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Abstract—Search engines are essential actors for web browsing.
We analyze here the economic competition between search
engines earning money from adword auctions. We develop a two-
level game where at the largest time scale search engines decide
which allocation rule to implement, between revenue-based and
bid-based; and at the lowest time-scale advertisers decide how
to split their advertising budget between the two search engines,
depending on the benefits this will bring to them. The game at the
largest time scale is solved using backward induction, the search
engines anticipating the reactions of advertisers. We describe the
advertisers best strategies and show how to determine, depending
on parameters, an equilibrium on the ranking rule strategy for
search engines; this may explain Yahoo!’s move to switch from
bid-based to revenue-based ranking to follow Google’s strategy.

I. INTRODUCTION

When using current telecommunication networks, and more

specifically the Internet, reaching a desired content is in most

cases obtained through a search engine, unless the user knows

exactly the targeted web address. Those search engines, such

as Google, Yahoo! or Bing, propose a ranked list of web sites

corresponding to the keywords that have been typeset. But,

being commercial entities, they make money by additionally

presenting advertisement links, usually at the top and/or on

the right of the page. The advertisement links are selected

from an auction to which an advertiser can submit a bid if

she wants to be displayed, because she believes the keyword

search may result in a financial transaction when the user sees

the ad. Search engine advertising has become an important

business, the combined revenue of the two main actors in the

area, Yahoo! and Google, counting for more than $11 billion

in 2005 [1], this business being also expected to count for

about 40% of total advertising revenue [2].

There are many ways to define the list of displayed ads

(the allocation rule), and when and how much the advertisers

will pay the search engine (the pricing rule). Typically, there

are K available slots for each keyword search. Advertisers

may pay the search engine each time the ad is displayed

(Pay-Per-Impression model), each time the ad is clicked (Pay-

Per-Click model), or each time the click results in a sell

(Pay-Per-Transaction model). In most if not all cases, the

Pay-Per-Click model is implemented by search engines. The

bids can be ranked, and allocated, either according to the

bids (the so-called bid-based ranking), or according to the

revenue they can generate when Pay-Per-Click is chosen, by

considering the product of the bid and the Click-Through-Rate

(CTR), which is the proportion of time the ad is clicked when

displayed (giving the so-called revenue-based ranking). About

the amount charged to each advertiser, there exist also several

possible rules: first-price auctions directly charge the submitted

bid, while Vickrey-Clarke-Groves (VCG) auctions (see [3],

[4], among others) charge the loss in terms of total (sum

of) utilities of all others actors that the advertiser’s presence

imposes on others. VCG is considered in many economic

contexts since it is known to satisfy relevant properties such as

the incentive for advertisers to submit their true valuation for

the service of being displayed. But the Generalized Second

Price (GSP) auction is actually the scheme considered by

search engines. It consists in charging you the bid value that

would make your ranking value equal to the one just below

you. For bid-based ranking, you pay the bid below you; for

revenue-based ranking, you pay the amount that makes the

revenue generated from you equal to the revenue obtained

from the one below you if she were charged her bid. You

therefore always pay less than your bid. GSP is explained to

be used instead of VCG mechanism because it brings to the

engine a higher revenue [5]. This paragraph briefly explained

how adword auctions work; for more information, the reader

is advised to look at [5], [6], [7], [8].

While there is an extensive literature on the analysis of

sponsored search auctions, investigating the best strategies of

advertisers and search engines, it has to be remarked that there

are surprisingly very few papers dealing with search engines

in competition for advertisers [2], [9], [10], [11]. Though,

the optimization of strategies can hardly be realized without

taking care of that competition. Our goal in this paper is to

study the competition between search engines in economic

competition, as well as the advertisers’ best strategies in this

context. We consider two engines, each one offering a single

commercial slot, and having a fixed (not necessarily equal) part



of the search market. Both engines apply the GSP charging

scheme, as commonly admitted now, but they have to decide

which ranking strategy to implement, between bid-based and

revenue-based. Their decisions depend on the strategy of the

competitor (hence the use of non-cooperative game theory

[12]), but also on the reaction of advertisers who have a fixed

budget per unit of time and need to decide how to split their

advertising budget on the engines. Note that the decisions of

advertisers depend on the reaction of other advertisers and the

ranking strategies of engines. We therefore end up with a two-

level game, solved by backward induction: the game between

engines, although played first, is analyzed by anticipating what

the reactions of advertisers would be.

