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Including multiple sources of information in personal identity recognition and verification gives the opportunity to greatly improve performance. We propose a contactless biometric system that combines two modalities: palmprint and face. Hardware implementations are proposed on the Texas Instrument Digital Signal Processor and Xilinx Field-Programmable Gate Array (FPGA) platforms. The algorithmic chain consists of a preprocessing (which includes palm extraction from hand images), Gabor feature extraction, comparison by Hamming distance, and score fusion. Fusion possibilities are discussed and tested first using a bimodal database of 130 subjects that we designed (uB database), and then two common public biometric databases (AR for face and PolyU for palmprint). High performance has been obtained for recognition and verification purpose: a recognition rate of 97.49% with AR-PolyU database and an equal error rate of 1.10% on the uB database using only two training samples per subject have been obtained. Hardware results demonstrate that preprocessing can easily be performed during the acquisition phase, and multimodal biometric recognition can be treated almost instantly (0.4 ms on FPGA). We show the feasibility of a robust and efficient multimodal hardware biometric system that offers several advantages, such as user-friendliness and flexibility.

Introduction

Biometrics has drawn extensive attention during the past 30 years for its huge potential in many applications, such as building/store access control, suspect identification, surveillance, and human computer interfacing. The key issue of these applications is the identification of individuals by their physiological or behavioral characteristics (e.g., face, fingerprint, iris, signature, or gait). Each biometric characteristic has its own strengths and weaknesses: unimodal biometric systems have to contend with a variety of problems, such as noisy data, nonuniversality, spoof attacks, and unacceptable error rates. In the past few years, researchers have more and more focused on the possibility of including multiple sources of information. Such systems, known as multimodal biometric systems, are more reliable. [START_REF] Jain | Biometrics: a tool for information 786 security[END_REF] In many real-world applications, the number of available training samples is small, especially in the case of largescale biometric systems. Typically, for the face recognition problem in identity documents, the number of images from each class is considerably limited: only one or two faces can be acquired from each person. Moreover, systems using less training samples have a shorter enrollment stage and are more pleasant for users. A small number sample sizes allows us to use little memory. Nevertheless, in the small-number sample context, many statistical methods 0091-3286/2011/$25.00 C 2011 SPIE show poor generalization ability and degrade the classifica-55 tion performance. [START_REF] Masip | Shared feature extraction for nearest neighbor 788 face recognition[END_REF] In this paper, a reliable and contactless 56 general-public multimodal biometric system is presented. It 57 respects the small-number sample constraint and tries to be 58 user-friendly.

59

Palmprint can be used as a reliable human identifier be-60 cause the pattern of ridges is unique and their details are 61 permanent. Compared to other physical biometric charac-62 teristics, palmprint biometrics have several advantages: low-63 intrusiveness, stable line features, and low-cost capturing 64 device. [START_REF] Michael | Touch-less palm 791 print biometrics: novel design and implementation[END_REF] Although palmprint is traditionally a contacting bio-65 metric, we use it without contact, which allows us to keep 66 a pleasant and hygienic system. For that matter, an increas-67 ing number of works have interest in the use of contactless 68 sensors. 3-5 69 Face is one of the most studied and commercialized bio-70 metrics. It is well accepted because humans routinely use 71 facial information to recognize each other. But it suffers 72 from some weaknesses: it is particularly affected by pose, 73 expression, or illumination. In the past decades, a lot of face 74 recognition algorithms have been proposed: statistical anal-75 ysis as principal component analysis (PCA), independent 76 component analysis (ICA), or linear discriminant analysis 77 (LDA); [START_REF] Jing | Face and palm-800 print pixel level fusion and kernel DCV-RBF classifier for small sample 801 biometric recognition[END_REF] neural networks; [START_REF] Geng | Individual stable space: 803 an approach to face recognition under uncontrolled conditions[END_REF] graph matching; 8 etc.

78

Fusion of face and palmprint is studied because it 79 allows are to greatly improve performance while keeping 80 a user-friendly and well-accepted system. Kumar and 81 Zhang [START_REF] Kumar | User authentication using fusion of face and 809 palmprint[END_REF] proposed a personal verification method combining 82 palmprint, face, and claimed user identity to increase authentication performance: a feed-forward neural network is used to integrate individual matching scores and generate a combined decision score. Jing et al. [START_REF] Jing | Face and palm-800 print pixel level fusion and kernel DCV-RBF classifier for small sample 801 biometric recognition[END_REF] use face and palmprint for small-number sample recognition: the fusion occurred at the pixel level on feature images is obtained due to a Gabor filter bank. Zhang et al. [START_REF] Zhang | Multimodal biometrics us-811 ing geometry preserving projections[END_REF] present a geometry preserving projection (GPP) approach to preserve the interactions between the different modalities during the subspace selection procedure: with GPP, all raw biometric data (face, palmprint obtained with contact, and gait) from the different identities and modalities are projected onto a unified subspace, on which classification is performed. [START_REF] Lopez-Ongil | FPGA implementation of biometric authenti-818 cation system based on hand geometry[END_REF] present the FPGA implementation of an authentication system based on hand geometry, which uses the continuous hamming distance to compare hand dimension vectors. Other works explore multimodal biometrics: Yoo et al. [START_REF] Yoo | Design of embedded multimodal biometric sys-822 tems[END_REF] have developed two DSP systems for iris-fingerprint and face-fingerprint recognition. In their system, the most consuming tasks are implemented on FGPA in order to increase the system speed.

