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Abstract—Social network analysis has become a major subject
in recent times, bringing also several challenges in the computer
science field. One aspect of the social network analysis is the
community detection problem, which is seen as a graph clustering
problem. However, social networks are more than a graph, they
have an interesting amount of information derived from its
social aspect, such as profile information, content sharing and
annotations, among others. Most of the community detection
algorithms use only the structure of the network, i.e., the graph.
In this paper we propose a new method which uses the semantic
information along with the network structure in the community
detection process. Thus, our method combines an algorithm for
optimizing modularity and an entropy–based data clustering
algorithm, which tries to find a partition with low entropy and
keeping in mind the modularity.

Index Terms—Social Networks Analysis, Graph Clustering,
Community Detection, Entropy

I. INTRODUCTION

A social network is composed of a group of actors linked

according to different types of relationships. However, a social

network contains more information than only links and actors:

all the elements in the network may have additional infor-

mation regarding the social context in which they exist. This

non–topological information enriches the network, allowing

several social network analysis to be performed from different

semantic perspectives and not only from the structural one.

For example, in a social network of the employees from

an enterprise, and being their links whether they have sent

messages to each other or not, it is possible to consider the

type of projects each employee has been involved into. Thus,

we could search communities of people which have met before

and have worked in similar projects. Those communities of

cooperation could be used to find experts or to create work

teams in the organization. We could also consider the em-

ployees’ competencies and discover communities of practice.

If the profiles reflect more organizational aspects, it could be

interesting to compare organisational communities with the

above communities of practice.

In order to provide such analysis from different perspectives,

we propose a method which combines information from the

network topology and from the actors’ profile (also called here

the network’s semantic information). This semantic informa-

tion can be divided into subsets of information, called points

of view. Then, a point of view can be defined as an ensemble

of features which represents a state of the network under a

given perspective and can be used to guide, in this case, the

communities detection process.

The paper is organized as follows: in Section II some

relevant previous work is presented, in Section III is presented

the point of view and its relation with social networks. In

Section IV presents the algorithm of communities detection, in

Section V some experiments are presented and discussed, and

in Section VI some conclusions and future work are presented.

II. RELATED WORK

Several methods have been developed to find clusters in

a graph, or which is equivalent, to find communities in a

social network. In general, those methods have been defined

as optimization problems where the objective function is the

maximization of some quality index. The indices measure the

quality of a partition C based on the number of edges within

the cluster and the number of inter–cluster edges.

Gaetler [1] and Brandes et al., [2] define three quality

indices: the coverage, which measures the weight of all the

intracluster edges compared to the weight of all edges within

the graph; the conductance, which is based on the observation

that if a cluster is well connected, then, a large number of

edges have to be removed in order to bisect it, and the

performance, which defines the quality of a given cluster based

on whether a pair of nodes forming an edge belongs to the

same cluster or, two disconnected nodes belong to different

clusters. In both cases it is said that the classification is correct.

Additionally, another index, the modularity Q, proposed by

Newman et al. [3], compares the fraction of the edges within

each cluster with the fraction of edges among clusters, i.e., the

intracluster edges density versus the inter-cluster sparsity.

The algorithm proposed by Newman [4] iteratively finds and

removes the edge with the highest betweenness score. This

process allows to find groups which are loosely connected

between them and with well connected nodes within the

group. The partition with the highest modularity gives the

best partition. The main drawback of this approach is the

complexity of the calculation of the betweenness, the general

algorithm will take O (mn2) for m edges and n nodes, its

cost for huge graphs is prohibitive.
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One of the most commonly used to measure the quality of a

graph partition, according to Fortunato [5] is the modularity Q

proposed by [3]. In general these approaches can find better

partitions when the adjacency matrix of the graph is sparse

[5]. The modularity compares the fraction of the edges within

each cluster with the fraction of edges among clusters, thus,

a higher modularity means that the proportion of the edges

falling into clusters are grater than the edges between them.

However, the direct calculation of the modularity is an O (n2)
operation.

To reduce the calculation time of the modularity, Blondel

et al., [6], have proposed an agglomerative algorithm to find

communities. In the first step each node is assigned to one

community and the initial modularity is calculated. Then, each

node i is removed from its community and moved iteratively

to each community. After each movement the modularity

gain is calculated, and i will be assigned to the community

giving the largest positive gain of Q. If no positive gain is

possible, i remains in its original community. This process

is applied iteratively until no further improvement can be

achieved and no individual move will improve the modularity.