The existing papers on competitive sponsored search auc-

tions can be described and compared with ours as follows.

The goal in [2] is to determine the best auction rule for

engines offering a single slot and to understand the impact

of ranking policies in a competitive environment, considering

the different possible pairs of ranking policies employed by

the two search engines (bid-based or revenue-based). It is

assumed that advertisers pertain to two classes and submit an

ad only once, i.e., that have to choose between the two engines,

and Nash equilibria in mixed strategies are obtained. Our

model does not consider this last assumption about advertisers

submitting bids only once, but rather considers the more

realistic situation of two advertisers with a fixed budget and

splitting this budget between engines to optimize their interest.

Competition is also considered in [9], where a double auction

with advertisers on one side and slot sellers on the other

is analyzed; but the goal of the model is only to study the

efficiency and truthful-bidding properties when the assumption

of CTR separability (the CTR being the product of a position-

dependent term, independent of advertiser, and an advertiser-

related term, independent of the position) is satisfied or not.

Otherwise, [10] analyzes the competition between two engines

applying VCG auctions, each engine offering a potentially

different number of slots, and having different CTRs. The

advertisers’ game is solved depending on the fact that they

can or cannot submit bids at both engines. Our model is closer

to reality, assuming that GSP is applied, and investigating the

search engines best strategy. We could also cite [11], but the

model does not specifically address sponsored search auctions

and GSP mechanism for instance. Remark that bid-based and

revenue-based rankings have been compared in [13], but in

the simpler case of a monopoly; no game was then involved

in the model.

The paper is organized as follows. Section II presents the

model and its basic assumptions on the search engines and

advertisers, with two search engines proposing a single slot

and two advertisers having a budget that they wish to split

optimally among engines. Section III presents and computes

the key performance measures of the model, the average price

charged and the winning probability, expressed in terms of the

considered advertiser’s valuation. They are computed for both

the cases of bid-based and revenue-based rankings. Section IV

then analyzes the game between two advertisers in competition

for the advertising slots, making use of the previously com-

puted performance measures. On top of that advertisers game,

Section V explains how engines can strategically decide which

allocation rule to implement, between bid-based and revenue-

based, in order to maximize their revenue. Finally, Section VI

concludes by summarizing the main findings of the paper and

presenting directions for future research.

II. MODEL

Before analyzing the two-level game, we present here the

model assumptions about the search engines and advertisers

behavior.

A. Search engines

We assume that we have two search engines (SE), labelled

1 and 2 in competition for advertisers. Each engine proposes a

single advertisement slot. We consider a single keyword, and

fix to λ the average number of searches per unit of time for

that keyword.

We also define as α (with 0 ≤ α ≤ 1) the (fixed) market

share of SE 1, meaning that αλ searches are performed on

SE 1 while (1− α)λ are performed on SE 2. The underlying

assumption is that the search engine selection does not depend

on the ads, but rather on the engine presentation, reputation

and choice of regular (organic) links; this seems reasonnable

to us.

Both search engines are assumed to apply GSP charging

scheme, where the ranking of advertisers can be bid-based or

revenue-based.

B. Advertisers

We assume for the general model presentation that there

are k advertisers in competition for the advertising slots. Each

advertiser is characterized by her budget b, taken from cdf

G(b) and her valuation per click, taken from the cdf F (v).
All budgets and valuations are independent and independent

between advertisers.

The CTR of an advertiser at an SE is assumed to be

separable, as the product of the CTR of the search engine,

q1 and q2 for SE 1 and 2 respectively, and of the CTR ci
of the considered Advertiser i. This is a usual assumption of

most adword auctions models [8].

