+ y
)

exp
(

− π2

4
(2n+ 1)2y

)

∼
y→∞

4y exp
(

− π2

4
y
)

.

This lemma shall be used in the proof of Proposition 1.3.

4 Proofs.

4.1 Proof of Theorem 1.2.

We fix γ ∈ (1, 2] and we consider the γ-stable tree (T , d) with root ρ coded by the γ-
height process H under its excursion measure N, as defined in the introduction. Recall
from Section 2.2 the definition of the (a, ε)-subtrees truncated at height η, whose set
is denoted by Da,ε,η = {Ti ; 1 ≤ i ≤ Za(ε)}. Recall that

fγ(r) =
r

γ
γ−1

(log 1/r)
1

γ−1

, r ∈ (0, 1) .
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Lower Bound. Let fix a positive integer R0 and a real number α ∈ (0,∞), that is
specified further. For any integer n ≥ 4, we set

V (n) = 1{m(B(ρ,2−n)≤αfγ(2−n)} +
∑

1≤k<R02n

#
{

Ti ∈ Dk2−n,2−n,2−n : m(Ti) ≤ αfγ(2
−n)
}

.

We first prove that

V (n) = 0 =⇒ inf
σ∈B(ρ,R0)

m
(

B(σ, 2−n+3)
)

> αfγ(2
−n) . (55)

Indeed, we apply Lemma 2.3 with r = 2−n+3. Thus, nr = n− 2 and we have 2−nr <
r = 2−nr+1. Let σ ∈ T be such that d(ρ, σ) ≤ R0. We first consider the case where
d(ρ, σ) ≥ 2.2−nr−2 = 2−n+1 = r/4. Let k ∈ N be such that (k+1)2−nr−2 ≤ d(ρ, σ) <
(k + 2)2−nr−2. Observe that 1 ≤ k < R02

n. Lemma 2.3 implies that there exists a
truncated subtree T ∈ Dk2−n,2−n,2−n such that T ⊂ B(σ, 2−n+3). Consequently, if
V (n) = 0, then αfγ(2

−n) < m(B(σ, 2−n+3)).
We next consider the case where d(ρ, σ) < 2−n+1. Then it is easy to see that

B(ρ, 2−n) ⊂ B(σ, 3.2−n) ⊂ B(σ, 2−n+3). Thus, if V (n) = 0, m(B(σ, 2−n+3)) ≥
m(B(ρ, 2−n) > αfγ(2

−n), which completes the proof of (55).

We next claim that it is possible to find α such that
∑

n≥4

N
(

V (n)1{Γ(T )>2−n}
)

< ∞ . (56)

We first set xn = N
(

V (n)1{Γ(T )>2−n}
)

and

yn = N
(

m(B(ρ, 2−n))≤αfγ(2
−n) and Γ(T )>2−n

)

= v(2−n)N2−n

(

m(B(ρ, 2−n))≤αfγ(2
−n)

)

.

To simplify notation, we also set Z(k, n) = Zk2−n(2−n). We get the following.

xn ≤ yn +
∑

1≤k<R02n

N

(

∑

1≤i≤Z(k,n)

1{m(Ti)≤αfγ (2−n)}
)

≤ yn +
∑

1≤k<R02n

v(k2−n)Nk2−n

(

∑

1≤i≤Z(k,n)

1{m(Ti)≤αfγ(2−n)}
)

Recall from the definition of the branching property that Gk2−n stands for the sigma-
field generated by the tree below k2−n. Recall from Section 2.2 that conditionnally
given Gk2−n , Z(k, n) is a Poisson random variable with parameter v(2−n)〈ℓk2−n〉 and
by (38), we get

Nk2−n

(

∑

1≤i≤Z(k,n)

1{m(Ti)≤αfγ (2−n)}
)

= Nk2−n

(

Z(k, n)
)

N2−n

(

m(B(ρ, 2−n))≤αfγ(2
−n)
)

= Nk2−n

(

〈ℓk2−n〉
)

yn .