The aim of our project is to build a reliable general-public biometric system, that respects multiple constraints: hygienic, low-cost, straightforwardness, user-friendliness, realtime processing, limited memory, small sample set, etc. The developed system could be used in businesses, hospitals, or schools to control door opening, record hours worked by employees, restrict access to sensitive areas, control access to school canteens, etc. Therefore, we present the hardware architecture of a multimodal biometric recognition system with massive exploitation of the inherent parallelism. Implementations are simulated on a Texas Instrument Digital Signal Processor (DSP) and Xilinx Field Programmable Gate Array (FPGA) platforms. DSPs are widespread processors that are optimized to signal processing, whereas FPGAs are inexpensive devices adapted to parallel calculation that give the ability to quickly create a rapid and fully functional prototype that can emulate and verify solutions or even be embedded into the final system. That is why we chose to implement our algorithm on these two devices. The remainder of the paper is organized as follows: Section 2 provides details of the algorithm model from image acquisition to the steps of fusion and decision, while Sec. 3 presents designed architectures and their hardware implementations. Performance of the system is presented in Sec. 4 and discussed in Sec. 5. This is followed by the conclusion and presentation of the perspectives in Sec. 6. Traditional hand-based biometrics use contact with a surface 153 and sometimes rigid placement guides. These have the ad-154 vantage of having a fixed focal field, and if they use pegs, 155 can rely on a standard placement. On the contrary, face is 156 a typical contactless biometric. We have designed a user-157 friendly system to acquire real-time hand and face images 158 that is totally contactless. Two low-cost Logitech QuickCam 159 Pro 9000 USB cameras are used with a maximum resolution 160 of 1600×1200 to capture images under typical office lighting 161 and daylight conditions.

162 Subjects enroll themselves thanks to an easily usable soft-163 ware. For the hand, they are only asked to place it horizontally 164 and ensure that their fingers do not touch each other. Each 165 subject could place his hand anywhere from a few dozen 166 inches to a few inches from the sensor: the upper limit is 167 defined by the position of a green background [see Fig. 1 steps: resizing to 64×64 pixels and conversion into a graylevel image.

Gabor Feature Extraction

Palmprints exhibit a rich pattern of striations that enable discriminating between people. Therefore, most of the studies in palmprint recognition treat palmprints as textured images and apply well-known pattern recognition techniques, such as wavelets, [START_REF] Connie | An automated palmprint recognition system[END_REF] PCA or ICA, [START_REF] Dutagaci | Comparative analysis of global hand appearance-based person recognition[END_REF] and many others. Because of its good performance and specific qualities of luminosity robustness and frequency location, the Gabor filter is the most efficient and popular tool. [START_REF] Jain | Biometrics: a tool for information 786 security[END_REF][START_REF] Jing | Face and palm-800 print pixel level fusion and kernel DCV-RBF classifier for small sample 801 biometric recognition[END_REF][START_REF] Kong | Palmprint identification using feature-level fusion[END_REF] Face recognition is a mature biometric for which many recognition approaches exist. Nevertheless, classical methods such as Eigenface or Fisherface are not adapted to the small sample set problem, as explained in Ref. 2 or 18. Therefore, many variants of these algorithms have been proposed in order to improve recognition performance in this situation. [START_REF] Kyperountas | Weighted piecewise LDA for solving the small sample size problem in face verification[END_REF][START_REF] Xu | Reconstruction and recognition of tensor-based objects with concurrent subspaces analysis[END_REF] Other methods, which combine image filtering by a Gabor filter bank and PCA (Ref. 6) or LDA (Ref. 21) have also been studied to solve the small-number sample set problem. However, all these methods based on statistical analysis require too high calculation complexity and too much memory to be used in embedded systems. However, some studies look into the use of one or more pertinent Gabor filters, [START_REF] Ayinde | Face recognition approach based on rank correlation of gabor-filtered images[END_REF][START_REF] Noore | Robust memory-efficient data level information fusion of multi-modal biometric images[END_REF] which is the same principle as our palmprint recognition algorithm.