The goal of Advertiser i, with budget bi and valuation vi,
is to distribute her budget bi among the two search engines.

Since SEs apply GSP mechanism on a single slot (GSP is then

equivalent to VCG), we can expect advertisers to be truthful,

that is to submit a bid equal to her valuation, which will always

result in a benefit. As a consequence, advertisers are better off

using all their budget. We therefore define βi as the proportion

of budget submitted to SE 1, while 1− βi is submitted to SE

2. It is the parameter Advertiser i can play with.

Let wj(vi) denote the probability that i wins on SE j given

that her bid (valuation) is vi. The average gain of Avertiser i
when its link is clicked on engine j, is vi−E[Rj |vi], E[Rj |v]
being the average price paid on SE j given that the advertiser

has won the auction when bidding v, the revenue Rj of SE j



being random, dependent on competitors’ valuations, budgets,

and choices. The rates at which Advertiser i submits her bids

to SE 1 and SE 2 are then respectively

λ
(1)
i = min

(

βibi
q1ciE[R1|vi]w1(vi)

, αλ

)

λ
(2)
i = min

(

(1− βi)bi
q2ciE[R2|vi]w2(vi)

, (1− α)λ

)

.

To better explain the first term in the minimum, it represents

the number of times Advertiser i can bid in order to reach her

budget repartition, in average: the average budget is indeed the

money paid at each click times the probability of a click times

the probability to be displayed. Note that we consider that the

objective so far is not to spend the whole budget but rather to

approach the target budget repartition. In particular, when it is

not possible to spend βibi on SE 1 while the budget constraint

(1−βi)bi is limiting, then the remaining budget is not affected

to SE 2. Nevertheless, when studying the advertisers best βi

such situations will not occur since reducing the βi would

result in a better outcome for advertiser i.
If we define p

(j)
i as the probability that i bids at SE j, we

get, from p
(1)
i = λ

(1)
i /(αλ) and p

(2)
i = λ

(2)
i /((1− α)λ),

p
(1)
i = min

(

βib

αλq1ciE[R1|vi]w1(vi)
, 1

)

(1)

p
(2)
i = min

(

(1− βi)b

(1− α)λq2ciE[R2|vi]w2(vi)
, 1

)

. (2)

Let β = (β1, . . . , βk) the vector/profile of strategies of

advertisers. The utility of i, Ui(β) represents the revenue made

by i per unit of time from the sales due to clicks. We have

Ui(β) = q1ciw1(vi)λ
(1)
i (vi − E[R1|vi])

+q2ciw2(vi)λ
(2)
i (vi − E[R2|vi]). (3)

Remark that, according to Equations (1) and (2), deciding βi

for Advertiser i is equivalent to determining the probability

pi to submit a bid. An important assumption here is that

advertisers know their own bid, their only other knowledge of

other players is assumed to be the distribution of valuations

and budgets and the observation of their bidding probability.

Indeed, we do not consider that advertisers try to deduce

the valuation and budget of competitors from their bidding

probabilities.

We thus have a game between advertisers to determine how

to optimally split their budget. In order to analyze this game,

and afterwards the ranking game between search engines, we

need to compute the average price and winning probability at

an SE, which of course depend on the allocation and pricing

mechanism applied.

III. AVERAGE PRICES AND WINNING PROBABILITIES AT

SEARCH ENGINES

To simplify the notations, we just consider in this section

a single SE, and that the budget of Advertiser i is bi (it will

be replaced by βibi and (1 − βi)bi when dealing with the

competitive case). We also define λi as the rate at which i

will compete, out of the total rate of λ (which will be αλ or

(1−α)λ when split between SEs). The bidding probability of i
is then pi = λi/λ. We compute the average prices and winning

probabilities at search engines when bid-based or revenue-

based rankings are applied.

