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Abstract. This paper is a short summary of our recent work on the
medians and means of probability measures in Riemannian manifolds.
Firstly, the existence and uniqueness results of local medians are given.
In order to compute medians in practical cases, we propose a subgradient
algorithm and prove its convergence. After that, Fréchet medians are con-
sidered. We prove their statistical consistency and give some quantitative
estimations of their robustness with the aid of upper curvature bounds.
We also show that, in compact Riemannian manifolds, the Fréchet medi-
ans of generic data points are always unique. Stochastic and deterministic
algorithms are proposed for computing Riemannian p-means. The rate
of convergence and error estimates of these algorithms are also obtained.
Finally, we apply the medians and the Riemannian geometry of Toeplitz
covariance matrices to radar target detection.

1 Introduction

It has been widely accepted that the history of median begins from the following
question raised by P. Fermat in 1629: given a triangle in the plan, find a point
such that the sum of its distances to the three vertices of the triangle is minimum.
It is well known that the answer to this question is: if each angle of the triangle
is smaller than 2π/3, then the minimum point is such that the three segments
joining it and the vertices of the triangle form three angles equal to 2π/3; in the
opposite case, the minimum point is the vertex whose angle is no less than 2π/3.
This point is called the median or the Fermat point of the triangle.

The notion of median also appears in statistics since a long time ago. In 1774,
when P. S. Laplace tried to find an appropriate notion of the middle point for a
group of observation values, he introduced “the middle of probability”, the point
that minimizes the sum of its absolute differences to data points, this is exactly
the one dimensional median used by us nowadays.

A sufficiently general notion of median in metric spaces was proposed in 1948
by M. Fréchet in his famous article [23], where he defined a p-mean of a random
variable X to be a point which minimizes the expectation of its distance at the
power p to X . This flexible definition allows us to define various typical values,



among which there are two important cases: p = 1 and p = 2, corresponding to
the notions of median and mean, respectively.

Apparently, the median and mean are two notions of centrality for data
points. As a result, one may wonder that which one is more advantageous?
Statistically speaking, the answer to this question depends on the distribution
involved. For example, the mean has obvious advantage over the median when
normal distributions are used. On the contrary, as far as Cauchy distributions are
concerned, the empirical mean has the same accuracy as one single observation,
so that it would be better to use the median instead of the mean in this situation.
Perhaps the most significant advantage of the median over the mean is that the
former is robust but the latter is not, that is to say, the median is much less
sensitive to outliers than the mean. Roughly speaking, in order to move the
median of a group of data points to arbitrarily far, at least a half of data points
should be moved. Oppositely, in order to move the mean of a group of data
points to arbitrarily far, it suffices to move one data point. So that medians are
in some sense more prudent than means, as argued by M. Fréchet. The robustness
property makes the median an important estimator in situations when there are
lots of noise and disturbing factors.

The first formal definition of means for probability measures on Riemannian
manifolds was made by H. Karcher in [24]. To introduce Karcher’s result con-
cerning means, consider a Riemannian manifold M with Riemannian distance d
and

B(a, ρ) = {x ∈ M : d(x, a) < ρ}

is a geodesic ball in M centered at a with a finite radius ρ. Let ∆ be an upper
bound of sectional curvatures in B̄(a, ρ) and inj be the injectivity radius of
B̄(a, ρ). Under the following condition:

ρ < min
{ π

4
√
∆

,
inj

2

}

, (1)

where if ∆ ≤ 0, then π/(4
√
∆) is interpreted as +∞, Karcher showed that, with

the aid of estimations of Jacobi fields, the local energy functional

Fµ : B̄(a, ρ) −→ R+, x 7−→
∫

M

d2(x, p)µ(dp) (2)

is strictly convex, thus it has a unique minimizer b(µ), which he called the
Riemannian center of mass of the probability measure µ. Moreover, b(µ) is also
the unique solution of the following equation:

∫

M

exp−1
x p µ(dp) = 0x, x ∈ B̄(a, ρ). (3)

From then on, local means of probability measures on Riemannian manifolds
are also called Karcher means, meanwhile, global means are often called Fréchet
means. A rather general result concerning the uniqueness of local means was



proved by W. S. Kendall in [25]. As a particular case of Kendall’s result, the
condition