Consequently, xn ≤ yn +
∑

1≤k<R02n
v(k2−n)Nk2−n

(

〈ℓk2−n〉
)

yn. We next use (24)

that implies v(k2−n)Nk2−n

(

〈ℓk2−n〉
)

= 1. Thus, we get xn ≤ R02
nyn. Namely,

N
(

V (n)1{Γ(T )>2−n}
)

≤ R0 2
nv(2−n) N2−n

(

m(B(ρ, 2−n)) ≤ αfγ(2
−n)
)

. (57)

By (21), 2nv(2−n) = (γ − 1)−
1

γ−1 2
γn
γ−1 and the scaling property (26) implies

N2−n

(

m(B(ρ, 2−n)) ≤ αfγ(2
−n)
)

= N1

(

m(B(ρ, 1)) ≤ α(log 2n)−
1

γ−1
)

.
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By Lemma 3.1, there is a constant q ∈ (0,∞) that only depends on γ, such that for
any n ≥ 4,

N1

(

m(B(ρ, 1)) ≤ α(log 2n)−
1

γ−1
)

≤ exp
(

− α−(γ−1)q log 2n
)

.

This inequality combined with (57) entails that for any n ≥ 4,

N
(

V (n)1{Γ(T )>2−n}
)

≤ R0(γ − 1)−
1

γ−1 exp
(

−
(

α−(γ−1)q log 2− γ

γ−1
log 2

)

n
)

,

which implies (56) if α <
( (γ−1)q

γ

)
1

γ−1 .

Since V (n) ∈ N, (56) implies that N-a.e. for any sufficiently large n, we have
V (n)1{Γ(T )>2−n} = 0. Since N(Γ(T ) = 0) = 0, it implies that N-a.e. for any suf-
ficiently large n, V (n) = 0. We next use (55), to get the following: there exists
αγ ∈ (0,∞), that only depends on γ, such that for any positive integer R0,

N-a.e. ∃n0 ∈ N s.t. ∀n ≥ n0, inf
σ∈B(ρ,R0)

m
(

B(σ, 2−n+3)
)

≥ αγ fγ(2
−n) .

Note that N-a.e. there exists R0 such that B(ρ,R0) = T . Since αγ does not depend
on R0, it entails

N-a.e. lim inf
n→∞

1

fγ(2−n)
inf
σ∈T

m
(

B(σ, 2−n+3)
)

≥ αγ . (58)

Upper Bound. Let R0 be a positive integer and let h0 ∈ (0,∞). We also fix
β ∈ (0,∞), that is specified further. We introduce the following event

An =
{

Γ(T ) > h0

}

∩
{

inf
σ∈B(ρ,R0)

m(B(ρ, 2−n)) > βfγ(2
−n)

}

.

We assume that n ≥ 4, and that h0 > 2−n+1. Let l ≥ 1 be such that (l + 1)2−n ≤
h0 < (l + 2)2−n. We argue on the event An: let σ ∈ T be such that d(ρ, σ) = h0;
we apply Lemma 2.4 with r = 2−n; thus nr = n + 1 (namely, 2−n−1 = 2−nr < r =
2−nr+1 = 2−n); it implies that there exists a truncated subtree T ∈ Dl2−n,2−n,3.2−n

such that B(σ, 2−n) ⊂ T . This proves

An ⊂ Bn :=
{

Γ(T ) > l2−n
}

∩
{

∀Ti ∈ Dl2−n,2−n,3.2−n : m(Ti) > βfγ(2
−n)
}

. (59)

To simplify notation we set Z(l, n) = Zl2−n(2−n). We then use (38) to get

N(Bn) = N(Γ(T ) > l2−n)Nl2−n

(

∏

1≤i≤Z(l,n)

1{m(Ti)>βfγ(2−n)}
)

= v(l2−n)Nl2−n

(

N2−n

(

m(B(ρ, 3.2−n))>βfγ(2
−n)

)Z(l,n)
)

.