A. With bid-based ranking

We first assume that bid-based ranking is applied. When fac-

ing no other bidder, the expected price is 0 and the probability

of winning is 1. When facing opponents, the probability w(v)
of winning with bid/valuation v is the probability that all other

participants bid less than v, but considering also all possible

combinations of bidders. Let Vℓ be the random valuation of

Advertiser ℓ. Define also jℓ = 1 if ℓ participates to the auction,

and jℓ = 0 otherwise. We denote by πℓ = pℓjℓ+(1−pℓ)(1−jℓ)
the probability of the bidding action of ℓ. The probability to

win with valuation v is the probability that among all other

bidders (among the k − 1 competitors), their valuation is less

than v:

w(v) =
∑

j1,...,jk−1∈{0,1}

P[∀jℓ = 1, Vℓ < v]

(

k−1
∏

ℓ=1

πℓ

)

=
∑

j1,...,jk−1∈{0,1}

(F (v))(
∑

k−1

l=1
jl)

(

k−1
∏

ℓ=1

πℓ

)

. (4)

That winning probability will be the one a priori expected

by an advertiser with valuation v. Again, we use the assump-

tion that advertisers do not try to use the participation of the

competitors to estimate their valuations.

The expected price the advertiser will have to pay is the

expected value of the largest bid among all other bids given

that they all bid less than v. The density function of bidders

knowing that they bid less than v is h(u) = f(u)/F (v) with

cdf H(u) = F (u)/F (v) for u ≤ v. The density of the largest

bid among the j other bidders is then

j(F (u))j−1f(u)

(F (v))j
. (5)

The expected price E[R|v] is the expected value of the second
largest bid, taking into account the probabilities that each
bidder submits a bid. We end-up with:

E[R|v] =
∑

j1,...,jk−1∈{0,1}

(

k−1
∏

ℓ=1

πℓ

)

∫

u≤v

(
∑k−1

l=1 jl)u(F (u))(
∑k−1

l=1
jl)−1f(u)

(F (v))(
∑k−1

l=1
jl)

du.

We therefore get a system of equations to determine the

wj(vi), E[Rj ] and p
(j)
i , since the p

(j)
i depend on the wj(vi)

and E[Rj ], while the wj(vi) and E[Rj ] themselves depend on

the p
(j)
i .

In the case of symmetric advertisers, assuming that all

advertisers have the same valuation and budget, but are only



aware of the distribution of competitors, we obtain

w(v) =

k−1
∑

ℓ=0

(

k − 1
ℓ

)

(F (v))ℓ(p1)
ℓ(1− p1)

k−1−ℓ

= (F (v)p1 + 1− p1)
k−1

.

The expected price is:

E[R|v] =

k−1
∑

ℓ=0

(

k − 1
ℓ

)

(p1)
ℓ(1− p1)

k−1−ℓ

∫

u≤v

ℓu(F (u))ℓ−1f(u)

(F (v))ℓ
du

=

k−1
∑

ℓ=0

(

k − 1
ℓ

)

(p1)
ℓ(1− p1)

k−1−ℓ

(

v −

∫

u≤v

(

F (u))

F (v))

)ℓ

du

)

.

Along with

p1 = min

(

b1
λqc1E[R|v]w(v)

, 1

)

, (6)

this gives us a set of three equations with three unknowns.

Replacing in (6) E[R|v] and w(v) by their expressions in terms

of p1, we get an equation in p1 that can easily be solved

numerically.
Example 1: Assuming that F is a uniform distribution on

[0, a], the above equation in p1 becomes

p1 = min

(

1,

b1

λqc1v

(

k−1
∑

ℓ=0

(

k − 1
ℓ

)

pℓ1(1− p1)
k−1−ℓ ℓ

ℓ+ 1

)

(

v
a
p1 + 1− p1

)k−1

)

.

When k = 2, if there is a solution in p1 with 0 < p1 < 1, it

is a solution of the polynom of degree 3:

p21λqc1v
1

2

(v

a
p1 + 1− p1

)

= b1.