This algorithm is executed in linear time for sparse graphs [6].

Du et al., [7] present an algorithm to detect communities in

large–scale social networks. Their method is based on the enu-

meration of all the maximal cliques, i.e., a complete subgraph

which is not contained in any other complete subgraph. After

all the maximal cliques are enumerated, they generate kernels

associated to those cliques and then, perform the community

detection by assigning nodes to each kernel. After this, they

try to optimize the modularity obtained by moving nodes

accordingly.

Most of the classic algorithms find disjunct partitions.

However, most of the social networks from the real world

may contain actors belonging to more than one community.

For example, Pizzuti [8] presents a method for detecting

overlapped communities. This method uses a genetic algorithm

with a fitness function which minimizes the relation between

the edges within each group and the edges connecting nodes

outside each group.

Lipczak et al., [9] propose a genetic algorithm for detecting

communities. In this case, the individuals are represented as

a string of groups, which is a vector of size n containing

the number of items in each of the n groups. During the

selection and the crossover operations, the genes are selected

according to the potential improvement of the fitness function

they may give. The fitness function, in fact, is composed

of three measures, the normalized cut, proposed in [10], the

modularity, proposed in [3], and the silhouette width, proposed

in [11].

Other clustering methods, such as Markov Clustering, Iter-

ative Conductance Cutting and geometric minimum spanning

tree, are discussed in [2], and some methods for evaluating

communities are presented in [12] and in [13].

The previous methods only consider topological properties

of the Social Network. The closest related work is the one

by Zhou et al. [14], who present a communities detection

approach using structural and attribute similarities. They use

a random walk throughout a predefined set of k clusters, and

tries to maximize the distance between clusters by moving

nodes according to their similarity. First, they create an

augmented graph from the node attributes, then they execute

the random walk over the transition matrix generated by the

augmented graph. This leads to find k groups of semantically

close nodes. To measure the clustering from a structural point

of view, they use the density of edges within the clusters.

III. DEFINING THE POINT OF VIEW OF SOCIAL NETWORKS

Non–topological information can be seen as features associ-

ated to the actors and to the relationships in the network, and

give more elements to analyze an augmented network from

different perspectives.

A. Some Notations

Given an undirected graph G (V,E) representing a social

network, where V, ∣V ∣ = n, is the non-empty set of vertices

representing actors and E, ∣E∣ = m, is the set of edges

representing the relationships among them. Let vi and vj be

two vertices from V , if e (vi, vj) ∈ E then vi and vj are

neighbors. Let Dvi
be the set of neighbors of the node vi.

A partition C = {C1, C2, . . . , Ck} is a partition of the set V

into k non–empty disjoint subsets Ci.

To take actors’ profiles into account, let FV be the set of

features describing the actors of the social network, which can

be represented by a matrix of size n × ∣FV ∣.

B. Representation of Point of View

A point of view of a graph represents a subset of features of

the nodes that can be used to find semantic similarities among

them.

Thus, given an augmented social network S = ⟨G,FV ⟩, let

F ∗V ∈ ℘ (FV ), be a set of features to define the point of view

PoV . For each vertex vi ∈ V we assign a vector ξi → R, of size

∣F ∗V ∣ = f . Then, each vector ξ can be defined as ξi = vi ×F ∗V ,

where vi ∈ V .

Therefore, a point of view is defined as the set of the union

of all instances derived from the set F ∗V :

PoVF ∗
V
=

n

⋃
i=1

ξi (1)

Note that different nodes could have the same instance ξ.

C. Data Entropy

Entropy measures the average Shannon information content

of a set: a highly disordered set has a high entropy. When

it comes to data mining, the entropy of a group is used to

measure how similar are its elements: a group with similar

elements has a low entropy, i.e., is more ordered.

Thus, given a group C of N = ∣C ∣ elements, the entropy

H (C) of the group is given by:

H (C) = −
N−1

∑
i=1

N

∑
j=i+1

sij ln sij + (1 − sij) ln (1 − sij) (2)
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where sij is a similarity measure of elements i and j [15].

Note that lim
x→0

x lnx = 0.

Using the entropy, it is possible to measure the overall

quality of a partition P using:

H = ∑
Ci∈P

H (Ci) (3)

D. Using the Entropy to Measure the Semantic Similarity

Given a node partition C and a PoVF ∗
V

, it is possible to

measure the entropy of the partition HC to minimize the

semantic disorder:

HC =
k

∑
i=1

H (Ci) (4)

In this case, the entropy of a cluster i, H (Ci), is calculated

for the point of view instances of the nodes in the cluster.