ρ <
1

2
min

{ π√
∆

, inj
}

(4)

is sufficient to ensure the uniqueness of the Kacher means of µ.
Some generalizations of Karcher mean are given by many authors. For in-

stance, M. Emery and G. Mokobodzki defined in [21] the exponential barycenters
and convex barycenters for measures on affine manifolds. They also showed that
a point x is a convex barycenter of a probability µ if and only if there exists
a continuous martingale starting from x with terminal law µ. The uniqueness
of exponential barycenters are generalized by M. Arnaudon and X. M. Li in [3]
to probability measures on convex affine manifolds with semilocal convex ge-
ometry. Moreover, the behavior of exponential barycenters when measures are
pushed by stochastic flows is also considered in [3]. In order to study harmonic
maps between Riemannian manifolds with probabilistic methods, J. Picard also
gave a generalized notion of barycenters in [27]. As we noted before, Karcher
means are only local minimizers of the energy functional fµ in (2), but it is
easily seen that fµ can be defined not only on the closed ball B̄(a, ρ) but also
on the whole manifold M as long as the second moment of µ is finite. This
leads to the global minimizers of the second moment function of µ, which is
just the original definition of means made by Fréchet. Global minimizers are
more useful in statistics than local ones, so that it is necessary to know whether
or under which conditions the Karcher mean of µ is in fact the Fréchet mean.
For the case when µ is a discrete measure supported by finitely many points in
the closed upper hemisphere, S. R. Buss and J. P. Fillmore showed in [17] that
if the support of µ is not totally contained in the equator then µ has a unique
Karcher mean which lies in the open hemisphere and equals to the Fréchet mean.
Inspired by the methods of Buss and Fillmore, B. Afsari showed in [1] that if
the upper curvature bound ∆ and the injectivity radius inj in (4) is replaced by
the ones of the larger ball B(a, 2ρ), then all the Fréchet p-means of µ lie inside
B(a, ρ). Particularly, the Karcher mean coincides with the Fréchet mean. The
existence and uniqueness of p-means in Finsler geometry are recently proved by
M. Arnaudon and F. Nielsen in [6]. They also showed that Finslerian p-means
are limiting points of continuous gradient flows and developed algorithms for
computing p-means in Finsler geometry.

Medians of discrete sample points on the sphere are studied by economists
and operational research experts in the 1970s and 1980s, but they used the name
“location problems on a sphere”. For data points lying in a spherical disc of radius
smaller than π/4, Drezner and Wesolowsky showed in [19] that the cost function
is unimodal in that disc and the Fréchet median is unique if the data points are
not contained in a single great circle. It is also shown by Z. Drezner in [20] that
if all the sample points are contained in a great circle, then one of the sample
points will be a Fréchet median. Perhaps the first work about Fréchet medians
on Riemannian manifolds is the paper [26] by R. Noda and his coauthors. They
proved the uniqueness, characterizations and position estimations of Fréchet
medians for discrete sample points lying in a Cartan-Hadamard manifold. In



order to do robust statistics for data living in a Riemannian manifold P. T.
Fletcher and his coauthors defined in [22] the local medians for discrete sample
points and showed their existence and uniqueness.

In this paper, we present our results on medians and means of probability
measures in Riemannian manifolds. Above all, the motivation of our work: radar
target detection is introduced in section 2. After that, in section 3 we define
local medians for probability measures in Riemannian manifolds and consider
the problems of uniqueness and approximation. Under the assumption that the
support of the probability measure is contained in a convex ball, we give some
results on the characterization, the position estimation and the uniqueness of
medians. Then we propose a subgradient algorithm to estimate medians as well
as giving its convergence result without condition of the sign of curvatures. Our
algorithm improves the one proposed in [22] which is shown to be convergent only
if the manifold is nonnegatively curved. Finally, the problem of error estimation
and rate of convergence are also considered.

The aim of section 4 is to give some basic properties of Fréchet medians of
probability measures in Riemannian maniolds. Firstly, we give the consistency
result of Fréchet medians in proper metric spaces. Particularly, if a probability
measure has only one Fréchet median, then any sequence of empirical Fréchet
medians will converge almost surely to it. After that, we study the robustness
of Fréchet medians in Riemannian manifolds. It is well known that in Euclidean
spaces, if a group of data points has more than a half concentrated in a bounded
region, then its Fréchet median cannot be drown arbitrarily far when the other
points move. A generalization and refinement of this result for data points in
Riemannian manifolds is given in Theorem 7. This theorem also generalizes
a result in [1] which states that if the probability measure is supported in a
strongly convex ball, then all its Fréchet medians lie in that ball. At the end
of this section, the uniqueness question of Fréchet sample medians is considered
in the context of compact Riemannian manifolds. It is shown that, apart from
several events of probability zero, the Fréchet sample medians are unique if the
sample vector has a density with respect to the canonical Lebesgue measure of
the product manifold. In other words, the Fréchet medians of generic data points
are always unique.