Recall that under Nl2−n , conditionally given Gl2−n , the random variable Z(l, n) has a

Poisson distribution with mean v(2−n)〈ℓl2−n〉. We then get

N(Bn) = v(l2−n) Nl2−n

(

exp
(

−zn〈ℓl2
−n〉
))

, (60)

where we have set

zn = v(2−n) N2−n

(

m(B(ρ, 3.2−n)) ≤ βfγ(2
−n)

)

.
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By (21) and the scaling property (14), we get

zn = (γ − 1)−
1

γ−1 2
n

γ−1N1

(

m(B(ρ, 3) ≤ β(log 2n)−
1

γ−1
)

.

By Lemma 3.1, there exists q, q′ ∈ (0,∞) that only depend on γ such that for any
n ≥ 4,

zn ≥ wn := q′ exp
((

1

γ−1
log 2− β−(γ−1)q log 2

)

n
)

.

We fix β >
(

(γ − 1)q
)

1
γ−1 so that θγ := 1

γ−1 log 2 − β−(γ−1)q log 2 > 0. Thus, wn =

q′ exp(θγn) → ∞, when n → ∞. By (60), we get

N(Bn) ≤ v(l2−n)Nl2−n

(

exp
(

− wn〈ℓl2
−n〉
))

.

Recall that h0 > 2−n+1, which implies that l ≥ 1. Thus l2−n ≥ h0/3. Since v de-
creases, v(l2−n) ≤ v(h0/3). Next, recall (23) and observe that a 7→ Na(exp(−µ〈ℓa〉))
is decreasing. Thus,

N(Bn) ≤ v(h0/3)Nh0/3

(

exp
(

− wn〈ℓh0/3〉
))

. (61)

Since limn→∞ wn = ∞, we easily derive from (23) with a = h0/3 that

Nh0/3

(

exp
(

− wn〈ℓh0/3〉
))

∼
n→∞

3

(γ−1)2(q′)γ−1h0
exp
(

−(γ−1)θγn
)

.

Thus, and (59) and (61) immediately entail
∑

n≥4 N(An) < ∞. By Borel-Cantelli,
there exists βγ ∈ (0,∞), that only depends on γ, such that for any h0, R0 ∈ (0,∞),
N-a.e. for any sufficiently large n, 1An

= 0. Since N-a.e. 0 < Γ(T ) < ∞, one gets

N-a.e. lim sup
n→∞

1

fγ(2−n)
inf
σ∈T

m
(

B(σ, 2−n)
)

≤ βγ . (62)

Since fγ is regularly varying at 0, (58) and (62) entail Theorem 1.2. �

4.2 Proof of Theorem 1.4.

The proof is close to that of Theorem 1.2. Here, we fix γ = 2 and we recall that
f(r) = r2 log 1/r, r ∈ (0, 1).

Upper Bound. We fix a positive integer R0 and a real number α ∈ (0,∞) that is
specified further. For any integer n ≥ 4, we set

W (n) = 1{m(B(ρ,3.2−n)≥αf(2−n)} +
∑

1≤l<R02n

#
{

Ti ∈ Dk2−n,2−n,3.2−n : m(Ti) ≥ αf(2−n)
}

.

Arguing as previously, we apply Lemma 2.4 with r = 2−n to prove that

W (n) = 0 =⇒ sup
σ∈B(ρ,R0)

m
(

B(σ, 2−n)
)

≤ αf(2−n) . (63)

We next claim that it is possible to find α such that

∑

n≥4

N
(

W (n)1{Γ(T )>2−n}
)

< ∞ . (64)

To simplify notation we first set xn = N
(

W (n)1{Γ(T )>2−n}
)

and

yn = N
(

m(B(ρ, 3.2−n))≥αf(2−n) and Γ(T )>2−n
)
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= v(2−n)N2−n

(

m(B(ρ, 3.2−n)) ≥ αf(2−n)
)

.

