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Abstract

To fully exploit sea experiments under controlled and repmible laboratory conditions, a channel
model driven by real data is derived. This model relies oref®imption that a channel recorded at sea is
a single observation of an underlying random process. Fhisrsingle observation, the channel statistical
properties are estimated to then feed a stochastic simuladd generates multiple realizations of the
underlying process. Based on the analysis of data colléntdte Atlantic ocean and the Mediterranean
sea, we fully relax the usual wide-sense stationary unizte® scattering (WSSUS) assumption. We
show thanks to the empirical mode decomposition thdtead stationary model suits the analyzed
underwater acoustic communication channels very wellit8eas with different path delays are also
assumed to be potentially correlated so that the true seowtat statistics of the channel are taken into
account by our model. Test cases illustrate the benefits afiredl stochastic replay to communication
system design and validation. The Matlab code correspgnidirthe proposed simulator is available at

http://perso.telecom-bretagne.eu/fxsocheleau/softwa
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I. INTRODUCTION

In order to anticipate in laboratory the performance of aticlLcommunication systems in real under-
water environments, propagation channel models are ésis&dpending on their degree of completeness
and accuracy, channel models can highly increase the pitityadd field trial success and thus reduce
the cost of overall system development. Numerous modetafrtiques are available in the literature
[1]-[11]. These underwater acoustic channel (UAC) modelg oa formalisms that are usually either
deterministic and physics-driven [4], [5], [9] or stochag6], [7] or a combination of both (the moments
of the stochastic models being computed from physical parars) [2], [3], [8], [10].

Channel modeling is usually faced with the dilemma of cdpgithe maximum of true ocean dynamic
processes while limiting the number of input parameters thedcomputational cost. In the context of
underwater acoustic communication, stochastic modeliffgysoa good compromise since it allows to
reduce the combinations of many physical processes to ofdyastatistical parameters in a formalism
well adapted to the communication engineering communitgcl&istic modeling also appears as the
most suitable manner to take into account the fast time fltios of the channel response due to
random phenomena such as reflection on rough interfaces daaesand bottom), random motions of
the transmitter (TX) and receiver (RX) around their nominasigion, etc. In this case, the channel is
modeled as a linear random time-varying system defined bynsiise responsk(¢, 7) so that the input
x(t) and the outpuy(t) of this system satisfy [12]

o0
y(t) = / h(t, )t — 7)dr. (1)

—00
The channel is then entirely characterized by the joint catiug distribution function of the random

processh(t, 7). While its marginal distributions can be well approximateyl Gaussians (Rayleigh or

Rice fading) in some cases [13], [14], the time fluctuationssoth a process are difficult to model
since they depend on phenomena of different scales (suifage spectrum, platform motion, scatterers,
seasonal cycles etc.).

To avoid ad-hoc modeling based on intuition or on difficulstatain parameters, the authors in [15]
recently proposed a UAC channel simulator driven by measde¢a. The idea relies on the postulate
that a communication channel probed at a given location avgiven time window is an observation
of an underlying ergodic random process. Based on this esingkervation, the objective is then to
be able to generate an infinite number of realizations of thisgss. This is what is called channel
stochastic replay. As stated in [15], such a simulator ldkksuniversal applicability of usual propagation

models. However, this approach is of great interest to fedploit sea experiments under controlled and
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reproducible laboratory conditions. From an impulse respacorded at sea, it is thus possible to test
a communication system in various noise conditions and ftferdnt type of modulations. It is also
possible to compute fading statistics such as average ¢ewsking rate or average fade duration [16],
useful for communication system design.

To simplify the statistical description of the channel irngauresponse, the wide-sense stationary un-
correlated scattering (WSSUS) assumption is very often irdkokhis assumption states that the channel
correlation function is time-invariant and that the saaite with different path delays are uncorrelated so
that the second-order statistics of the channel are redinoedfour to two dimensions [12], [17]. The
WSSUS assumption is appealing since it greatly simplifies theéeind he rationale for this assumption is
usually that over a restricted period of time and a small badith, this assumption is reasonably satisfied
(quasi-WSSUS) [15], [18]. However, when manipulating realad#t can be very difficult to formally
guantify the time-frequency windows over which this asstianpis locally valid. This is particularly true
when communicating platforms are moving. Channel impuésponses being dependent of range and
depth and TX/RX motion being known to introduce correlati@ivween the Doppler rates of different
paths, experiments with moving platforms are not expeateikteal WSSUS channels.