Here, this filter is used to extract palmprint and face features: a coding-based method is employed, that is founded on the works of Refs. 4 and 24. This choice is also consistent with the electronic embedded system context: regular calculations, such as convolution operation, are easily implemented on hardware systems and reduce power consumption. Moreover, applying the same method on both palmprint and face will facilitate hardware implementations.

A variety of implementations of this filter exists. Considering its performance and the need to reduce computation time and memory consumption, we use the ellipsoidal filter in the real domain proposed in Ref. 4,

G(x, y) = exp - x 2 + γ 2 y 2 2σ 2 cos 2π 0.56x σ , (1) 
where

x = (x -x 0 ) cos( ) -(y -y 0 ) sin( ) y = (x -x 0 ) sin( ) + (y -y 0 ) cos( ) . ( 2 
)
The couple (x 0 , y 0 ) defines the function center, controls the orientation, σ is the standard deviation of the Gaussian factor, and γ is the spatial aspect ratio of this ellipsoidal function fixed at 0.5. For more luminosity robustness, the filter is normalized by the subtraction of the coefficient average from each coefficient.

Gabor palmprint features are obtained by the convolution of the image with a single Gabor filter (whose coefficients are empirically chosen, see Sec. 5), followed by a thresholding operation with a threshold equal to 0. This binarization limits the characteristic size and the computation time in the comparison phase. The feature extraction step is illustrated in Fig. 3. For identity classification and verification, a similarity measurement must be created in order to compare the extracted parameters. For this matching process, we use the traditional comparison method of binary matrices: the 

N × N is 279 D(A, B) = min |x|,|y|<2 ⎡ ⎣ N i=0 N j=0 T {A(i, j), x, y} ⊕ B(i, j) ⎤ ⎦ , (3)
where T {A, x, y} is the translation of image A horizontally 280 by x and vertically by y. vectors implies a high compatibility between fused data and does not allow modality-adapted processing, as in our case.

We use fusion at score level because there is sufficient information content at this step and it is easy to access and combine the matching scores. Savic and Pavesic [START_REF] Savic | Personal recognition based on an image of the palmar surface of the hand[END_REF] have demonstrated that the combination approach performs better in biometric systems. Therefore, tree combination rules have been tested. Let P i be the score obtained thanks to the matching between the current palmprint feature and the ith template of the palmprint matching base, let F i be the score obtained thanks to the matching between the current face feature and the ith face template, the corresponding final score Fus i can be calculated from the minimum [Eq. ( 4)], the sum [Eq. ( 5)], and the multiplication Eq. ( 6) rules as follows:

Fus i = min(P i , F i ), (4) 
Fus i = P i + F i , ( 5 
)
Fus i = P i × F i . ( 6 
)
The final decision of the classifier is then given by choosing the class that minimizes the fused matching measures between the sample and all templates of the matching base.

If at least one of the two scores is low enough to success in the recognition task, the fused score (obtained by minimum, sum, or multiplication rules) would also allow one to succeed in this task. That is why multimodal systems outperform unimodal systems and increase the population coverage: If one modality is vulnerable to certain conditions, then the others take over. The way we designed the system (see Fig. 4) allows us, moreover, to use palmprint only, face only, or fusion of the two. Using this architecture makes it possible to add other textured modalities, such as knuckleprint or ear.

Hardware Implementations

Each of the proposed algorithms respects the embedded system constraints. They work in particular with a low calculation cost and low memory, which makes them particularly suitable for DSP implementation. Moreover the coding scheme proposes a high potential of parallelization, which could be fully exploited by application-specific integrated As feature samples are 52×52 binary matrices, the total size of the base is only of 16 KB. The coding scheme and the recognition step requires about 7×10 [START_REF] Jing | Face and palm-800 print pixel level fusion and kernel DCV-RBF classifier for small sample 801 biometric recognition[END_REF] CPU cycles, which corresponds to 7 ms.

Although parallelization possibilities are high for this kind of device, parallelism potential of the face and palmprint recognition algorithms is only lightly exploited on a DSP. That is why, we have also simulated the hardware implementation of the last steps of the processing chain (feature extraction, matching, fusion, and decision) on an FPGA platform.

FPGA Implementation

We work on a Virtex-5-XC5VFX70T FPGA of the Xilinx society. 27 It has been chosen for its configuration: It contains, in particular, 128 DSP slices (with 25×18 multipliers and 48-bit adder/subtracter/accumulator), which support massively parallel digital signal processing algorithms, and 22,400 configurable logic blocks (CLBs). Slices of the CLBs can be used to provide logic, arithmetic, and ROM functions; a part of them can also be used as distributing RAM or 32-bit data registers.