We also set Z(l, n) = Zl2−n(2−n). Then, we get the following.

xn ≤ yn +
∑

1≤l<R02n

N

(

∑

1≤i≤Z(l,n)

1{m(Ti)≥αf(2−n)}
)

≤ yn +
∑

1≤l<R02n

v(l2−n)Nl2−n

(

∑

1≤i≤Z(l,n)

1{m(Ti)≥αf(2−n)}
)

≤ yn +
∑

1≤l<R02n

v(l2−n)Nl2−n

(

Z(l, n)
)

N2−n

(

m(B(ρ, 3.2−n)) ≥ αf(2−n)
)

≤ yn +
∑

1≤l<R02n

v(l2−n)Nl2−n

(

〈ℓl2−n〉
)

yn .

Here, we used (38) in the third line. Recall from (24) that v(l2−n)Nl2−n

(

〈ℓl2−n〉
)

= 1.
Thus, xn ≤ R02

nyn. We next get an equivalent of yn: by (21) with γ = 2, we have
v(2−n) = 2n; the scaling property (26) and Lemma 3.2 with c = 2 imply

yn = 2nN2−n

(

m(B(ρ, 3.2−n)) ≥ αf(2−n)
)

= 2nN1

(

m(B(ρ, 3)) ≥ α log 2n
)

∼
n→∞

2

3
exp

(

−
(π2 log 2

36
α− log 2

)

n
)

.

Thus,

xn ≤ R02
nyn ∼

n→∞

2

3
R0 exp

(

−
(π2 log 2

36
α− 2 log 2

)

n
)

which implies (64) if α > 72/π2. We argue as in the proof of Theorem 1.2 to prove
that (64) implies

N-a.e. lim sup
n→∞

1

f(2−n)
sup
σ∈T

m
(

B(σ, 2−n)
)

≤ 73

π2
. (65)

Lower Bound. Let R0 be a positive integer and let h0 ∈ (0,∞). We also fix
β ∈ (0,∞), that is specified further. We introduce the following event

Cn =
{

Γ(T ) > h0

}

∩
{

sup
σ∈B(ρ,R0)

m(B(ρ, 2−n+3)) < βf(2−n)
}

We assume that n ≥ 4, and that h0 ≥ 2−n+1. Let k ≥ 1 be such that (k + 1)2−n ≤
h0 < (k + 2)2−n. We argue on the event Cn: let σ ∈ T be such that d(ρ, σ) = h0; we
apply Lemma 2.3 with r = 2−n+3 (and thus nr = n − 2) to prove that there exists
T ∈ Dk2−n,2−n,2−n such that T ⊂ B(σ, 2−n+3). Thus,

Cn ⊂ Dn :=
{

Γ(T ) > k2−n
}

∩
{

∀Ti ∈ Dk2−n,2−n,2−n : m(Ti) < βf(2−n)
}

. (66)

To simplify notation we set Z(k, n) = Zk2−n(2−n). We then use (38) to get

N(Dn) = N(Γ(T ) > k2−n)Nk2−n

(

∏

1≤i≤Z(k,n)

1{m(Ti)<βf(2−n)}
)

= v(k2−n)Nk2−n

(

N2−n

(

m(B(ρ, 2−n))<βf(2−n)
)Z(k,n)

)

.

Recall that under Nk2−n , conditionally given Gk2−n , the random variable Z(k, n) has

a Poisson distribution with mean v(2−n)〈ℓk2−n〉. We then get

N(Dn) = v(k2−n)Nk2−n

(

exp
(

− zn〈ℓk2
−n〉
))

,
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where we have set

zn = v(2−n) N2−n

(

m(B(ρ, 2−n)) ≥ βf(2−n)
)

.