With λ = 1000, a = 10, b = 40, q = 0.5, c1 = 0.5 and

v = 5, this polynom has a single solution, p1 = 0.27218. On

the other hand, it may happen that there is no solution in (0, 1)
(for instance if λ = 100, a = 10, b = 100, q = 0.5, c1 = 0.5
and v = 5). When it is the case, it means that, necessarily,

p1 = 1 because the value in the minimum is always larger

than 1. Indeed, if there is no p1 such that b
λqc1E[R|v]w(v) < 1,

it is also the case when p1 = 1, leading to this last value

and the corresponding w(v) and E[R|v]. When we have more

than one solution, the advertisers can choose between several

strategies, and will choose the one providing the larger utility.

We have therefore shown that there always exists a solution

in the case k = 2 and a uniform valuation distribution.

This is straightforward to generalize, to give the following

proposition.

Proposition 1: In the symmetric case, there always exists

a solution to the system of equations providing the values of

p1, w(v) and E[R|v].
Proof: The right-hand expression of (6) can be seen to

be continuous in p1 ∈ [0, 1] since E[R|v] is nonnegative and

continuous in p1. Since a solution of the system of equations

is a fixed-point of that expression, the existence of such a

solution is ensured by Brouwer’s fixed point theorem.

Consider now the case of two advertisers only, but such that

the SE imposes a reserve price pr in case there is only one

bidding advertiser. We end up with a system of six equations

with six unknowns (with v1, v2 ≥ pr to avoid degenerate

cases):

p1 = min

(

b1
λqc1E[R1|v1]w(v1)

, 1

)

p2 = min

(

b2
λqc2E[R2|v2]w(v2)

, 1

)

w(v1) = (1− p2) + F (v1)p2

w(v2) = (1− p1) + F (v2)p1

E[R1|v1] = (1− p2) pr

+p2

(

pr
F (pr)

F (v1)
+

∫

pr≤u≤v1

uf(u)

F (v1)
du

)

E[R2|v2] = (1− p1) pr

+p1

(

pr
F (pr)

F (v2)
+

∫

pr≤u≤v2

uf(u)

F (v2)
du

)

.

Here again, the system can be solved numerically, by looking

at the four cases (p1 < 1 and p2 < 1), (p1 = 1 and p2 < 1),

(p1 < 1 and p2 = 1), and (p1 = 1 and p2 = 1).

Example 2: Considering again F uniform over [0, a], we

get

p1 = min

(

b1
λqc1E[R1|v1]w(v1)

, 1

)

p2 = min

(

b2
λqc2E[R2|v2]w(v2)

, 1

)

w(v1) = (1− p2) +
v1
a
p2

w(v2) = (1− p1) +
v2
a
p2

E[R1|v1] = (1− p2) pr + p2

(

(pr)
2

2v1
+

v1
2

)

E[R2|v2] = (1− p1) pr + p1

(

(pr)
2

2v2
+

v2
2

)

.

If p1 < 1 and p2 < 1, we have a system of two equations in
(p1, p2):

p1 =
b1

λqc1
[

(1− p2) pr + p2
(

(pr)2

2v1
+ v1

2

)]

(

1− p2 +
v1
a
p2
)

p2 =
b2

λqc2
[

(1− p1) pr + p1
(

(pr)2

2v2
+ v2

2

)]

(

1− p1 +
v2
a
p1
)

,

giving an equation in p1 which can be solved numerically.

The cases (p1 = 1 and p2 < 1), (p1 < 1 and p2 = 1), and

(p1 = 1 and p2 = 1) can be processed similarly. For instance,



if a = 20, λ = 100, q = 0.5, b1 = 10, c1 = 0.5, b2 = 40,

c2 = 0.4, v1 = 8, v2 = 5 and pr = 0.5, no solution exists

with 0 < p1, p2 < 1 or p1 = 1, p2 < 1 or p1 = p2 = 1. But

we get a single solution p2 = 1 and p1 = 0.2490272374.