Hence, using the equation 2:

H (Ci) = −
∣Ci∣−1

∑
j=1

∣Ci∣

∑
l=j+1

sjl ln sjl + (1 − sjl) ln (1 − sjl) (5)

where sjl is the similarity between the instances ξj and

ξl∀j, l ∈ Ci.

Thus, the entropy of a cluster is minimized when its nodes

are semantically similar. Note that the maximum possible

entropy value, MaxHC , is obtained when all the nodes are

grouped into the same cluster.

IV. CLUSTERING AUGMENTED SOCIAL NETWORKS

The goal of clustering an augmented social network S is

to find partitions of nodes which are both structurally and

semantically close according to some given point of view.

The structural closeness is, in general, given by the proportion

of intra–cluster edges versus the inter–cluster edges. This

closeness can be measured using the modularity Q. On the

other hand, the semantic closeness is given by the similarity

of the instances ξ of the nodes in groups. To measure this

closeness, we use the equation 3.

Thus, our approach maximize the modularity and minimize

the entropy of the partition C taking into account that by

improving one, the other will be diminished.

A. Entropy Minimization

Given a partition C, the entropy optimization is performed

using a Monte-Carlo approach, similar to the one presented in

[16]. The algorithm begins by measuring the initial entropy of

the partition using the equation 3. Then, a random node nr is

removed from a random cluster Ar and inserted into another

random cluster B such that B ∉ DAr
. If the change does

not improve the entropy, the node is returned to its original

community, otherwise is kept. This is repeated until all the

nodes have been tested and no further changes improve the

entropy or a maximum number of iterations is reached.

Algorithm 1 Entropy Optimization Algorithm

Require: C, imax, PoVF ∗
V

1: H0 ←H0

C

2: i← 0

3: while i < imax and More possible changes do

4: i← i + 1
5: A←random cluster from C
6: x←random node ∶ x ∈ A
7: A (x,−)
8: B ←random cluster from C ∖ {DA ∪A}
9: B (x,+)

10: Hi ←Hi
C

11: if Hi ≥Hi−1 then

12: B (x,−)
13: A (x,+)
14: end if

15: end while

16: return CH {A new partition with a reduced entropy}

The algorithm 1 shows how the optimization works. In the

algorithm, the function Cj (x, ⋅), represents either the insertion

’+’ or the removal ’−’ operation.

Note that the algorithm requires a predefined partition to

select and move nodes, so this step will be an intermediate one

in the whole process of communities detection. In next section

the complete communities detection algorithm is presented.

B. Graph Clustering Algorithm

The graph clustering algorithm is based on the modularity

optimization algorithm proposed by Blondel et al., [6]. This is

an agglomerative algorithm which maximizes the modularity

by locally changing the composition of the communities. The

algorithm has two steps: i) first, the modularity optimization,

then ii) a community aggregation to create a graph of com-

munities. These two steps are repeated until the modularity

cannot be improved.

To integrate the semantic aspect of the nodes, we include the

entropy optimization as an intermediate step between i) and

ii). This will move nodes among the clusters found during i) to

minimize semantic disorder. Then, the community aggregation

is performed using the new partition configuration given by the

algorithm 1.

In the algorithm 2 is presented the method used, which

combines the two aspects of the social network. Thus, the

algorithm begins calculating the actual modularity (line 2), as

a reference value. Then, a single modularity optimization step

is performed, creating the initial partition C0 and returning its

modularity Q0 (line 3). Then, in the line 4, a single entropy

optimization step is performed using the actual partition Ci.
This returns a partition CH used to aggregate the communities

(line 7). After the aggregation, another step of the modularity

optimization is performed (line 10). This process is repeated

iteratively until no modularity improvement can be achieved.

According to Blondel et al., [6], the modularity op-

timization algorithm runs in O (n) for sparse networks.
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Algorithm 2 Augmented Graph Clustering Algorithm

Require: ε, imax, PoVF ∗
V

1: i← 0

2: Qactual ←modularityCalc()

3: Qi ←modularityOptimizationStep()

4: CH ←entropyOptimization ( Ci )

5: C0 ← CH
6: while Qactual −Qi > ε and i < imax do

7: communityAggregation( Ci )

8: Qactual ← Qi

9: i← i + 1
10: Ci ←modularityOptimizationStep()

11: Qi ←modularityCalc()

12: end while

13: return C

The calculation of the entropy for the whole data set is

O (∣PoV ∣ × (n2+n
2
− 1)), taking most of the calculation time.