We next apply (21) and (23) with γ = 2 to get v(a) = 1/a and Na(exp(−µ〈ℓa〉)) =
(1 + aµ)−1. Since h0 ≥ 2−n+1, we have k2−n ≥ h0/3 and we get

N(Dn) =
1

k2−n(1 + k2−nzn)
≤ 1

1
3h0(1 +

1
3h0zn)

, (67)

We next apply (14) and Lemma 3.2 with c = 0, to obtain

zn = 2nN1

(

m(B(ρ, 1)) ≥ β log 2n
)

∼
n→∞

2 exp
( log 2

4
(4− π2β)n

)

.

Then, for any β < 4/π2, (66) and (67) entail that
∑

n≥4 N
(

Cn

)

< ∞. Thus, for any
h0, R0 ∈ (0,∞), N-a.e. for any sufficiently large n, 1Cn

= 0. Since N-a.e. 0 < Γ(T ) <
∞, one easily gets

N-a.e. lim inf
n→∞

1

f(2−n)
sup
σ∈T

m
(

B(σ, 2−n+3)
)

≥ 3

π2
. (68)

Since f is regularly varying at 0, (65) and (68) entail Theorem 1.4. �

4.3 Proof of Proposition 1.1.

Let us fix γ ∈ (1, 2]. Recall that

gγ(r) =
r

γ
γ−1

(log log 1/r)
1

γ−1

, r ∈ (0, e−1) .

Recall from (32) the definition of M∗
r (a). We only need to prove the following: for any

a ∈ (0,∞),

P-a.s. lim inf
r→0

M∗
r (a)

gγ(r)
= γ − 1 . (69)

Indeed, by (33), (69) we get

N

(
∫

T
1{lim infr→0 m(B(σ,r))/gγ(r) 6= γ−1}m(dσ)

)

= 0 ,

that immediately entails Proposition 1.1.

Lower bound in (69). We fix a ∈ (0,∞). Recall from (36) and (37) that for any
r ∈ (0, a],

r−
γ

γ−1M∗
r (a) = M∗

1 (1) := M∗ (70)

and recall Lemma 3.3 that gives the tails of M∗ at 0+. We set

Q = eCγ

√

γ(γ − 1)

2π
,

that is the right limit in Lemma 3.3. Fix ̺ ∈ (0, 1) and c ∈ (0,∞). Then, (70) and
Lemma 3.3 imply that

P
(

M∗
̺n(a) ≤ (γ − 1)cgγ(̺

n)
)

= P

(

M∗ ≤ (γ − 1)c(log log(̺−n))−
1

γ−1

)
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∼
n→∞

Qc
γ−1
2 (log 1/̺)−c−(γ−1)

(logn)−1/2 n−c−(γ−1)

.

By Borel-Cantelli, for any c < 1, P-a.s. lim infn→∞ M∗
̺n(a)/gγ(̺

n) ≥ (γ − 1)c. An
easy argument, entails that P-a.s.

lim inf
n→∞

M∗
̺n(a)

gγ(̺n)
≥ γ − 1 .

For any r ∈ (0, 1/̺), let n(r) ∈ N be such that ̺n(r) < r ≤ ̺n(r)−1. Thus,

M∗
r (a)

gγ(r)
≥ ̺

γ
γ−1

(

log(log(̺1−n(r)))

log(log(̺−n(r)))

)

1
γ−1 M∗

̺n(r)(a)

gγ(̺n(r))
.

Thus, for any ̺ ∈ (0, 1), P-a.s. lim infr→0 M
∗
r (a)/gγ(r) ≥ ̺

γ
γ−1 (γ − 1), and by letting

̺ go to 1, we get

P-a.s. lim inf
r→0

M∗
r (a)

gγ(r)
≥ γ − 1 . (71)

Upper bound in (69). For any n ≥ 2, we set rn = (log n)−n and

εn = 1{M∗
rn

(a)≤(γ−1)gγ(rn)} ,

and Sn = ε2 + . . .+ εn. Then, (70) and Lemma 3.3 imply that

E [εn] ∼
n→∞

Q (log logn)−1(log n)−1/2n−1 . (72)

Therefore, limn→∞ E[Sn] = ∞. Next observe that

E[S2
n] = E[Sn] + 2

∑

2≤k<l≤n

E[εkεl] . (73)

We then use the following lemma.