Section 5 is devoted to presenting algorithms for computing Fréchet p-means
in order to meet practical needs. Theorem 10 gives stochastic algorithms which
converge almost surely to p-means in manifolds, which are easier to implement
than gradient descent algorithm since computing the gradient of the function
to minimize is not needed. The idea is at each step to go in the direction of a
point of the support of µ. The point is chosen at random according to µ and
the size of the step is a well chosen function of the distance to the point, p
and the number of the step. The speed of convergence is given by Theorem 11,
which says that the renormalized inhomogeneous Markov chain of Theorem 10
converges in law to an inhomogeneous diffusion process. We give the explicit
expression of this process, as well as its local characteristic. After that, the
performance of the stochastic algorithms are illustrated by simulations. Finally,



we show that the p-mean of µ can also be computed by the method of gradient
descent. The questions concerning the choice of stepsizes and error estimates of
this deterministic method are also considered. We note that, for the case when
p = +∞, M. Arnaudon and F. Nielsen developed in [5] an efficient algorithm to
compute the circum-center e∞ of probability measures in Riemannian manifolds.

In section 6, we consider the manifold of n× n Toeplitz covariance matrices
parameterized by the reflection coefficients which are derived from Levinson’s
recursion of autoregressive models. The explicit expression of the reparametriza-
tion and its inverse are obtained. With the Riemannian metric given by the
Hessian of a Kähler potential, we show that the manifold is in fact a Cartan-
Hadamard manifold with lower sectional curvature bound −4. After that, we
compute the geodesics and use the subgradient algorithm introduced in section
3 to find the median of Toeplitz covariance matrices. Finally, we give some simu-
lated examples to illustrate the application of the median method to radar target
detection.

2 Motivation: radar target detection

Suggested by J. C. Maxwell’s seminal work on electromagnetism, H. Hertz car-
ried out an experiment in 1886 which validated that radio waves could be re-
flected by metallic objects. This provided C. Hüelsmeyer the theoretical foun-
dation of his famous patent on “telemobiloscope” in 1904. He showed publicly
in Germany and Netherlands that his device was able to detect remote metal-
lic objects such as ships, even in dense fog or darkness, so that collisions could
be avoided. Hüelsmeyer’s “telemobiloscope” is recognized as the primogenitor
of modern radar even though it could only detect the direction of an object,
neither its distance nor its speed. This is because the basic idea of radar was
already born: send radio waves in a predetermined direction and then receive
the possible echoes reflected by a target. In order to know the distance and the
radial speed of the target, it suffices to send successively two radio waves. In
fact, it is easily seen that the distance d of the target can be computed by the
formula

d =
c∆t

2
,

where c is the speed of light and ∆t is the time interval between every emission
and reception in the direction under test. Moreover, the radial speed v of the
target can be deduced by the Doppler effect which states that the frequency of
a wave is changed for an observer moving relatively to the source of the wave.
More precisely,

v =
λ∆ϕ

4π∆t
,

where λ and ∆ϕ are the wavelength and the skewing of the two emitted radio
waves, respectively. As a result, the direction, the distance and the speed of the
target can all be determined.



For simplicity, from now on we only consider a fixed direction in which a radar
sends radio waves. Since the range of emitted waves are finite, we can divide this
direction into some intervals each of which represents a radar cell under test. The
radar sends each time a rafale of radio waves in this direction and then receive
the returning echoes. For each echo we measure its amplitude r and phase ϕ,
so that it can be represented by a complex number z = reiϕ. As a result, the
observation value of each radar cell is a complex vector Z = (z1, . . . , zN ), where
N is the number of waves emitted in each rafale.

The aim of target detection is to know whether there is a target at the lo-
cation of some radar cell in this direction. Intuitively speaking, a target is an
object whose behavior on reflectivity or on speed is very different from its envi-
ronment. The classical methods for target detection is to compute the difference
between the discrete Fourier transforms of the radar observation values of the
cell under test and that of its ambient cells. The bigger this difference is, the
more likely a target appears at the location of the cell under test. However,
the performance of these classical methods based on Doppler filtering using dis-
crete Fourier transforms together with the Constant False Alarm Rate (CFAR)
is not very satisfactory due to their low resolutions issues in perturbed radar
environment or with smaller bunch of pulses.