FPGA implementations have been simulated with the Very High-Speed Integrated Circuit, Hardware Description Language (VHDL) description using the Xilinx ISE tool. Results of the FPGA implementations will be presented in terms of used resources and processing speed. As for the DSP implementation, we have worked on a database of 25 people with two samples per individual in the matching base and we use the sum rule. exploited using the pipeline technique. In agreement with Fig. 8, each final test image size is 52×52 pixels. Because original images are larger than needed, border pixels are not used and we work on the 60×60 central pixels. In this module, the original image is stored in a Block RAM and processed by windows of 60×9 pixels. The process ends after 52 shifts of the vertical window. The convolution operation is realized using a structure of 81 DSP slices. Each of these slices multiplies a received pixel value with a filter coefficient and accumulates the previous result.

A total of 61×52 = 3172 clock cycles are necessary in order to run this feature extraction block; 89 DSP slices, 1 Block RAM and 187 slices are used. The corresponding operating frequency is equal to 175 MHz.

The classification module consists of the calculation of 100 elastic Hamming distances (25 templates×2 samples ×2 biometrics), followed by 50 score fusions (each palm score is fused with the corresponding face score), and a comparison between each of these fused scores (NN classification). The 100 templates have been performed offline and loaded in distributed RAM during the hardwareconfiguration phase. Moreover, each elastic Hamming distance is performed by the calculation of 25 Hamming distances.

Figure 9 illustrates hardware realization of the elastic matching stage. We have chosen to carry out this step in 25 iterations corresponding to the 25 shifts of the elastic distance. We have designed a logic block in order to perform horizontal and vertical shift control. At each iteration, 100 Hamming distances are calculated in parallel. An inner loop provides in parallel 100 XOR operation results to 100 accumulators. When this loop is completed after 2704 (= 52×52) cycles, each accumulator provides a Hamming distance value, which can be compared to precedent values. The 100 minima are stored in registers of the FPGA. At the end of the 25 iterations, the fusion occurs by summing scores two by two. A final comparison step then finds the minimal value among the 50 fused minima. The person's identity is given by the corresponding template number. A total of (2704 + 1)×25(XOR) + 1(sum) + 55(final comparison) = 67681 clock cycles are necessary in order to perform this elastic matching stage. 1). In particular, we use 

Presentation of Experiments

For this feasibility study, we built a database called the uB (University of Burgundy) database. It consists of images from 130 people, with nine face images and nine hand images per person. Pairs of images were recorded in three sessions of three images. The period of time between each session is spread from one day to a few weeks in order to take into account luminosity variation and possible variation in positioning or appearance. The acquisition environment is totally contactless and very user friendly (see Sec. 2.1).

In order to verify our approach, we also tested the processing on a multimodal database, which consists in the fusion of two public databases: the Hong Kong Polytechnic University (PolyU) palmprint database [START_REF]PolyU palmprint database[END_REF] and the AR face database. [START_REF] Martinez | The AR face database Technical Report[END_REF] The PolyU palmprint database contains 7752 gray-scale images from 386 different palms. Twenty samples from each of these palms were collected in two sessions (of 10 samples). The average interval between the first and second collection was two months. The size of every original image is 384×284 pixels. Fig. 10 shows some original palm images of the PolyU database. They have been obtained with contact and pegs in controlled lighting conditions. [START_REF] Zhang | Online palmprint identification[END_REF] Our palm extraction method has been adapted to the processing proposed in Ref. The preprocessing is the same as that of the uB database: all color images are transformed into gray-level images and each image (of 768×576 pixels) is scaled down to 64×64 pixels.

We take sample subsets of the same size from these two databases in order to create the multimodal database. As Jing et al., [START_REF] Jing | Face and palm-800 print pixel level fusion and kernel DCV-RBF classifier for small sample 801 biometric recognition[END_REF] In this paper, all the results take into account the constraints of the hardware implementation. The preprocessing algorithms have been adapted to fixed-point calculation (for their DSP implementation), and the remaining processing has been quantified (for their FPGA implementation). In this way, results of the hardware system can be compared to those of the algorithmic system presented in Ref. 14.

Recognition Performance

The uB database contains 130 × 9 = 1170 images of each modality. For the recognition tests, it is divided in two parts:

the training sample set and test sample set. As we respect the small sample set constraint, the number of samples per person in the matching base varies from 1 to 3. We defined two different protocols to conduct our experiments. Protocol 1: samples of the matching base are picked up randomly among the nine available ones, and all the remaining samples are used for tests. Protocol 2: samples of the matching base are picked up randomly among the three available ones of a 546 unique session, and only the samples of the two other sessions 547 are used for tests. Thus, when the matching base contains 548 n samples per person (n ∈ {1, 2, 3}), (9n)×130 tests are 549 performed according to the protocol 1 and 6×130 (= 780) 550 according to the protocol 2. Protocol 1 is the most used in 551 studies because it allows one to take into consideration all the 552 information contained in the database. Protocol 2 is used to 553 verify the robustness of the algorithm in more realistic condi-554 tions: in the real world, all the matching samples are acquired 555 during the enrollment phase, so the captured variability is 556 reduced.