Lemma 4.1 There exists a constant q ∈ (0,∞) that only depend on γ such that for
any 2 ≤ k < l, E[εkεl] ≤ qE[εk]E[εl].

Proof: first recall that (Ut, t ≥ 0) is a subordinator defined on (Ω,F ,P) with Laplace
exponent λ 7→ γλγ−1. Then, recall that N ∗ =

∑

j∈I∗ δ(r∗j , H∗j) is a random point

measure on [0,∞) × C([0,∞),R) defined on (Ω,F ,P) such that conditionally given
U , N ∗ is distributed as a Poisson point measure with intensity dUr ⊗N(dH). Next
recall for any 0 ≤ r′ ≤ r ≤ a, the notation

M∗
r′,r(a) =

∑

j∈I∗

1(r′,r](r
∗
j )

∫ ζ∗
j

0

1{H∗j
s ≤r−r∗j }

ds ,

where ζ∗j stands for the lifetime of H∗j, for any j ∈ I∗. Recall from Lemma 2.2 that
M∗

r′,r(a) ≤ M∗
r (a) and that M∗

r′,r(a) is independent from M∗
r′(a). Thus, observe that

for any 2 ≤ k < l,

{

M∗
rk
(a) ≤ (γ − 1)gγ(rk)

}

∩
{

M∗
rl
(a) ≤ (γ − 1)gγ(rl)

}

⊂
{

M∗
rl,rk

(a) ≤ (γ − 1)gγ(rk)
}

∩
{

M∗
rl
(a) ≤ (γ − 1)gγ(rl)

}

.

Thus,
E[εkεl] ≤ P

(

M∗
rl,rk

(a) ≤ (γ − 1)gγ(rk)
)

E[εl] .

22



Next recall from (37) that (r−r′)−
γ

γ−1M∗
r′,r(a) has the same law as M∗. Consequently,

E[εkεl] ≤ P

(

(1 − (rl/rk))
γ

γ−1M∗ ≤ (γ − 1)(log log 1/rk)
− 1

γ−1

)

E[εl]

≤ P

(

(1 − (rk+1/rk))
γ

γ−1M∗ ≤ (γ − 1)(log log 1/rk)
− 1

γ−1

)

E[εl] .

Now observe that

rk+1/rk = (log k)−1 +O((log k)−2) and log log 1/rk = log k + log log log k .

By Lemma 3.3, we get

P

(

M∗ ≤ (γ − 1)(1− (rk+1/rk))
− γ

γ−1 (log log 1/rk)
− 1

γ−1

)

∼
k→∞

Q
(

1− rk+1

rk

)− γ
2 (log log 1/rk)

−1/2
exp

(

−
(

1− rk+1

rk

)γ
log log 1/rk

)

,

and since

(

1− rk+1

rk

)γ
log log 1/rk = log k + log log log k − γ +O

(

log log log k

log k

)

,

we get,

P

(

M∗ ≤ (γ − 1)(1− (rk+1/rk))
− γ

γ−1 (log log 1/rk)
− 1

γ−1

)

∼
k→∞

eγQ(log log k)−1(log k)−1/2k−1 ,

which easily completes the proof of the lemma by (72). �

The previous lemma and (73) imply that lim supn→∞ E[S2
n]/(E[Sn])

2 ≤ q. By the
Kochen-Stone Lemma, we get P(

∑

n≥2 εn = ∞) ≥ 1/q > 0. Namely, with the lower
bound (71), it entails that

P

(

lim inf
r→0

M∗
r (a)/gγ(r) = γ − 1

)