Then, to reduce the calculation time of the entropy, we store

the contribution of each node to the entropy of its community

making only sums and subtractions of it when a node is moved.

This contribution is given by:

δ (vj , i) = ∑
u∈Ci

suvj
ln suvj

+ (1 − suvj) ln (1 − suvj
) (6)

where vj is the j−th node from community i. Using

equation 6 only the difference of entropy is computed when

each node is moved; no need to recalculate the entropy of the

whole partition. Thus, during each movement of nodes δ (vj , i)
will be calculated twice, one for the departing community

and one for the arriving community. The complexity Oδof

the operation is: O (∣PoV ∣ × ni), where ni is the number of

elements inside the community i.

Note that the objectives of each optimization are different,

which makes that the entropy optimization will change the

value of the modularity in each single step, creating a trade–off

between the modularity and the entropy. This means that while

perfect semantic groups produce bad modularity values, good

structural graph partition produces, in general, bad semantic

groups.

V. EXPERIMENTS AND COMPLEXITY

Experiments were performed to measure the quality of the

clustering and to analyze the complexity of the algorithm in

terms of the time execution.

A. Experiments

Some quality test preliminary experiments have been devel-

oped using a graph extracted from the Facebook100 data set

[17]. The graph contains 6386 nodes and 435324 edges, repre-

senting intra–school social links, and has an initial modularity

of −2.8629 × 10−4. Each graph in this data set contains a set

of semantic information for each node:

● Student faculty

● Gender

● Major

● Second major or minor

● House

● Year

● High school

The goal of the experiments is to observe how the partition

configuration can be changed using non–topological informa-

tion and to look what happen with the communities.

For the experimentation we compare the clustering results

of a classic clustering algorithm and our proposed method. The

classic algorithm is the fast unfolding which finds communities

using only the structure of the graph, denoted by CFU , and our

proposed method denoted by CFU+Ent.

Initial Q PoV Feature Initial Entropy

−2.8629 × 10−4 1 Gender 0.2286

2 Major 0.2318

TABLE I
DESCRIPTION OF THE DATA SETS USED IN THE EXPERIMENTATION.

The table I shows the initial configuration of the data set.

For measuring the entropy we use a normalized value instead

of a raw value. This gives an idea of the reduction of the

entropy compared to the maximum value MaxHC . Thus, the

initial entropy is calculated using the partition obtained from

the structural clustering and measuring how similar are the

nodes according to the selected point of view, in this case,

gender, for the first experiment, and major for the secon.

The selected points of view are composed of one feature,

the first one, the gender which may be one of three value: 1 -

male, 2 - female, or 0 if the value is not known. The second

point of view is the major of each student. For this point of

view there are 76 different majors plus a group of unknown

values.

To perform the experiments, for each point of view the

algorithm was executed 30 times. Each execution gives a value

for the modularity and another value for the entropy, then, we

take the average modularity and entropy to compare with the

reference values.

PoV Exp. Average Q Average Entropy

PoV1 CFU 0.4180 (±0) 0.2286 (±0)
CFU+Ent 0.2565 (±0.006065) 0.1381 (±0.0025741)

PoV2 CFU 0.4180 (±0) 0.2318 (±0)
CFU+Ent 0.2440 (±0.004242) 0.1356 (±0.001493)

TABLE II
RESULTS OF THE EXPERIMENTS PERFORMED COMPARING THE RESULT OF

THE CLASSIC ALGORITHMS VERSUS THE PROPOSED METHOD.

The table II shows the results for 30 executions of the

algorithm for each point of view. In both cases, the entropy

value is below the references shown in the table I, which

represents an improvement of the semantic proximity. Note

also that in both cases the modularity is lower than the
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reference value, i.e. modularity of CFU . This is explained

by the fact that changing the “optimal” community structure

will reduce the modularity. For example, as in [18], when the

nodes are perfectly grouped according the point of view, the

modularity has its worst value.

In the partition using a null point of view, i.e., using only

the topological information, there are 18 communities, which

do not take into account any semantic information.

For the first point of view, there are 7 communities, grouped

into more, semantically, homogeneous clusters. Remind that

there are 3 semantic classes (including the unknown values) to

group all the nodes, thus, to have a perfect semantic clustering,

we would need to group all the nodes in three different

clusters, however, since these classes do not represent the

structure of the graph, the obtained modularity may be worse

than the initial one.