557

Results are qualified by the recognition rate, which is the 558 ratio between the number of correct classification results and 559 the total number of tests. Because it depends on the selected 560 samples, nine tests with nine different matching bases are 561 performed (for a matching base built according to protocol 2 562 in the three samples cases, only three tests are performed, 563 since it is only possible to build three different bases). They 564 are then averaged to constitute a final result [the for aver-565 aged recognition rate (ARR)], which objectively describes 566 the performance of the system.

567

Results obtained thanks to the protocol 1 are given in 568 Table 2. They are very similar to those of our former 569 algorithmic study: [START_REF] Poinsot | Small sample biometric recognition based on palmprint and face fusion[END_REF] quantification of the Gabor filtering and 570 transition to fixed-point do not introduce any performance 571 degradation. As with the algorithmic model, the palmprint 572 only difference lies in the results of the minimum fusion, which does not bring a performance increase to the palmprint recognition. Moreover, we can see that fusion is more robust than monomodality: when the variability captured in the sample base decreases, the standard deviation of the face and palm results are greatly reduced, whereas it keeps similar values for the fusion.

Table 4 illustrates the average results of 20 random tests conducted on AR-PolyU database according to the protocol described in Ref. 6. We can see that all trends revealed by the tests conducted on the uB database are confirmed on these public databases.

For the face, errors are typically caused by the occasional wear of accessories (such as glasses) and by changes in expression or pose. For the palm, they are often due to a lack of image quality (bad focus, inhomogeneous illumination, etc.). These criteria are not correlated. That is why, most of the time, only one modality fails when a pair of images is tested. The fusion of the two often brings enough information to override the confusion: for example, the sum of two small distances (calculated on the samples of the same user) can be smaller than the sum between a very small distance (calculated on the samples, which are confused) and a large one (calculated on the samples of the other modality, which are not confused). Sometimes, both modalities are mistaken, but the overall system succeeds, as in Fig. 12. This is Table 6 gathers EERs calculated in the one-, two-, and three-sample cases on the uB and AR-PolyU databases, and Fig. 13 displays the ROC curves in the one-sample case. It has to be noted that all results correspond to average verification rates obtained by averaging the verifications rates of 9 or 20 random tests. We can see that verification follows the same trends as recognition: palm achieves good performance alone and fusion allows one to greatly improve the results. Figure 13 shows that the curve behavior is the same on the two multimodal databases and that fusion by addition and multiplication is very similar.

Discussion

Proposed system not only reach good performance in terms of hardware implementation, but also in terms of experimental results: it obtains similar results to those we can find in the literature. In the same conditions of biometric recognition on the AR-PolyU database, Jing et al. [START_REF] Jing | Face and palm-800 print pixel level fusion and kernel DCV-RBF classifier for small sample 801 biometric recognition[END_REF] obtain slightly lower performance, which keeps the same trends (see Table 5). For this, they use a Gabor feature Kumar et al. [START_REF] Kumar | User authentication using fusion of face and 809 palmprint[END_REF] propose a score fusion using a feed-forward neural network trained on a base of four samples per person.

Face features are extracted by the Eigenface method, and palmprint by the combination of four directional filters. The proposed method is tested on a multimodal database designed by the authors that contains 70 subjects and is acquired in more controlled conditions (for example, illumination, distance between hand and sensor). Table 6 tries to make some biometric verification performance comparisons between the two bimodal systems. Kumar et al. [START_REF] Kumar | User authentication using fusion of face and 809 palmprint[END_REF] show that combining subject claimed identity allows one to reduce verification error (EER from 2.21 to 0.72%). On the uB database with only three samples, we also obtain better performance than this reference method, which does not use the claimed identity, and our EER is very similar to the one obtained using claimed subject identity. Results obtained with AR-PolyU in the twosample case are also comparable to those of the reference method.

It must be noted that performance calculated on the AR-PolyU database is not as good as that calculated on the uB database because hand images are of lower quality and do not show the entire hand, which makes palm extraction less accurate. Moreover, faces are not acquired in the same conditions and show a large white background.

In terms of hardware implementation, as Yang and Paindavoine We observe that with a sequential architecture the exe-716 cution time of the last steps of processing depends on the 717 number of subjects in the comparison base. However, thanks 718 to the parallel architecture of the FPGA implementation, 719 recognition of 50 or more individuals could be realized using 720 the same chip (FPGA Virtex-XC5VFX70T) with the same 721 processing speed. On the other hand, authentication would 722 be even faster on DSP because the comparison base would 723 contain the samples of a single user. In this paper, we have presented a contactless biometric sys-726 tem that combines two modalities: palmprint and face. A 727 complete processing chain has been developed from the ac-728 quisition of hand and face images to classification decision, 729 and a hardware architecture has been implemented on DSP 730 and FPGA. Face and palmprint are two decorrelated modal-731 ities, that can be acquired easily with minimal equipment 732 (a webcam) and without contact. Multimodal systems have 733 many advantages over monomodal systems, such as better 734 robustness or greater universality. Therefore, using these two 735 biometrics in a multimodal system ensures one to create an 736 efficient general public system.