B. With revenue-based ranking

We assume that all the cℓ are known by competitors,

deduced from observations. If Vℓ denotes again the random

valuation of ℓ, following the same idea than in (4), an

advertiser with valuation v and CTR qc will win an auction

in front of k− 1 competitors if her product qcv is larger than

the qcℓVℓ of each other bidding advertiser ℓ. This occurs with

probability

w(v) =
∑

j1,...,jk−1∈{0,1}

P[∀jℓ = 1, cℓVℓ < cv]

(

k−1
∏

ℓ=1

πℓ

)

=
∑

j1,...,jk−1∈{0,1}

k−1
∏

ℓ=1

(

F

(

v
c

cℓ

))jℓ

πℓ. (7)

Recall that for an opponent ℓ with CTR qcℓ, the cumulative

distribution function (cdf) of the revenue is P[qcℓV ≤ x] =
F (x/(qcℓ)). To determine the expected price given that the

considered advertiser with valuation v and CTR qc wins,

we need the density of the highest bid among opponents,

conditionnally to providing a product CTR times valuations

less than cqv. The revenues of competitors are then in [0, vqc].
The conditional cdf for ℓ is

P[qcℓV ≤ x, qcℓV ≤ qcv]

P[qcℓV ≤ qcv]
=

F (min(x/(qcℓ), vc/cℓ))

F (vc/cℓ)
,

from which we can then deduce the average price per click
(dividing the revenue by the CTR):

E[R|v] =
1

cq

∑

j1,...,jk−1∈{0,1}|

(

k−1
∏

ℓ=1

πℓ

)

∫

x≤vqc

∑

ℓ:jℓ=1

x
1

qcℓ

k−1
∏

l=1;l 6=ℓ

(F (x/(qcl)))
jlf(x/(qcℓ))

k−1
∏

ℓ=1

(

F

(

v
c

cℓ

))jℓ
dx.

Remark that in the case of symmetric advertisers (with the

same CTR c), the revenue-based ranking becomes exactly the

bid-based ranking, and the results of the previous subsection

follow.

In the case of two advertisers only, assuming here too that

the SE imposes a reserve revenue rr in case there is only

one bidding advertiser or the bid of the opponent leads to

less average revenue than rr, we end up with a system of six

equations with six unknowns:

p1 = min

(

b1
λqc1E[R1|v1]w(v1)

, 1

)

p2 = min

(

b2
λqc2E[R2|v2]w(v2)

, 1

)

w(v1) = (1− p2) + F (v1c1/c2)p2

w(v2) = (1− p1) + F (v2c2/c1)p1

qc1E[R1|v1] = (1− p2) rr + p2

(

rr
F (rr/(qc2))

F (v1c1/c2)

+

∫

rr≤x≤v1qc1

(1/(qc2))xf(x/(qc2))

F (v1c1/c2)
dx

)

qc2E[R2|v2] = (1− p1) rr + p1

(

rr
F (rr/(qc1))

F (v2c2/c1)

+

∫

rr≤x≤v2qc2

(1/(qc1))xf(x/(qc1))

F (v2c2/c1)
dx

)

.

which can be solved numerically, similarly to the bid-based

case in the previous subsection.
Example 3: Assume that F is the cdf of a valuation uni-

formly distributed over [0, a]. The last two equations of the

above system become

qc1E[R1|v1] = (1− p2) rr + p2

(

r2r
2qv1c1

+
qv1c1
2

)

qc2E[R2|v2] = (1− p1) rr + p1

(

r2r
2qv2c2

+
qv2c2
2

)

.

This again expresses p2 in terms of p1 (and reciprocally p1
in terms of p2), which can be solved numerically. For instance,

with λ = 100, a = 20, q = 0.5, b1 = 10, c1 = 0.5, b2 = 40,

c2 = 0.4, v1 = 8, v2 = 5 and rr = 0.125, taking care of

the four cases (p1 < 1 and p2 < 1), (p1 = 1 and p2 < 1),

(p1 < 1 and p2 = 1), and (p1 = 1 and p2 = 1), we get a

single solution,

p1 = 0.1992217899 and p2 = 1.

IV. GAME BETWEEN ADVERTISERS

The bidding and winning probabilities, and expected rev-

enues being computed as described above, the advertisers have

to decide which proportion of their budget they will allocate

to a given SE.
We consider in this section two SEs and two advertisers.