In order to overcome these drawbacks, a lot of mathematical models for
spectra estimation were introduced, among which the method based on autore-
gressive models proposed by F. Barbaresco in [7] is proved to be very preferable.
We shall introduce this method in Chapter 6 of this dissertation. The main dif-
ference between this new method and the classical ones is that, instead of using
directly the radar observation value Z of each cell, we regard it as a realiza-
tion of a centered stationary Gaussian process and identify it to its covariance
matrix R = E[ZZ∗]. Thus the new observation value for each radar cell is a
covariance matrix which is also Toeplitz due to the stationarity of the process.
As a result, the principle for target detection becomes to find the cells where the
covariance matrix differs greatly from the average matrix of its neighborhood.
Once such cells are determined we can conclude that there are targets in these
locations. In order to carry out this new method, there are two important things
which should be considered seriously. One is to define a good distance between
two Toeplitz covariance matrices. The other is to give a reasonable definition of
the average of covariance matrices, which should be robust to outliers so as to
be adapted to perturbed radar environment, and develop an efficient method to
compute it in practical cases. These works will be done in the following by study-
ing the Riemannian geometry of Toeplitz covariance matrices and the medians
of probability measures in Riemannian manifolds.

3 Riemannian median and its estimation

In this section, we define local medians of a probability measure on a Riemannian
manifold, give their characterization and a natural condition to ensure their
uniqueness. In order to compute medians in practical cases, we also propose a



subgradient algorithm and show its convergence. The mathematical details of
this section can be found in [31].

In more detail, let M be a complete Riemannian manifold with Riemannian
metric 〈 · , · 〉 and Riemannian distance d. We fix an open geodesic ball

B(a, ρ) = {x ∈ M : d(x, a) < ρ}

in M centered at a with a finite radius ρ. Let δ and ∆ denote respectively a
lower and an upper bound of sectional curvatures K in B̄(a, ρ). The injectivity
radius of B̄(a, ρ) is denoted by inj (B̄(a, ρ)). Furthermore, we assume that the
radius of the ball verifies

ρ < min
{ π

4
√
∆

,
inj (B̄(a, ρ))

2

}

, (5)

where if ∆ ≤ 0, then π/(4
√
∆) is interpreted as +∞.

We consider a probability measure µ on M whose support is contained in
the open ball B(a, ρ) and define a function

f : B̄(a, ρ) −→ R+ , x 7−→
∫

M

d(x, p)µ(dp).

This function is 1-Lipschitz, hence continuous on the compact set B̄(a, ρ).
The convexity of the distance function on B̄(a, ρ) yields that f is also convex.
Hence we don’t need to distinguish its local minima from its global ones. Now
we can give the following definition:

Definition 1. A minimum point of f is called a median of µ. The set of all the
medians of µ will be denoted by Mµ. The minimal value of f will be denoted by
f∗.

It is easily seen that Mµ is compact and convex. Moreover, by computing
the right derivative of f we can prove the following characterization of Mµ.

Theorem 1. The set Mµ is characterized by

Mµ =
{

x ∈ B̄(a, ρ) : |H(x)| ≤ µ{x}
}

,

where for x ∈ B̄(a, ρ),

H(x) :=

∫

M\{x}

− exp−1
x p

d(x, p)
µ(dp),

is a tangent vector at x satisfying |H(x)| ≤ 1.

Observing that every geodesic triangle in B̄(a, ρ) has at most one obtuse
angle, we can prove the following result which gives a position estimation for the
medians of µ.



Proposition 1. Mµ is contained in the smallest closed convex subset of B(a, ρ)
containing the support of µ.

In Euclidean case, it is well known that if the sample points are not collinear,
then their medians are unique. Hence we get a natural condition of µ to ensure
the uniqueness for medians in Riemannian case:

∗ The support of µ is not totally contained in any geodesic. This means
that for every geodesic γ: [ 0, 1 ] → B̄(a, ρ), we have µ(γ[ 0, 1 ]) < 1.

This condition implies that f is strictly convex along every geodesic in
B̄(a, ρ), so that it has one and only one minimizer, as stated by the theorem
below.

Theorem 2. If condition ∗ holds, then µ has a unique median.

With further analysis, we can show a stronger quantitative version of The-
orem 2, which is crucial in the error estimations of the subgradient algorithm
as well as in the convergence proof of the stochastic algorithm for computing
medians in section 5.

Theorem 3. If condition ∗ holds, then there exits a constant τ > 0 such that
for every x ∈ B̄(a, ρ) one has

f(x) ≥ f∗ + τd2(x,m),

where m is the unique median of µ.

The main results of approximating medians of µ by subgradient method is
summarized in the following theorem. The idea stems from the basic observation
that H(x) is a subgradient of f at x for every x ∈ B̄(a, ρ).

Theorem 4. Let (tk)k be a sequence of real numbers such that

tk > 0, lim
k→∞

tk = 0 and

∞
∑

k=0

tk = +∞.