737

As we work on palmprint in a contactless context, a hand 738 preprocessing (which consists of a palm extraction) has been 739 developed and simulated on a DSP platform. Hardware im-740 plementation of the rest of the multimodal recognition chain 741 has been simulated on the DSP and on a FPGA Virtex-5 de-742 vice. Hardware results demonstrate that preprocessing can 743 easily be performed during the acquisition phase, and multi-744 modal biometric recognition can be treated almost instantly. 745 Only 0.4 ms are necessary using 50 training samples recorded 746 on 25 persons with low-resource consumption on FPGA, 747 while no more than 7 ms are needed on DSP.

748

A database of 2340 images (130 subjects×2 modalities 749 ×9 views) was built in real-world conditions (user-friendly 750 interface and natural illumination, for example). Experimen-751 tal results show that multimodal fusion always reaches better 752 performance than monomodality. The proposed algorithm, 753 which is based on low-complexity operations, such as Gabor 754 filtering and similarity measurement by binary comparison, 755 fits palmprint recognition particularly well. The fusion of 756 palmprint and face at score level allows us to achieve high 757 recognition rates (98.96% using uB database and 97.49% 

  However, none of those methods are adapted to the calculation cost or memory constraints of embedded systems. Biometric algorithms work on raw and uncompressed images, whose processing requires a large number of operations. However, most of these operations are independent and can be performed on different parts of the image at the same time. Because of this possibility of reaching a high parallelism degree, biometric algorithms are the right candidates for hardware implementation. For example, some research has been conducted in order to reduce the calculation time of monomodal biometric systems: Yang and Paindavoine 11 have implemented a face-detection and recognition algorithm-based on radial basis function (RBF) neural network-on field-programmable gate array (FPGA), digital signal processor (DSP), and zero instruction set computer (ZISC) chips in order to compare the execution times. Lopez-Ongil et al.

Fig. 1

 1 Fig. 1 Acquisition software: (a) palm interface and (b) face interface.

Fig. 2

 2 Fig. 2 Palm window definition.

Figure 2 O 1 O

 21 shows the 204 square window, which corresponds to the ROI. The distances 205 2 and A 1 A 2 depend on the distance between the 206 hand and the camera. Therefore, they are taken proportional 207 to the hand width ( H B 1 H B 2 ). 208 Because the palmprint images are of different sizes and 209 orientations, we normalize them. First, they are rotated 210 around the vertical axis. Then, they are resized to a standard 211 image size of 64×64 pixels and converted into a gray-level 212 image. 213 Because of the experimental setup, the pose of the face 214 varies only slightly. Moreover, as we work on low-resolution 215 images, it is not necessary to extract ROI. That is why the 216 face preprocessing only takes up the last palm preprocessing
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Fig. 3

 3 Fig. 3 Feature extraction of the palm: (a) corresponding images, (b) gabor features ( = π/4, σ = 4.6), and (c) final feature matrix.
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 24 Fusion Scheme 282 Combining one or more biometric traits provides new in-283 dependent information that gives the opportunity to greatly 284 improve recognition performance. Furthermore, it increases 285 the probability that one of the traits suits the user, which gives 286 a larger population coverage and complicates spoof attacks 287 by requiring more kinds of information. 288 A generic biometric system includes four principal steps: 289 data acquisition, feature extraction, matching to the template 290 database, and decision. Information fusion can occur at any of 291 the aforementioned steps. Most studies agree on the fact that 292 integrating information at an early stage of processing is more 293 effective than performing integration at a later stage. 1 Earlier 294 stages contain richer information about the input biometric 295 data than later stages. However, fusing pixels or feature 296

Fig. 4 4 Fig. 5

 445 Fig.4 Entire processing chain with possible score fusion using nearest-neighbor (NN) classifier.

339 3 . 1

 31 Fig. 5, consists of eight functional units, two register files, 348

Fig. 6

 6 Fig. 6 Recognition chain hardware realization on FPGA: the software microcontroller core PicoBlaze (PB) controls the feature extraction (FE) and classification (Class) blocks.

Figure 6

 6 Figure 6 displays the entire recognition chain. We use
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Figure 7 Fig. 7

 77 Figure 7 displays the proposed design of the feature ex-

Fig. 8

 8 Fig. 8 Image sizes during processing: original images = 64×64 pixels, training sample images = 56×56 pixels because of the convolution with a 9×9 Gabor filter, and test images = 52×52 pixels because of the 2×2 pixels margin introduced by the elastic matching.