Based on a set of measures collected at sea in a coastalreneint we analyze in this paper the
statistical properties of the UAC and propose a novel chlamodel applied to stochastic replay. Thanks to
the empirical mode decomposition [19], we fully relax thedgi-) wide sense stationary assumption and
show that the analyzed UAC ateend stationary. We also assume that the scatterers with diffgrath
delays can be correlated so that the true second ordettisgati§ the UAC are very well approximated
by our model.

The derivation of the proposed method is organized in two rpaits. The first part, sections Il and
lll, deals with the characterization and the modeling of th&C channel. More precisely, section Il
describes sea experiments conducted in the Atlantic Ocedntte Mediterranean sea as well as the
channel impulse response estimation methods. In sectipwél infer some statistical properties of the
measured UAC that are of prime importance to build our modke second part, sections IV and V,
presents the channel simulator based on the principle chastic replay and some of its applications.
In section IV, we show how to generate new realizations of rireasured channel while complying
with its intrinsic statistical properties and section Vudtrates the practical interest of such a model.
Finally, conclusions are given in section VI. Additionaltiie Matlab code corresponding to the proposed

simulator is available at http://perso.telecom-bretagmiéxsocheleau/software.
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II. CHANNEL SOUNDING
A. Sea experiments

The channel model derived in this paper relies on the anabfsexperimental data collected over
years in shallow water. To illustrate the model validity,otwets of complementary data have been
selected. The first set of data was collected by Thales Undarn8gstems in the vicinity of Sanary-sur-
mer (Mediterranean Sea, France) in October 2004 and the sdxottte GESMA (Groupes d’Etudes
Sous-Marines de I'Atlantique) in the Brest harbor (Atlandcean, France) in October 2007. The two

experimental set-ups, as well as the trial conditions, amensarized in Table I.

TABLE |

SEA EXPERIMENTS SEFUP

H Mediterranean Sea (2004) Atlantic Ocean (2007)
Tx power (dBrel uPa @ 1 || 190 185
m)
Tx-Rx distance range (m) 500-10000 500-3000
Water depth (m) 60-120 10-40
Tx/Rx immersion (m) 20-50/20-50 5/5
Tx/Rx motion speed range || 0-4 0-3
(ms™)
Carrier frequency (kHz) 6 11.2 or 17.5
Probe signal Pseudo random binary sequenceéContinuous QPSK modulated
(PRBS) of duration 48 ms rer vocoded data flow at baudrates
peated every 125 ms (best possiof 2.9 kBd or 4.35 kBd
ble binary sequence with length
N =48, as given in reference [20,
pp. 293]).
Sea surface conditions Wind speed 10-15 m'g, mod- | Calm, little swell
erate wave

®Note that the peak sidelobe of the aperiodic correlation of this sequencérisf& to [21] for more details

B. Channel impulse response estimation

The estimation method of the channel impulse response $yrdegends on the kind of probe signal
recorded at sea. For the trials in 2004, a filter matched to admseandom binary sequence (PRBS)

was implemented to provide the time evolution of the chamesponse. Such a probe is commonly
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used for channel sounding since its autocorrelation foncéipproaches the unit impulse. The PRBS of
the Mediterranean trial was designed to tailor the soundwhreel. In fact, the transmitted probe can
monitor channels with excess delay spread up to 125 ms, withmes delay resolution. The channel
response estimates are updated eight times per second allogls to track channels with relatively
small coherence tinte In 2007, the experiment was not originally designed forncig sounding so
that no dedicated probe signal was used. However, sinchetransmitted data were perfectly known at
reception, it was possible to provide the channel statenmftion by least mean square data-aided (LMS-
DA) adaptive channel estimation. The main advantage of tlithad, as opposed to the PRBS matched
filter, is that there is less compromise to make between tHéyatri measure long excess delay spread
and fast varying channel. For instance, the implementedrittign can track channels with a coherence
time of the order of several tens of QPSK symbol periods withbeabretical limit on the excess delay
spread. However, the drawback of this method lies in the difficto tune the LMS algorithm to avoid
smoothed or noisy estimates.

In order to study and model the intrinsic properties of theQJAX/RX motion compensation is
required prior to channel estimation. The relative velodistween the two communication endpoints
indeed induces a time-varying Doppler compression/exparthat can obscure the true channel Doppler
spread [15] and that causes the multipath arrivals to dnifthe delay domain. Figure 1-(a) shows
an example of a time-varying drift in the delay domain due katfprm motion. The average drift is
approximately 8 ms over 20 s which corresponds to relativecity between TX and RX of 0.6 nT.s.
The channel is assumed to have the same Doppler scale on ladl patthat the multipath time drift
can be mitigated by resampling of the recorded signal. Whengua PRBS, the resampling factor is
iteratively assessed by a bank of Doppler-shifted sigrnalaas combined with the phase tracking of the
most energetic tap [15]. In the case of continuous QPSK data flevresampling procedure is based
on an open-loop scheme [22] for coarse correction and onsedimop [23] for fine time recovery.