Remark that the winning probabilities and revenues of ad-

vertiser i at each SE depend not only on her strategy (the

proportion βi allocated to SE 1 and 1 − βi allocated to SE

2) but also on the strategy of the competitor. The natural

modeling framework is therefore that of non-cooperative game

theory, and the equilibrium notion that of a Nash equilibrium.

We recall that a Nash equilibrium is a profile of proportion

strategies (β∗
1 , β

∗
2) such that no advertiser can increase her

revenue by unilaterally changing her strategy, i.e., a point

(β∗
1 , β

∗
2) such that ∀β1, β2 ∈ [0, 1],

U1(β
∗
1 , β

∗
2) ≥ U1(β1, β

∗
2) and U2(β

∗
1 , β

∗
2) ≥ U2(β

∗
1 , β2).
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Figure 1. Best response curves when bid-based pricing is implemented at
both engines.

To determine the Nash equilibria (if any) of the game in

practice, we define the best response of each advertiser as

a function of the strategy of its opponent. Those best response

functions are

BR1(β2) = arg max
β∈[0,1]

U1(β, β2) and

BR2(β1) = arg max
β∈[0,1]

U2(β1, β).

A Nash equilibrium is simply a point (β∗
1 , β

∗
2) for which

BR1(β
∗
2) = β∗

1 and BR2(β
∗
1) = β∗

2 . Graphically, if we draw

the two best response curves on the same figure, the set of

Nash equilibria is then the (possibly empty) set of intersection

points of those curves.

As an illustration, Figure 1 displays the best response

curves when both SEs implement bid-based pricing and with

parameters a = 20 (still choosing a uniform distribution for

valuations), α = 0.6, λ = 100, q1 = 0.5, q2 = 0.6 (hence a

different CTR at the SEs), b1 = 5, c1 = 0.5, b2 = 20, c2 = 0.4,

v1 = 10, v2 = 9 and pr = 0.1 at both SEs. It can be seen

that for each fixed β1, there is actually an interval for the

best response of Advertiser 2, and that interval is of constant

size, with bounds increasing linearly with β1. This gives the

domain in blue. For the best response of Advertiser 1 in terms

of β2, we obtain the red curve. The only values when the blue

domain and the red curve intersect are {0.775}× [0.39, 0.63],
giving the set of Nash equilibria.

To better understand what happens, we draw in Figures 2

and 3 for fixed but arbitrary values βi of the opponent i
(respectively β2 = 0.95 and β1 = 0.21) the revenues of

advertisers in terms of their strategy. The maximum total

revenue will give the best response of the advertiser. We can

observe on Figure 2 that for β2 = 0.95 there is a (single)

maximum at β1 ≈ 0.175, which is in accordance with the

red best-response curve of Figure 1. Figure 3 shows that the

maximum revenue of Advertiser 2 is obtained for an interval,

again in accordance with the (blue) best-response domain of

Figure 1. The constant value of revenues is actually due to the

fact that the probability of bidding is then maximal, equal to
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Figure 2. Revenues of Advertiser 1 in terms of β1.
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Figure 3. Revenues of Advertiser 2 in terms of β2.

1, and therefore independent of the submitted budget; in other

words, the budget is not fully spent. In order to illustrate that,

we display the winning probabilities of advertisers in terms

of the budget proportion allocated to SE 1, when the βi of

the competitor is fixed to the same value than in Figures 2

and 3. Figure 4 draws the winning probabilities in terms of

β1 when β2 = 0.95. There is no interval where p1 and p2 are

constant at the same SE, resulting in no constant revenue.

On the other hand, this is not true anymore in Figure 5

where bidding probabilities are expressed in terms of β2 when

β1 = 0.21. Remark also that the intervals correspond with

those of constant revenues in Figure 3.

Similarly to the case where both SEs implement bid-based

ranking (noted B-B case), we can investigate the advertisers’

behavior when all other combinations are adopted:

• bid-based for SE 1 and revenue-based for SE 2 (noted

B-R case),

• revenue-based for SE 1 and bid-based for SE 2 (noted

R-B case),

• revenue-based for both SEs (noted R-R case).