Define a sequence (xk)k by x0 ∈ B̄(a, ρ) and for k ≥ 0,

xk+1 =







xk, if H(xk) = 0;

expxk

(

− tk
H(xk)

|H(xk)|

)

, if H(xk) 6= 0.

Then there exists some constant T > 0 such that if we choose tk ≤ T for every
k ≥ 0, then the sequence (xk)k is contained in B̄(a, ρ) and verifies

lim
k→∞

d(xk,Mµ) = 0 and lim
k→∞

f(xk) = f∗.



Moreover, if the sequence (tk)k also verifies

∞
∑

k=0

t2k < +∞,

then there exists some m ∈ Mµ such that xk −→ m.

Remark 1. We can choose the constant T in Theorem 4 to be

T =
ρ− σ

C(ρ, δ)F (ρ,∆) + 1
,

where σ = sup{d(p, a) : p ∈ suppµ},

F (ρ,∆) =

{

1, if ∆ ≥ 0;

cosh(2ρ
√
−∆), if ∆ < 0,

and

C(ρ, δ) =

{

1, if δ ≥ 0;

2ρ
√
−δ coth(2ρ

√
−δ), if δ < 0.

The proposition below gives the error estimation of the algorithm in Theorem
4.

Proposition 2. Let condition ∗ hold and the stepsizes (tk)k in Theorem 4 sat-
isfy

lim
k→∞

tk = 0 and

∞
∑

k=0

tk = +∞.

Then there exists N ∈ N, such that for every k ≥ N ,

d2(xk,m) ≤ bk,

where m is the unique median of µ and the sequence (bk)k≥N is defined by

bN = (ρ+ σ)2 and bk+1 = (1− 2τtk)bk + C(ρ, δ)t2k , k ≥ N,

which converges to 0 when k → ∞. More explicitly, for every k ≥ N ,

bk+1 = (ρ+ σ)2
k
∏

i=N

(1− 2τti) + C(ρ, δ)
(

k
∑

j=N+1

t2j−1

k
∏

i=j

(1− 2τti) + t2k
)

.

4 Some properties of Fréchet medians in Riemannian

manifolds

This section is devoted to some basic results about Fréchet medians, or equiv-
alently, global medians. We show the consistency of Fréchet medians in proper
metric spaces, give a quantitative estimation for the robustness of Fréchet me-
dians in Riemannian manifolds and show the almost sure uniqueness of Fréchet
sample medians in compact Riemannian manifolds. We refer to [32] for more
details of this section.



4.1 Consistency of Fréchet medians in metric spaces

In this subsection, we work in a proper metric space (M,d) (recall that a metric
space is proper if and only if every bounded and closed subset is compact). Let
P1(M) denote the set of all the probability measures µ on M verifying

∫

M

d(x0, p)µ(dp) < ∞, for some x0 ∈ M.

For every µ ∈ P1(M) we can define a function

fµ : M −→ R+ , x 7−→
∫

M

d(x, p)µ(dp).

This function is 1-Lipschitz hence continuous onM . SinceM is proper, fµ attains
its minimum (see [28, p. 42]), so we can give the following definition:

Definition 2. Let µ be a probability measure in P1(M), then a global minimum
point of fµ is called a Fréchet median of µ. The set of all the Fréchet medians
of µ is denoted by Qµ. Let f

∗
µ denote the global minimum of fµ.

By the Kantorovich-Rubinstein duality of L1-Wasserstein distance (see [30,
p. 107]), we can show that Fréchet medians are characterized by 1-Lipschitz
functions. A corresponding result that Riemannian barycenters are characterized
by convex functions can be found in [25, Lemma 7.2].

Proposition 3. Let µ ∈ P1(M) and M be also separable, then

Qµ =

{

x ∈ M : ϕ(x) ≤ f∗
µ +

∫

M

ϕ(p)µ(dp), for every ϕ ∈ Lip1(M)

}

,

where Lip1(M) denotes the set of all the 1-Lipschitz functions on M .

The following theorem states that the uniform convergence of first moment
functions yields the convergence of Fréchet medians.

Theorem 5. Let (µn)n∈N be a sequence in P1(M) and µ be another probability
measure in P1(M). If (fµn

)n converges uniformly on M to fµ, then for every
ε > 0, there exists N ∈ N, such that for every n ≥ N we have

Qµn
⊂ B(Qµ, ε) := {x ∈ M : d(x,Qµ) < ε}.

As a corollary to Theorem 5, Fréchet medians are strongly consistent esti-
mators. The consistency of Fréchet means is proved in [15].