In the channel response estimation procedure, we impliatsume that the probe signal is bandlimited
to a bandwidthB and that the power spectral density of the channel time fltichg has a bounded
support of widthf; with f; < B so that the channel can be represented by its discrete tisebaad

equivalent model
o ; : — 1Ty
a(k) = / h(kTsl,T)emchsunc(TTQ> dr. )

oo 2

g1(k) is the output of the channel estimation representingkttie sample of thé-th channel tapf. the

INote that update period of the channel response estimation is boundte BJRBS sequence duration
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carrier frequency and <[ < L for finite channel delay spreaf;; andT» denote the sampling period
in the time and delay domain respectively witly < 1/f; andTs; < 1/B.

Figure 2 shows some examples of measured channel respotexe appler compensation) during
the 2004 and 2007 experiments for various transmissionesahy For the Mediterranean sea trials,
T = 125 ms, T, = 166 ps and the total observation duration is limited to 30 s. Far s¢fignals
recorded in the Atlantic Oceafl;; = 9 or 14 ms, Ty, = 115 or 170 s, and the observation duration
is limited to 160 s. Both sets of experiments were realizedgdnd SNR conditions which guarantees
accurate channel estimates. Excess delay spread range&0ranil5 ms for Atlantic channels and from
50 to 60 ms for Mediterranean channels. For both experim#érman be noticed that short range channels

show a predominant path that does not fluctuate much overrtiee ti

[1l. STATISTICAL INFERENCE
A. Trend stationary channel model

As discussed in the introduction, the channel wide sensiestay (WSS) assumption is often admitted

to simplify models. It states that for all < [ < L and for allk, k&, andky, € Z

Elgi(k1)] = Elgi(k2)], 3)
Ellg(k)’] = Ellgi(k2)|?] < oo, (4)
Elgi(k1)gi (k2)] = Elgi(k)g; (k + k2 — k1)]. (5)

While the concept is well-defined in theory, testing statidgpaon real data is not straightforward.
Stationarity refers to a strict invariance of statisticabgmrties over time, but common practice generally
considers this invariance in a looser sense, relative tcesoingervation scale [24]. In the following, we
therefore refer to as stationarity relative to the obsémascale.

By looking at the envelope of the measured UACs, we can infenes properties with regard to
channel stationarity. For instance, Figure 3 displays time &volution of the envelope of 3 different taps
belonging to the channel (f) of Figure 2. It suggests thatalgpropagating through a UAC are affected
by fading phenomena of different time scales. Fading is llisgaalified as slow or fast to refer to the
rate at which the magnitude and phase of the channel fluctoatpared to the delay requirement of the
application that uses the channel (e.g. coherence timedeaerd duration). Fast fading is predominant
in the design of communication systems since the adaptyeritims at reception must be tuned to
its characteristics to ensure good performance. Slow fadig represents a long-term variation of the

signal-to-noise ratio whose impact on the reception perérce is usually well known analytically [25].
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Figure 3 indicates that the WSS assumption is not verified owerotiservation scale since the local
mean of the taps envelopes is time-variant. However, therskorder statistics of these envelopes seem
to be invariant. These observations suggest two modelinggstfons

» (Al): Slow and fast fading are combined in an additive way.

e (A2): The UAC is atrend stationary random process so that each tap satisfies

gi(k) = di(k) + wi(k) (6)
with, for all k, k; andky, € Z
Elgi(k)] = di(k), (7)
and
E [(gi(kr) — Elgi(k1)]) (90(k2) — Elgi(k2)])"] = Efwi(k1)wy (k2)]
= Elwi(k)w; (k + k2 — k1)]. (8)

d;(k) is called thetrend which is a pseudo-coherent component that behaves almdghasmedium
was deterministic andy; (k) is a zero-mean WSS ergodic random procégg:) can be interpreted
as the contribution of pseudo-deterministic physical pmeena on channel fluctuations. At our
observation scale (30 to 160 seconds), these phenomenaaary oue to range and depth changes,
leading to time-varying dispersion/absorption loss, sivdg due to the topology of the environment,
or to wave undulation. In agreement wifA1), d;(k) can be seen as the component contributing
to slow fading. As forw;(k), it represents the channel fluctuations imputable to theeseas that
result in fast fading. Note thaf;(k) is here considered as pseudo-deterministic only becagse th
observation window is time-limited compared to the fluctoiatspeed of the underlying physical
phenomena. A longer observation window may lead to diffiecenclusions. Once again, statistical
analyses are related to the observation scale. In addiiote that the concept of trend does not
necessarily mean thad; (k)| is affine and/or monotonic.