Figures 6, 7 and 8 display the best-response curves for those

three cases. When revenue-based ranking is implemented,

the reserve revenue rr = 0.025 is used, which corresponds
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Figure 4. Bidding probabilities in terms of β1 (with β2 = 0.95).
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Figure 5. Bidding probabilities in terms of β2 (with β1 = 0.21).

approximately to the quantity qcpr when bid-based ranking is

used.

As can be checked on the figures, we end up with the

following sets of Nash equilibria:

• For the B-B case, all the profiles (β1, β2) ∈ {0.775} ×
[0.39, 0.63];

• for the B-R case, it is {0} × [0.39, 0.695];
• for the R-B case, {0.97} × [0.34, 0.63];
• for the R-R case, {0} × [0.34, 0.695].

It can be noted that, with our set of parameters, when SE 2

implements revenue-based ranking, Advertiser 1’s strategy at

a Nash equilibrium is to put all her budget on SE 2. Remark

also that even if there are multiple equilibria, the revenues

of advertisers are unique. Indeed, those equilibria correspond

to the same bidding strategies, where advertiser 2 bids with

probability 1 on both SEs (every budget repartition such that

advertiser 2 cannot exceed the pre-affected budget on any SE

leads to that same bidding behavior).

V. WHICH MECHANISM TO IMPLEMENT AT THE SE LEVEL?

The behavior of advertisers being known for all com-

binations of ranking strategies, the SEs can wonder what

strategy to implement beforehand, anticipating the advertisers’
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Figure 6. Best response curves when bid-based pricing is implemented at
SE 1 and revenue-based at SE 2.
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Figure 7. Best response curves when bid-based pricing is implemented at
SE 2 and revenue-based at SE 1.
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Figure 8. Best response curves when revenue-based pricing is implemented
at both engines.



decisions. SE 1 and 2 seek to maximize their revenues from

advertisement, being respectively

Rev1 = αλp1q1c1E[R1|v1]w1(v1) + αλp2q1c2E[R2|v2]w2(v2)

Rev2 = (1− α)λp̃1q2c1E[R̃1|v1]w̃1(v1)

+(1− α)λp̃2q2c2E[R̃2|v2]w̃2(v2),

where the tilde sign distinguishes values specific to SE 2 (e.g.,

p1 is the bidding probability of provider 1 at SE 1 while p̃1
denotes her bidding probability at SE 2).

Here again, we have a non-cooperative game, and the

equilibrium situation is that of Nash equilibrium. It is here a

revenue profile (R1, R2) such that no engine can unilaterally

increase her revenue. The SE revenue values are provided in

Table I, described here in the case of the numerical values

obtained in Section IV, but it can be derived similarly for

other values.

Table I
GAME ON RANKING STRATEGIES AMONG SES. EACH ELEMENT GIVES

(REV1, REV2) IN TERMS OF THE RULES USED BY SE 1 (LINE) AND SE2
(COLUMN)

B R
B (10.15, 3.62) (1.20, 11.06)
R (11.32, 1.32) (1.50, 11.06)

One can note that the best strategy for SE 2 is to always play

the revenue-based strategy. Actually, it can be readily checked

that the combination of strategies R-R is a Nash equilibrium.

On the other hand, we have found other sets of parameters such

that B-R is an equilibrium. This kind of game has therefore

to be closely looked at by search engines.

VI. CONCLUSIONS

We have defined a model describing two search engines

in competition for advertisers in adword auctions. We have

derived, in the case where each engine proposes a single

advertisement slot and advertisers have a budget per unit

of time that they want to optimally split among engines,

how advertisers should behave depending on the ranking

strategies of engines. On top of this advertisers’ game, we

have illustrated how engines can (competitively) play on the

ranking strategy.

As directions for future research, we would like to extend

our study to the situation where SEs propose more than one

slot. We would also like to study more specifically the case

of Google against Yahoo!, the two main engines, to better

understand Yahoo!’s move to follow Google with revenue-

based ranking. This requires to carefully compute the system

parameters and distributions.
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