Corollary 1. Let (Xn)n∈N be a sequence of i.i.d random variables of law µ ∈
P1(M) and (mn)n∈N be a sequence of random variables such that mn ∈ Qµn

with µn = 1
n

∑n
k=1 δXk

. If µ has a unique Fréchet median m, then mn −→ m
a.s.



4.2 Robustness of Fréchet medians in Riemannian manifolds

The framework of this subsection is a complete Riemannian manifold (M,d)
whose dimension is no less than 2. We fix a closed geodesic ball

B̄(a, ρ) = {x ∈ M : d(x, a) ≤ ρ}

in M centered at a with a finite radius ρ > 0 and a probability measure µ ∈
P1(M) such that

µ(B̄(a, ρ)) , α >
1

2
.

The aim of this subsection is to estimate the positions of the Fréchet medi-
ans of µ, which gives a quantitative estimation for robustness. To this end, the
following type of functions are of fundamental importance for our methods. Let
x, z ∈ M , define

hx,z : B̄(a, ρ) −→ R, p 7−→ d(x, p) − d(z, p).

Obviously, hx,z is continuous and attains its minimum.
By a simple estimation on the minimum of hx,a we get the following basic

result.

Theorem 6. The set Qµ of all the Fréchet medians of µ verifies

Qµ ⊂ B̄

(

a,
2αρ

2α− 1

)

:= B∗.

Remark 2. It is easily seen that the conclusion of Theorem 6 also holds if M is
only a proper metric space.

Remark 3. As a direct corollary to Theorem 6, if µ is a probability measure in
P1(M) such that for some point m ∈ M one has µ{m} > 1/2, then m is the
unique Fréchet median of µ.

In view of Theorem 6, let ∆ be an upper bound of sectional curvatures in
B∗ and inj be the injectivity radius of B∗. By computing the minima of some
typical functions hx,z in model spaces S2, E2 and H

2, and then comparing with
the ones in M , we get the following main result of this subsection.

Theorem 7. Assume that

2αρ

2α− 1
< r∗ := min{ π√

∆
, inj }, (6)

where if ∆ ≤ 0, then π/
√
∆ is interpreted as +∞.

i) If ∆ > 0 and Qµ ⊂ B̄(a, r∗/2), then

Qµ ⊂ B̄

(

a,
1√
∆

arcsin
(α sin(

√
∆ρ)√

2α− 1

)

)

.



Moreover, any of the two conditions below implies Qµ ⊂ B̄(a, r∗/2):

a)
2αρ

2α− 1
≤ r∗

2
; b)

2αρ

2α− 1
>

r∗
2

and Fα,ρ,∆(
r∗
2

− ρ) ≤ 0,

where Fα,ρ,∆(t) = cot(
√
∆(2α− 1)t)− cot(

√
∆t)− 2 cot(

√
∆ρ), t ∈ (0,

ρ

2α− 1
].

ii) If ∆ = 0, then

Qµ ⊂ B̄

(

a,
αρ√
2α− 1

)

.

iii) If ∆ < 0, then

Qµ ⊂ B̄

(

a,
1√
−∆

arcsinh
(α sinh(

√
−∆ρ)√

2α− 1

)

)

.

Finally any of the above three closed balls is contained in the open ball B(a, r∗/2).

Remark 4. Although we have chosen the framework of this section to be a Rie-
mannian manifold, the essential tool that has been used is the hinge version of
the triangle comparison theorem. Consequently, Theorem 7 remains true if M is
a CAT(∆) space (see [16, Chapter 2]) and r∗ is replaced by π/

√
∆.

Remark 5. For the case when α = 1, the assumption (6) becomes

ρ <
1

2
min{ π√

∆
, inj }.

Observe that in this case, when ∆ > 0, the condition F1,ρ,∆(r∗/2 − ρ) ≤ 0 is
trivially true in case of need. Hence Theorem 7 yields that Qµ ⊂ B̄(a, ρ), which
is exactly what the Theorem 2.1 in [1] says for medians.

4.3 Uniqueness of Fréchet sample medians in compact Riemannian

manifolds

Before introducing the results of this subsection we give some notations. For each
point x ∈ M , Sx denotes the unit sphere in TxM . Moreover, for a tangent vector
v ∈ Sx, the distance between x and its cut point along the geodesic starting from
x with velocity v is denoted by τ(v). Certainly, if there is no cut point along this
geodesic, then we define τ(v) = +∞. For every point (x1, . . . , xN ) ∈ MN , where
N ≥ 3 is a fixed natural number, we write

µ(x1, . . . , xN ) =
1

N

N
∑

k=1

δxk
.

The set of all the Fréchet medians of µ(x1, . . . , xN ), is denoted by Q(x1, . . . , xN ).
The following theorem states that in order to get the uniqueness of Fréchet

medians, it suffices to move two data points towards a common median along
some minimizing geodesics for a little distance.