To validate and define more precisely our trend stationaryahade now aim at isolating the trend
from the purely random process. If we succeed in isolatimgehtwo components and getting consistent
properties ond;(k) and/orw;(k) over the various measured channel responses, we will thms giat
(A1) and (A2) are meaningful assumptions. To find an operator or a space ichwhe components
are separable, we focus on their physical properties. Aligorto (A2), d;(k) is driven by slow varying
phenomena that lead to fading fluctuations over a period ofnaskconds (for waves undulation for

instance) to several minutes (platform drift) whereas thatterers induce fading with a coherence

April 1, 2011 DRAFT



time usually in the order of tens to hundreds of millisecon@ensequentlyd;(k) and w;(k) can be
discriminable thanks to their respective magnitude. Thigcdity is then to filter complex-valued channel
taps g;(k) based on their module fluctuation period while keeping thamge information. In fact, the
phase of a channel tap does not necessarily vary at the sateeapahe module and the spectrum of
d;(k) may overlap the spectrum afi(k). This suggests that classical linear filtering operators coniyn
used in harmonic analysis/modeling may not suit our probleny well. Another approach intuited by
the observation of taps with a powerful trend (see Figure 4iristance) is to model the trend and
consequently the tap as the sum of AM-FM modulated modes.

The decomposition of non stationary multicomponent sigimal&ntrinsic” AM-FM contributions is
possible thanks to the Empirical Mode Decomposition (EMDjaddticed by Huang in [19] and briefly
presented in Appendix A. EMD is appealing to solve our probfgimarily because the AM-FM mode
decomposition is appropriate to the analysis of non-statip signals but also because it is data-driven
and does not required any predetermined basis functioreddition, it makes no assumption about the
harmonic nature of oscillations, and can thus guaranteergact representation (i.e., with fewer modes
than a Fourier or wavelet decomposition). The method beiiilig limited to real-valued time series,
we here use the extension to bivariate (or complex-valuet) series proposed in [26].

Each channel tap is therefore represented in the empiricdberspace as

Qi—1
gilk) =Y myg(k) +ri(k) 9)
q=0
wherem, , is theg-th of the @; modes resulting from the EMD of the tap andr; is the decomposition
residue. Since the fast (resp. slow) rotating modes are ibatdrs to fast (resp. slow) fading, we then

segregate the trend from the random component in the erapiriodes space such that

Si—1 Q-1
gilk) = mug(k)+ > myg(k) +ri(k) (10)
q=0 q=5
wi (k) di(k)

where S; is the decomposition order leading to the separation of wee dcomponents. Fading periods
being measured on the signal envelopg,is based on a frequency criterion computed on the modes
module. For instance, if we consider that the fastest pseeterministic phenomenon affecting the
channels tap magnitude is the wave undulati§nis chosen as the maximum order such that the average
period of | qul:’ol my q(k)| be less than the waves average period (usually in the ordiewoseconds).
There are several ways of computing waves average period $&7¢e we are working with the module

of complex-valued signals, we here consider the crest geguariod that is defined as the average period
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of time between the extrema ¢fgq5g)1 my q(k)|. Note that since the EMD is an non-linear operation,

the proposed filtering method is non-linear as well.

To illustrate the interest of filtering based on EMD comparectlassical linear filtering, we have
synthesized a signal that is the sum of an AM-FM modulateddtramd a colored complex Gaussian
process (see Figure 5). As shown in Figure 6, the EMD of this sigsalts in 7 intrinsic modes plus the
residue?. This provides a compact representation of the originaladiginere each mode can be seen as
the output of an adaptive (data-driven) time-variant filtdére trend and the random process are then rebuilt
individually from the intrinsic modes. To isolate both cooments, the average period \OZ;?:_OI myq(k)|
is lower-bounded to 5 s which corresponds to the minimumamyeperiod of wave undulation observed
in our set of experiments. This method gives = 5 which provides fairly accurate estimates since,
for instance, the normalized mean square estimation eNBISE) of the random component is around
—15 dB, whereas the trend is 150 times more powerful than thidaancomponent. As a comparison,
a common “linear” approach to estimate signals trend is tdop@a low-pass filtering using a moving
average operator [14], [29]. A moving average requires arriaripgknowledge on the time scale of
assumed stationarity. As opposed to the EMD approach thatresgsome knowledge of the fading
periods based on explicit physical phenomena (choics; afith respect to the wave average period for
instance), the predetermined time scale used for the maxiagage has usually little rational or physical
basis and has a profound impact on the results that followhérexample of Figure 6, the NMSE of the
random component estimated by moving average ranges frointo +25 dB for an averaging window
of duration varying froml0 ms to10 s, the minimum NMSE being at 100 ms. Moreover, a signal with
the same amplitude modulation index but with a differengfiency modulation index would result in
a different optimal window duration. This indicates that &ach analyzed channel, a different window
may have to be used, which, in addition to the fact that lifédaring cannot segregate signals with
overlapping spectra, highlights the idea that using lingaerators to analyze trend stationary channels
may not be a stable and robust option.