For the second point of view there are 7 communities also.

however, these communities are differently configured. Since

the grouping criteria is different, looking into the clusters

through the gender feature, we can see how the distribution

of each gender within the groups are different from the first

point of view. This different configuration will lead to further

analyses regarding some communities interaction patterns and

how they are changed when the grouping condition is changed.

To compare how different are the partitions it is possible to

use the Rand Index [19], which measures the percentage of

agreements between partitions.

Pair Rand Index

PoV∅ − PoVGender 0.4232

PoV∅ − PoVMajor 0.3070

PoVGender − PoVMajor 0.3919

TABLE III
RAND INDEX OF PARTITIONS

The table III shows the percentage of agreements of each

pair of points of view. This means, first, that the partition

configuration is different for each point of view, showing that

using non–topological information will change the result of

the clustering process. The structural partition is closer to the

Gender-oriented partition than the Major-oriented one. Such

conclusion may be useful to conduct sociological studies.

Additionally, the different point of view analysis may reveal

different interaction patterns between communities. For exam-

ple, some actors, influent in a point of view context, may be

less central in another point of view context.

B. Complexity Considerations

One concern about clustering algorithms is the complexity,

specially the execution time. We know from [6] that the

complexity of the fast unfolding algorithm is linear according

to the number of edges. Our algorithm introduces a complexity

layer due to the entropy calculation for the while node set.

By using equation 6 the total entropy do not need to be

recalculated each time a node is moved to another group,

instead, only the entropy contribution is changed. This reduces

the general complexity. However, the entropy of each group

has to be recalculated, which takes some time according to

the number of features in the point of view.

To test the complexity of the algorithm in terms of the

number of features, we have created a point of view of 100

features with random values, and the same graph used in the

previous section. The idea in this case is not to measure the

quality of the clustering but to measure how the number of

features influence the execution time.

Figure 1 shows the impact of the number of features in the

execution time for two similarity measures. Both experiments

were executed in the same machine under the same conditions.
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Fig. 1. Execution time of the algorithm for the same graph and point of
view with different similarity measures.

The experiments were executed in the following way: first,

the execution time for the algorithm and 0 features, i.e., the

point of view null, is calculated; then, the number of features

used is increased by one until all the features are used. After

each increase the algorithm is completely executed.

Note that in both cases the trend is linear over the number

of features. The difference between the graphs is due to

the calculation time of each similarity measure. The simple

matching coefficient simply counts one by one the matches

between two vectors and then divides that count into the

number of values. On the other hand, the cosine distance

calculates the projection of the vectors. These two measures

are linear, however the cosine distance has a bigger constant,

which in the long turn will make the algorithm to take more

time to finish.

VI. CONCLUSIONS AND FUTURE WORK

In the communities detection problem the goal is to find

groups of nodes which are related in some way, wether

structurally, semantically or both. However, most of the current

algorithms have been developed to use only de structural

information to find these communities, or groups, by trying
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to optimize the fraction of edges within a group with respect

the edges between the groups.

The inclusion of semantic information to the communities

detecting problem is challenging because of the nature of the

data: in one hand, a graph structure, and in the other hand,

multidimensional points representing some latent space. Each

one has different measures of proximity and similarity and

they have also different representations.

To use at the same time both types of information we

proposed an entropic based approach, which takes a previously

calculated modularity based partition, i.e., grouping nodes

according to their social links, and reduces the entropy by

moving nodes from one community to another using a Monte–

Carlo approach to aggregate similar nodes according to their

profiles according to a particular PoV. The result is another

partition with less entropy i.e., the communities are more

similar, semantically speaking, but with some sacrifice of

modularity.

Since we try to optimize two quality measures, which

behave oppositely, this approach can be stated as a multi–

objective optimization problem. In this case it is necessary to

tune some values up to have good enough results for both

measures.

The overall complexity of the algorithm is linear on the

number of features used to calculate the entropy, however,

the baseline is given by the complexity of the complexity of

the fast unfolding algorithm, i.e., the complexity if T (FU) +
T (Ent) = O (e)+O (f), where e is the number of edges and

f is the number of features.

As part of the future work, it is necessary to take a deeper

look into what is happening between communities when the

partition configuration is changed to find out how the different

communities interact. This involves not only mathematical

approaches but social ones. Additionally, the development of

a visual tool for aiding the analysis of the partitions changes

it is being developed.
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