Theorem 8. Let (x1, . . . , xN ) ∈ MN and m ∈ Q(x1, . . . , xN ). Fix two normal
geodesics γ1, γ2 : [0,+∞) → M such that γ1(0) = x1, γ1(d(x1,m)) = m, γ2(0) =
x2 and γ2(d(x2,m)) = m. Assume that

x2 /∈
{

γ1[0, τ(γ̇1(0))], if τ(γ̇1(0)) < +∞;

γ1[0,+∞), if τ(γ̇1(0)) = +∞.

Then for every t ∈ (0, d(x1,m)] and s ∈ (0, d(x2,m)] we have

Q(γ1(t), γ2(s), x3, . . . , xN ) = {m}.

Generally speaking, the non uniqueness of Fréchet medians is due to some
symmetric properties of data points. As a result, generic data points should have
a unique Fréchet median. In mathematical language, this means that the set of
all the particular positions of data points is of Lebesgue measure zero. After
eliminate all these particular cases we obtain the following main result:

Theorem 9. Assume that M is compact. Then µ(x1, . . . , xN ) has a unique
Fréchet median for almost every (x1, . . . , xN ) ∈ MN .

Remark 6. In probability language, Theorem 9 is equivalent to say that if (X1, . . . ,
XN ) is an MN -valued random variable with density, then µ(X1, . . . , XN) has a
unique Fréchet median almost surely. Clearly, the same statement is also true if
X1, . . . , XN are independent and M -valued random variables with density.

5 Stochastic and deterministic algorithms for computing

means of probability measures

In this section, we consider a probability measure µ supported by a regular
geodesic ball in a manifold and, for any p ≥ 1, define a stochastic algorithm
which converges almost surely to the p-mean ep of µ. Assuming furthermore
that the functional to minimize is regular around ep, we prove that a natural
renormalization of the inhomogeneous Markov chain converges in law into an
inhomogeneous diffusion process. We give the explicit expression of this process,
as well as its local characteristic. After that, the performance of the stochastic
algorithms are illustrated by simulations. Finally, we show that the p-mean of
µ can also be computed by the method of gradient descent. The questions con-
cerning the choice of stepsizes and error estimates of this deterministic method
are also considered. For more mathematical details of this section, see [4] and
[33].

5.1 Stochastic algorithms for computing p-means

Let M be a Riemannian manifold whose sectional curvatures K(σ) verify −β2 ≤
K(σ) ≤ α2, where α, β are positive numbers. Denote by ρ the Riemannian
distance on M . Let B(a, r) be a geodesic ball in M and µ be a probability
measure with support included in a compact convex subset Kµ of B(a, r). Fix
p ∈ [1,∞). We will always make the following assumptions on (r, p, µ):



Assumption 1 The support of µ is not reduced to one point. Either p > 1 or
the support of µ is not contained in a line, and the radius r satisfies

r < rα,p with

{

rα,p = 1
2 min

{

inj(M), π
2α

}

, if p ∈ [1, 2);
rα,p = 1

2 min
{

inj(M), π
α

}

, if p ∈ [2,∞).

Under Assumption 1, it has been proved in [1, Theorem 2.1] that the function

Hp : M −→ R+

x 7−→
∫

M

ρp(x, y)µ(dy)

has a unique minimizer ep in M , the p-mean of µ, and moreover ep ∈ B(a, r). If
p = 1, e1 is the median of µ.

Remark 7. The existence and uniqueness of p-means in Finsler geometry are
recently proved by M. Arnaudon and F. Nielsen in [6]. They also showed that
Finslerian p-means are limiting points of continuous gradient flows and developed
algorithms for computing p-means in Finsler geometry.

In the following theorem, we define a stochastic gradient algorithm (Xk)k≥0

to approximate the p-mean ep and prove its convergence. In the sequel, let

K = B̄(a, r − ε) with ε =
ρ(Kµ, B(a, r)c)

2
.

Theorem 10. Let (Pk)k≥1 be a sequence of independent B(a, r)-valued random
variables, with law µ. Let (tk)k≥1 be a sequence of positive numbers satisfying

∀k ≥ 1, tk ≤ min

(

1

Cp,µ,K
,
ρ(Kµ, B(a, r)c)

2p(2r)p−1

)

,

∞
∑

k=1

tk = +∞ and

∞
∑

k=1

t2k < ∞,

where Cp,µ,K > 0 is a constant.
Letting x0 ∈ K, define inductively the random walk (Xk)k≥0 by

X0 = x0 and for k ≥ 0 Xk+1 = expXk

(

−tk+1 gradXk
Fp(·, Pk+1)

)

where Fp(x, y) = ρp(x, y), with the convention gradx Fp(·, x) = 0.
The random walk (Xk)k≥1 converges in L2 and almost surely to ep.