An example of EMD filtering applied to real data is presented guFe 7. It shows the time evolution
of a tap of the channel (f) plotted on Figure 2. The result of dgmosition is in good agreement with the
assumptior(A2) sincew;(k) seems here to be a realization of a zero-mean WSS process.eQ#mples

of real tap filtering using the EMD are available http://peiedecom-bretagne.eu/fxsocheleau/software.

2To get this result, the default values of the EMD stopping criterion detaile@8hHave been used.
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B. Channel distribution modeling

Thanks to EMD filtering, it is now possible to study the stateticharacteristics of the complex-
valued random componenf; (k). To know its marginal probability density functions (pdff)e principle
of maximum entropy [30] is applied to its real and imaginaaytgespectively. This principle consists of
determining the pdf that maximizes the entropy from a finiteaf&known expectations. This approach is
relevant in our context since it provides a pdf model onlyrfrthe knowledge of some moments that are
easy to estimate. Basically, entropy maximization createsodel for us out of the available information
[30]. Moreover, choosing the distribution with the gre&testropy avoids the arbitrary introduction or
assumption of information that is not available. To obtdie model, the pdf that maximizes the entropy
is constrained with measured moments of different ordet$ §d then compared to the empirical pdf
using the Kullback-Leibler (KL) divergence [32]. The Kullbatkibler divergence provides a measure

of the difference between two probability distributionsniar distribution having a divergence of 0.

TABLE 1l

EXAMPLE OF MEASUREDKULLBACK -LEIBLER DIVERGENCES FOR VARIOUS CONSTRAINTS ON THE MODEL

Moment orders 0 <1 <2 <3 <4 <5
KL divergence | 0.64 | 0.62 | 8.8107% | 7.51073 | 7.51072 | 6.31073

Table Il shows an example of a Kullback-Leibler divergencesmeed on a tap of channel probed in the
Atlantic Ocean. On this representative example, it can be #gat the Kullback-Leibler measure converges
to stable low values as soon as the second order constraippled to the model of maximum entropy.
Applying second order constraints to the model of maximurmogy leads to a Gaussian distribution.
Therefore, this indicates that the marginal distributiohshe w;(k) can be well approximated by zero-
mean Gaussians. Moreover, since the joint pdf that maxsrtize entropy given normal marginal pdfs is
normal [33],w;(k) can be modeled as a strictly stationary bivariate Gaussiareps. As an illustration,

a joint histogram of the real and the imaginary part of a ram@mmponent is shown in Figure 8.

To confirm the Gaussian result, a Kolmogorov-Smirnov [34] iesapplied to the envelope of the
wy (k). From the model|w; (k)| must follow a Rayleigh distribution. 96% of the tested tapsythe test
with a significance level greater than 5%. We recall that alrésisaid to be statistically significant if
it is unlikely to have occurred by chance. 5% is a conventiagnificance level [35]. The fact that a
consistent pdf model is found across the different taps estgghat the trend stationary model assumed

in (A1) and(A2) is valid. Consequently, each tgp(k) can be modeled as a Rice process with a slow
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time varying mean component. In addition, as shown in Figurié® power ratio (Rice factor) between
the trendd; (k) and the random componeunt (k) is delay dependent and tends to zero (Rayleigh fading)
for the most delayed paths. In the case of a null Rice fagiok,) = w; (k).

Given thatw;(k) is a Gaussian process, it is fully characterized by its first sgcond order statistics.
Measurements and statistical tests indicate that it is a-zeyan process but it seems difficult to find
a general parametric model for its second order statistegmesented by its Doppler power spectrum
[12]. Observations (not shown here) seem to indicate thaipl@o spectra are different from a channel
to another. In addition, to get a full parametric channel elade would also need to find a parametric
model for the correlation between taps as well, which seeuite @lusive. However, as shown in the
next section, in the context of stochastic replay it is galssio draw new realizations of the processes

wy (k) while keeping their intrinsic second order statistics withthe need for a full parametric model.