Fig. 9

 9 Fig. 9 Implementation of the classification block: for each of the 25 iterations, 100 Hamming distances are performed in parallel.

464

  Thus, because our processing needs about 3172×2 + 67681 465 clock cycles, the entire operating time is on the order of 466 423 μs. 467 Chosen algorithms respect the constraints of simplicity, 468 low-cost, regularity, and low-memory use. Thanks to the 469 parallelization work, the entire processing is performed in 470 only 0.4 ms. Moreover, implementations have been achieved 471 using only a portion of the available resources of the Virtex-472 5-XC5VFX70T FPGA (see Table

473

  very few logical resources (total ratio of 19.1%): because the 474 Class block does not use DSP slice but only register slices 475 and LUT slices, the number of recognizable people could be 476 increased and reach 100.

Fig. 10 7 Fig. 11

 10711 Fig. 10 Four images of the same palm from the PolyU database.

  we use the first 119 palmprint classes with each class containing all 20 samples and all 119 face classes with each class including the first 20 samples. The two Gabor filters have been chosen empirically on the uB database and applied to both uB and AR-PolyU databases. The way the Gabor filter coefficients have been chosen is explained in Ref. 14. Actually, the chosen filter is the same for the two modalities: its coefficients are set as λ = 8.20 and = 2π /8.

Fig. 12

 12 Fig. 12 Example of overall system success despite failure of the monomodal systems.

Fig. 13

 13 Fig. 13 ROC curves of biometric verification in the one-sample case calculated on (a) the uB database and (b) the AR-PolyU multimodal database.

  758 using AR-PolyU database with only two training samples 759 per person and per modality). In the same manner, the used 760 fusion strategy provides good performance for the biometric 761 verification task (EER = 1.10% in the two sample case). We 762 can note that the adaptation of the algorithms to hardware 763 implementation do not introduce performance degradation. 764 Our experiments demonstrate that the proposed approach is 765 an effective solution for the small sample biometric prob-766 lem and can outperform memory-consuming methods, such 767 as the ones that use Gabor filter banks. Moreover, using the 768 same algorithm, performance may be increased with other 769 modalities having an oriented texture such as knuckleprint 770 or ear. 771 This soft-and hardware study shows the feasibility of a 772 robust and efficient embedded multimodal biometric system 773 that offers several advantages; for example, flexibility, user-774 friendliness, and real-time processing. Besides, the proposed 775 system is able to work with real-world application challenges, 776 such as lighting changes and variations in hand position and 777 orientation. Our final objective is to implement the complete 778 biometric application on a hardware system. Our next step 779 consists of doing new processing optimizations and com-780 plexity analysis of the palmprint image extraction task (hand 781 localization, palmprint extraction and normalization), before 782 achieving FPGA implantations. The chosen FPGA contains a 783 PowerPC processor core that could be used to perform some 784 calculations.

2 Algorithm Model 146

  This section introduces the complete face and hand process-147 ing chain, which includes four principal steps: acquisition 148 of images, hand preprocessing, palmprint and face feature 149 extraction, and score fusion. A brief algorithm-oriented pre-150 sentation of all the modules is available in Ref.14. 
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	2.1 Acquisition of Images	152

Table 1

 1 Hardware implementation results of the recognition chain on a Virtex-XC5VFX70T FPGA.

		Used	Total	Used ratio
	Logic element	number	number	(%)
	DSP48 slices	89	128	69.5
	Block RAMs	2	148	1.4
	Slices	8566	44800	19.1

Table 2

 2 Average recognition rate obtained according to the protocol 1 on the uB database.

		ARR (%)	ARR (%)	ARR (%)
	Method	one sample	two samples	three samples
	Face recognition	79.10 ± 2.71	90.93 ± 4.60	95.25 ± 6.93
	Palm recognition	91.05 ± 1.22	96.82 ± 1.52	98.27 ± 1.84
	Minimum score	92.43 ± 1.70	97.40 ± 2.12	98.79 ± 2.63
	Summed score	96.02 ± 0.95	98.96 ± 0.71	99.59 ± 0.76
	Multiplied score	96.38 ± 0.94	99.07 ± 0.65	99.61 ± 0.79

Table 3

 3 Average recognition rate obtained according to the protocol 2 on uB the database.

			ARR (%)	ARR (%)	ARR (%)
		Method	one sample	two samples	three samples
		Face recognition	73.50 ± 2.35	81.85 ± 2.19	84.96 ± 2.52
		Palm recognition	89.32 ± 1.54	94.06 ± 1.26	95.56 ± 0.85
		Minimum score	90.16 ± 1.51	93.69 ± 1.04	94.74 ± 1.22
		Summed score	94.89 ± 0.82	97.68 ± 0.66	98.46 ± 0.56
		Multiplied score	95.31 ± 0.77	97.89 ± 0.62	98.42 ± 0.52
	573	recognition chain achieves, alone, a high-performance level.
		Face recognition does not perform as well as palm recogni-