≥ 1/q > 0 . (74)

Standard arguments on Poisson point processes imply that lim infr→0 M
∗
r (a)/gγ(r) is

measurable with respect to the tail sigma-field of U at 0+. By Blumenthal zero-one
law, (74) entails (69), which completes the proof of Proposition 1.1. �

4.4 Proof of Proposition 1.3.

Let us fix γ = 2 and let us recall that g(r) = r2 log log 1/r, (0, e−1). Recall from (32)
the definition of M∗

r (a). We only need to prove the following: for any a ∈ (0,∞),

P-a.s. lim sup
r→0

M∗
r (a)

g(r)
=

4

π2
. (75)

Indeed by the formula (33), we get

N

(
∫

T
1{lim supr→0 m(B(σ,r))/g(r) 6= 4/π2}m(dσ)

)

= 0 ,

that immediately entails Proposition 1.3.

23



Upper bound in (75). Recall from (37) that r−2M∗
r (a) has the law as M∗. We fix

̺ ∈ (0, 1) and c ∈ (0,∞). By Lemma 3.4, we get

P(M∗
̺n(a) ≥ cg(̺n)) = P(M∗ ≥ c log log ̺−n) ∼

n→∞
4c (log 1/̺)−

π2

4 c n−π2

4 c logn .

Borel-Cantelli and an easy argument imply that P-a.s.

lim sup
n→∞

M∗
̺n(a)

g(̺n)
≤ 4

π2
.

Let r ∈ (0, 1). There exists n(r) ∈ N such that ̺n(r)+1 < r ≤ ̺n(r). Thus,

M∗
r (a)

g(r)
≤ 1

̺2

M∗
̺n(r)(a)

g(̺n(r))
.

Consequently, for any ̺ ∈ (0, 1), we have P-a.s. lim supr→0 M
∗
r (a)/g(r) ≤ 4(π̺)−2. By

letting ̺ go to 1, we get for any a ∈ (0,∞),

P-a.s. lim sup
r→0

M∗
r (a)

g(r)
≤ 4

π2
. (76)

Lower bound in (75). For any 0 ≤ r′ ≤ r ≤ a, recall from (34) the definition
of M∗

r′,r(a) and recall from Lemma 2.2 that for any sequence (rn)n≥0 such that 0 ≤
rn+1 ≤ rn ≤ a, and limn→∞ rn = 0, the random variables M∗

rn+1,rn(a) , n ≥ 0, are
independent. Here, we take rn = ̺n, with ̺ ∈ (0, 1). We fix c ∈ (0,∞) and for any
n ≥ 1, we set

εn = 1{
M∗

̺n+1,̺n
(a) ≥ cg(̺n)

} .

The scaling property (37) and Lemma 3.4 entail

E[εn] = P
(

̺2n(1− ̺)2M∗ ≥ cg(̺n)
)

∼
n→∞

4c

(1 − ̺)2
(log 1/̺)

− π2

4(1−̺)2
c
n
− π2

4(1−̺)2
c
logn.

If c ≤ 4(1− ̺)2π−2, then
∑

n≥1 E[εn] = ∞. Since the εn’s are independent, the usual
converse of Borel-Cantelli entails that P-a.s.

∑

n≥1 εn = ∞. Now observe that for any
n ≥ 1,

εn ≤ 1{
M∗

̺n
(a)≥cg(̺n)

} .

Therefore, for any ̺ ∈ (0, 1) and any c ∈ (0,∞) such that c ≤ 4(1− ̺)2π−2 we P-a.s.
have

lim sup
r→∞

M∗
r (a)

g(r)
≥ lim sup

n→∞

M∗
̺n(a)

g(̺n)
≥ c .

It easily entails the desired lower bound. It completes the proof of (75) and that of
Proposition 1.3. �
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