IV. STOCHASTIC REPLAY OF MEASURED IMPULSE RESPONSES

The stochastic replay relies on the postulate that a commatioic channel probed at a given loca-
tion over a given time window is an observation of an undagyrandom process. According to the
previous section, the randomness of each channel tap iesseut byw;(k). Consequently, the vector
[wo(k), -+ ,wr (k)] is considered as a single realization of a multivariate eam¢process2(k). The
statistical analysis of section Ill states thafk) is a zero-mean stationary Gaussian random process.

The Rice method detailed in [36], suggests that from the @bfien, a multi-variate complex random

Gaussian process(k) 2 [Ao(k), -, Ar(k)] can be generated as follows
1 N-1
N(k) = —= Y Wy(n)eX™k/Neib(n) v o <1< L (11)
() = 75 2 Wil

whereW;(n) = \;—N Sy wi(k)e 2 /N g)(n) is an i.i.d random variable and is the observation

window length. In our experiment®/ is large enough (from 240 to more than 15000, see section 1b-B

invoke the central limit theorem and therefore guaranteeGhussian distribution of;(k). Sincew; (k)

is a realization of a zero-mean proceégn) is chosen to be uniformly distributed {0, 27].
Zero-mean Gaussian processes are fully characterized ystteond order statistics or “color”. The

color of (k) is given by its correlation matrix (or equivalently by itsegpral density matrix) defined as

Yoo(w) vo1(w) -+ or(u)
I(u) = m:(u) m:(u) m:(u) (12)
| yzo(w) vea(u) - yop(u) |
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where~;,(u) = Elw;(k)w, (k — u)]. If the process is assumed to be ergodic then we have

N

LS wulh— w). (13)
N

y
N 2N F 1 )

Yip(u) =

The usual WSSUS assumption would assume 4fdt:) = 0,V # p but in our case this assumption is
relaxed in order to be as close as possible to the true oceangses. Reflections on a same physical body
or delay/Doppler leakage caused by band- or time-limitaddmitted data can indeed induce correlations
between multipath components. In most cases, simulatibresroelated multivariate random processes
is quite complex and computationally costly [37], [38]. bS], the authors bypass this difficulty by
assuming that the channel scattering function [12] is sdparin delay and Doppler. This separability
thus reduces the correlations to a product of a temporal asplatial correlation factor. Whereas this
assumption may be valid in some specific environments suchea8altic sound channel depicted in
[15], it is not appropriate to the measures we collected snAblantic ocean and the Mediterranean sea.
In order to generate a multi-variate procesS) with a color similar to the one of the true process
Q(k), we suggest to create some dependence between the randem gitifisd;(n) introduced in Eq.

(11). The correlation matrix elements afk) are expressed as

N-1
1 LU~ 7 n)—0,(n
E [N(E)Ap(k —u)] = N( Wi (n) Wy (n)e* ™~ E [e (61(n) =6, ( >>}

N-1N-1 e ' (14)
+ Wi (n) W (m)e2im =5 {ezwz(n)—ep(m»} )

E[e/@(m=0(m)] = 1 (15)
E[ei(e’(")fep(m))] = 0,m # n. (16)
Eqg. (14) then simplifies to
1 N—-1
* * 2imu =
E [X(k)Xy(k — u)] = v n;‘) Wi(n) W (n)e® ™. (17)
Thanks to the Plancherel-Parseval theorem, this can also iilenwas
1 N-1
E MR (k —u)] = & > wi(k)up((k - uly) (18)
k=0

where[.]y denotes the modul®/ operatorE[\; (k) (k—u)] proves to be a very good approximation of

7p(w) in our context. Indeed, measurements performed on theusuig k) indicate that their coherence
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times are less than 600 ms (resp. 2 s) for a 50% (resp. 10%@laton level. This duration is very short
compared to the duration of the available observations rdrages from 30 to 160 s. Therefore, given
that ( [39], pp. 195

N—-1 N—u N

1 » Hp(u)  for 0<u< 3,

+ 2 E[wn(k)w([k - uly)] = N N 2 (19)
=0 NVp(N —u) for 5 <u <N,

and that the correlation is only significant for smallwe can conclude that Eq. (18) is the expression
of a weakly biased estimator of,(u). Consequently, the true random procé€k%) that underlies the
observation can be well approximated by the proc&sk). Also, notice that our model allows the
inphase and quadrature components of each channel tap tatoaliy correlated which is equivalent
to considering asymmetrical Doppler power spectral dassitThe overall procedure of the channel
stochastic replay can be summarized by the pseudo-codiedeita Algorithm 1. The channel model
has a low computational cost since it is mainly based on elisdfourier transforms. Only the EMD is

relatively costly but it has just to be computed once and nh@&aah realization.