574

tion, but results are rather high for such a low-computational-575 cost method in natural illumination conditions. Fusion 576 always performs better than unimodality, and the difference 577 between fusion methods is low: averaged recognition rates 578 differ only by a few tenths. Considering the computational 579 cost and the results of each method, the addition is very 580 interesting in our case. Minimum has a low complexity 581 but does not give good results, and the small performance 582 increase induced by the multiplication does not compensate 583 the difference of cost. There is a high similarity between the 584 sum and multiplication rules. Very good results are obtained 585 in the two-samples case: error is ∼1%. It can be noted 586 that performance grows substantially between the one-and 587 two-sample cases, while the increase between the two-588 and three-samples cases is minor. 589 Results obtained thanks to protocol 2 are presented in 590 Table 3. As expected, they are generally not as good as those 591 obtained according to protocol 1. However, they are still high: 592 ARR after fusion is between 94.9% in the one-sample case 593 and 98.5% in the two-sample case. All the comments made 594 for the Table

2

are applicable to Table

3

: fusion allows one to 595 substantially increase the performance, there is only a small 596 difference between addition and multiplication, and the gap 597 between the one-and two-sample cases is significant. The 598

Table 4

 4 Average recognition rate obtained with 20 random tests for each method using the AR-PolyU database.

		ARR (%)	ARR (%)	ARR (%)
	Method	one sample	two samples	three samples
	Face recognition	68.22 ± 3.36	83.69 ± 10.4	86.21 ± 9.97
	Palm recognition	85.46 ± 1.29	93.90 ± 0.77	96.03 ± 0.58
	Minimum score	71.95 ± 2.78	86.15 ± 9.66	88.27 ± 9.13
	Summed score	92.04 ± 1.18	97.49 ± 0.95	98.48 ± 0.63
	Multiplied score	92.99 ± 1.11	97.92 ± 1.70	98.66 ± 1.25

Table 5

 5 Small sample biometric recognition performance comparison using the AR face database and PolyU palmprint database. Average recognition rate in the two-and three-sample cases.

				ARR (%)			ARR (%)
			two-samples case			three-samples case
		Method	Face	Palm	Fusion	Face	Palm	Fusion
		Jing et al.	65.67	63.33	92.66	74.88	64.29	96.14
		Proposed method	83.69	93.90	97.49	86.21	96.03	98.48
		a Reference 6.					
	625	probably because the two modalities are confused with sam-	pared each test sample to all training samples: for a given
	626	ples of two different users, which cannot occur when they	test sample of the uB database, we perform genuine tests
	627	are fused because they are considered simultaneously.	with the samples of its own class, and impostor tests with the
					samples of the other 129 classes. For example, in the three-
	628 629	4.3 Verification Performance Performance of biometric verification systems is measured	samples case, the system tests 780 (130×6) genuine users and 100,620 (130×129×6) impostors.
	630	in terms of false rejection rate (FRR), which consists in			
	631	the error rate in the intraclass comparisons, and false ac-			
	632	ceptance rate (FAR), which is computed from the interclass			
	633	comparisons. A given FRR is achieved at a fixed FAR, and			
	634	vice versa. By varying the FRR (or the FAR), the receiver			
	635	operating characteristic (ROC) curve is obtained. In order			
	636	to judge the performance of a verification algorithm, it is			
	637	usual to use the operating point where the FAR and FRR			
	638	are equal. It corresponds to the so-called equal error rate			
	639	(EER).					
	640	In biometric verification systems, the test person is com-			
	641	pared to a single reference person and a decision is made			
	642	whether the two are identical or not. That is why biomet-			
	643	ric verification usually needs more images per individual for			
	644	training in order to capture intraclass variability. Therefore,			
	645	biometric verification often suffers more from the small sam-			
	646	ple size problem than biometric recognition. 19				
	647	As for the biometric recognition, we arbitrarily take			
	648	1-3 samples of each of the 130 individuals in order to build			
	649	the training set. The remainder is used as test set. We com-			

Table 6

 6 Average equal error rate comparison for biometric verification. The bottom two rows correspond to the results obtained by Kumar et al.[START_REF] Kumar | User authentication using fusion of face and 809 palmprint[END_REF] without using (A) and using (B) subject-claimed identity.

	AEER (%)

a Reference 9.

2.2 Image Preprocessing

Optical EngineeringFebruary 2011/Vol. 50[START_REF] Masip | Shared feature extraction for nearest neighbor 788 face recognition[END_REF] 

February 2011/Vol. 50[START_REF] Masip | Shared feature extraction for nearest neighbor 788 face recognition[END_REF]