Algorithm 1 Channel stochastic replay
Require: : A probed channel of. + 1 taps over an observation window &f samples (TX/RX motion

must be compensated)
1. Draw N realizationg)(n) of a uniformly distributed random variable (i), 27]
for 0 <I<Ldo

2. Using the EMD, decompose each tek) asg;(k) = di(k) + w;(k)

3. ComputeW;(n) = —= Y00 wy(k)e2mmk/N

4. Computed;(k) = —= 3,50 Wi(n)e2imk/N eif(n)

5. Add X\;(k) to d;(k) to get a new realization of the channel tap

end for

Note that non wide-sense stationary nature of the chanmpsl ienits the stochastic replay to the

duration of the original probed channel.

V. ILLUSTRATIONS

Stochastic replay of probed channels is of great interestiipdxploit sea experiments under controlled

and reproducible laboratory conditions. From an impuls@aase recorded at sea, it is thus possible to

3To get this result, the correlation is assumed to be negligeable forV/2.
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compute statistics and/or to test a communication systerarious conditions. Through two case studies,

we hereatfter illustrate the benefits of channel replay formoamcation system design and validation.

A. Fading statistics

During the design phase of communication systems, the tg@ieof error-correcting codes and in-
terleavers is primarily driven by burst error statisticse3$é statistics are commonly given by the level
crossing rate (LCR) and the average fade duration (AFD) thatige a useful means of characterizing
the severity of the fading over time [16]. The LCR is defined as i at which the envelope
r(k) = 1>, q1(k — |ITs2/Ts1])| crosses a specified levelin the positive slope|(| denotes the flooring
operator). In the discrete-time setting, this can be exgaesn terms of probability as

Ts1

The AFD is defined as the average time that the fading envelopaimsrbelow a specified level after
crossing that level in a downward direction

Pr(k) <p]
LCR

Figures 10 (a) and (b) highlight the benefits of stochasticaseply showing the LCR and the AFD

AFD = (21)

estimated on the Mediterranean channel (b) shown in FigurEh&.solid lines represent the statistics
measured on the original impulse response, and the dastesdthie statistics estimated on 1000 channel
realizations using the stochastic replay. As a referencetarshow the relative importance between the
trend and the random component, the statistics of a “virtahlnnel corresponding the original one
without its random components are also displayed.

Despite the presence of two relatively stable and powesfas fitr ~ 10 ms andr ~ 20 ms (see Figure
2-(b)), we can observe that the random components gredlheice the metrics used for validation. The
fluctuation range of the envelope is restricted to -2.5 to BFat the channel including the trends only
whereas the envelope ranges from -18 to 5 dB for the origihahiel with both components (pseudo-
deterministic and random). This can also be observed on Fiflue), where the channel envelopes are
plotted as a function of time.

Figures 10 (a) and (b) also show that measurements on the@alrigipulse response recorded at sea
provide estimates of the fading statistics with a relagiiakge variance. This impulse response indeed
corresponds to a single realization of a random processaofreite time window of 28 seconds. However,

thanks to the stochastic replay method, this variance catdsgically reduced by drawing a large number
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of channel realizations (1000 in our simulation). This istigatarly relevant for deep fades (i.e. low

that usually strongly affect the performance of commuiicest systems.

B. Reception performance

During communication system validation, the stochastianciel replay approach can prove to be a
good complementary test method to field trials. While fieldldriguarantee realistic testing conditions,
they are limited to a narrow validation scope since theyaggond to “snapshots” of specific operational
environments. A great advantage of the channel replay appras that the contributions of physical
phenomena on the communication systems performance cao becertain extent, assessed indepen-
dently. For instance, from the measured impulse resporisepidbssible to test communications systems
for various configurations (baud rate, constellation etcyarious environments (noise type and/or power
etc.).

To illustrate the relevance of channel replay for systendeasibn, we have measured the performance
of a QPSK communication link for several signal-to-noiseamtiThe baud rate was set to 1000 to match
the bandwidth of the probed channel. The receiver is here mohd@ adaptive data-aided intersymbol
interference canceler (IC) [40] with joint phase trackiRgters coefficients are updated by a data-aided
least-mean square algorithm (LMS-DA) and phase trackingifopeed by a second order PLL. As the
objective here is not to tune the receiver to obtain the bessiple performance but to exhibit some
possibilities offered by the channel replay, the IC is daitled over the entire input signal duration and
takes into account the causal as well as the anti-causalardace. The IC is initialized by centering the
strongest peak of the power delay profile in the feedforwarelrfdt the start of the equalization process
[15].

Similarly to Section V-A, we have performed three differenhdg of simulation that are shown in
Figure 11-(a). First, we have a measured the bit-error rate JB&SRa function of Eb/NO using the
original probed channel (solid line), which correspondsatsimple or a deterministic replay of the
impulse response shown in Figure 2-(b). We then have perfbritne same kind of assessment using
the stochastic replay mode and averaging the results ov@d f€hnlizations (dashed line). The results
obtained with the original channel without its random comgrais are also displayed in order to quantify
the relative importance of the pseudo-deterministic camepts on the BER.

In the first place, Figure 11-(a) points out the performance lnduced by the fast fluctuations of the
channel. Fast fluctuations are more difficult to track for theenger than slow fluctuations, and, as shown

in Figure 11-(b), they can lead to deep fades when the scdtt@ps are combined in a destructive manner.
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Figure 11-(a) also shows that the performance obtained wsimple and a stochastic channel replay are
equivalent for Eb/NO less than 10 dB. However, as Eb/NO inee#se BER difference between the two
modes of replay gets larger. Once again, this differencétidoatable to the fact that the simple replay
only use a single realization of a random process. By lookinthe time repartition of the errors of the
simple replay mode, we noticed that for large Eb/NO, the srrehen occurred, were only concentrated
around 15.5 s when a 15 to 17 db fade occurs (see Figure 11ubi)g the stochastic replay mode,
the time repartition of the errors as well as the fade angiditu(see Figure 11-(b)) are different from
a realization to another which therefore averages the BERIeamk to a more accurate performance

assessment.

VI. CONCLUSIONS

The stochastic replay of channels recorded at sea proves #ovVieey useful way of designing and
validating underwater acoustic communication systemsmFacsingle measured impulse response, it is
possible to independently evaluate the impact of varioysiohl phenomena on the communication link
with a good statistical significance level. The channel mo@eivdd in this contribution is based on the
analysis of real data recorded in the Atlantic ocean and thditdrranean sea. It has been shown that the
analyzed underwater acoustic communication channels eameli modeled by trend stationary random
processes (as opposed to usual wide-sense stationarysgesteMoreover, providing that the duration
of the recorded signal is greater than the channel cohertmee we have shown that the potential

correlation between scatterers can easily be simulatdbutitrequiring a full parametric model.
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APPENDIX A

EMPIRICAL MODE DECOMPOSITION

The material presented in the appendix is a compilation oksvpublished in [19], [26], [41], [42].
The Empirical Mode Decomposition (EMD) seeks the differentimsic modes of oscillations in any
data based on the principle of local scale separation. lessghed to define a local low frequency com-

ponent as the local treng(¢), supporting a local high frequency component as a zero-roseiflation

or local detailmg(t), so that any signat(¢) can be expressed as

x(t) = ro(t) + mo(t). (22)

By constructionry(¢), is an oscillatory signal, and, if it is furthermore requir® be locally zero-mean
everywhere, it corresponds to what is referred to as amaitrimode function (IMF). An intrinsic mode
of oscillation is called an IMF when it satisfies:

« in the whole data set, the number of extrema and the humbesrofaossings must either equal or

differ at most by one

« at any point, the mean value of the envelope defined by the tnaalma and the envelope defined

by the local minima is zero.
All we know aboutr(t) is that it locally oscillates more slowly than(t). We can then apply the same
decomposition to it, leading tey(t) = 71 (t) +ma1(¢), and, recursively applying this on the(t), we get

a representation of(t) of the form

Q-1
w(t) =rq1(t)+ Y mq(t). (23)
q=0

The discrimination between fast and slow oscillations isat@d through an algorithm referred to as the
sifting process, which iterates a nonlinear elementaryaipeS on the signal until the local detail can
be considered as zero-mean according to some stoppingamnit&iven a signak(¢), the operatosS is
defined by the following procedure:

1) Identify all extrema ofz(t).

2) Interpolate (using a cubic spline) between minima (r@sgxima), ending up with some envelope

Emin(t) (resp.emaz(t)).
3) Compute the mean(t) = (emin(t) + emax(r))/2-
4) Subtract from the signal to obtal®iz|(t) = xz(t) — r(¢).
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If the stopping criterion is met aften iterations of the sifting process, the local detail and theal
trend are defined asyy(t) = S™[z](t) andry(t) = z(t) — mo(t). A dynamic illustration of the EMD in
operation is available at http://perso.ens-lyon.frig&tflandrin/emd.html.

An extension to bivariate signals is proposed in [26]. Whtee EMD extracts zero-mean oscillating
components, the proposed bivariate extension is designedttact zero-mean rotating components. In
order to separate the more rapidly rotating component fiomes ones, the idea is once again to define
the slowly rotating component as the mean of some envelope eftrelope is now a three-dimensional
tube that tightly encloses the signal. The tube is obtainegbrbojecting the bivariate signal in several

directions.
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