Remark 8. For the case when p = +∞, M. Arnaudon and F. Nielsen developed
in [5] an efficient algorithm to compute the circum-center e∞ of probability
measures in Riemannian manifolds.

In the following example, we focus on the case M = R
d and p = 2 where

drastic simplifications occur.



Example 1. In the case when M = R
d and µ is a compactly supported proba-

bility measure on R
d, the stochastic gradient algorithm (7) simplifies into

X0 = x0 and for k ≥ 0 Xk+1 = Xk − tk+1 gradXk
Fp(·, Pk+1).

If furthermore p = 2, clearly e2 = E[P1] and gradx Fp(·, y) = 2(x − y), so that
the linear relation

Xk+1 = (1 − 2tk+1)Xk + 2tk+1Pk+1, k ≥ 0

holds true and an easy induction proves that

Xk = x0

k−1
∏

j=0

(1 − 2tk−j) + 2

k−1
∑

j=0

Pk−jtk−j

j−1
∏

ℓ=0

(1 − 2tk−ℓ), k ≥ 1. (7)

Now, taking tk =
1

2k
, we have

k−1
∏

j=0

(1 − 2tk−j) = 0 and

j−1
∏

ℓ=0

(1− 2tk−ℓ) =
k − j

k

so that

Xk =

k−1
∑

j=0

Pk−j
1

k
=

1

k

k
∑

j=1

Pj .

The stochastic gradient algorithm estimating the mean e2 of µ is given by the
empirical mean of a growing sample of independent random variables with dis-
tribution µ. In this simple case, the result of Theorem 10 is nothing but the
strong law of large numbers. Moreover, fluctuations around the mean are given
by the central limit theorem and Donsker’s theorem.

The fluctuation of the random walk (Xk)k defined in Theorem 10 is summa-
rized in the following theorem.

Theorem 11. Assume that in Theorem 10

tk = min

(

δ

k
,min

(

1

Cp,µ,K
,
ρ(Kµ, B(a, r)c)

2p(2r)p−1

))

, k ≥ 1,

for some δ > 0. We define for n ≥ 1 the Markov chain (Y n
k )k≥0 in TepM by

Y n
k =

k√
n
exp−1

ep Xk.

Assume that Hp is C2 in a neighborhood of ep and δ > C−1
p,µ,K . Then the se-

quence of processes
(

Y n
[nt]

)

t≥0
converges weakly in D((0,∞), TepM) to a diffusion

process given by



yδ(t) =

d
∑

i=1

t1−δλi

∫ t

0

sδλi−1〈δσ dBs, ei〉ei, t ≥ 0,

where Bt is the standard Brownian motion in TepM and σ ∈ End(TepM) satis-
fying

σσ∗ = E

[

gradep Fp(·, P1)⊗ gradep Fp(·, P1)
]

,

(ei)1≤i≤d is an orthonormal basis diagonalizing the symmetric bilinear form
∇dHp(ep) and (λi)1≤i≤d are the associated eigenvalues.

5.2 Simulations of stochastic algorithms

A non uniform measure on the unit square in the plane Here M is the
Euclidean plane R

2 and µ is the renormalized restriction to the square [0, 4]×
[0, 4] of an exponential law on [0,∞) × [0,∞). The red path represents one
trajectory of the inhomogeneous Markov chain (Xk)k≥0 corresponding to p = 1,
with linear interpolation between the different steps. The red point is e1. Black
circles represent the values of (Pk)k≥1.

0
0

1

1

2

2

3

3

4

4

Fig. 1. Median of a non uniform measure on the unit square in the plane

Medians in the Poincaré disc In the two figures below, M is the Poincaré
disc, the blue points are data points and the red path represents one trajec-
tory of the inhomogeneous Markov chain (Xk)k≥0 corresponding to p = 1, with
linear interpolation between the different steps. The green points are medians
computed by the subgradient method developed in section 3.



Fig. 2. Median of three points in the Poicaré disc

Fig. 3. Median of points in the Poicaré disc



5.3 Computing p-means by gradient descent

Gradient descent algorithms for computing ep are given in the following theorem.
In view of Theorem 4, it suffices to consider the case when p > 1.

Theorem 12. Assume that p > 1. Let x0 ∈ B̄(a, r) and for k ≥ 0 define

xk+1 = expxk
(−tk gradxk

Hp),

where (tk)k is a sequence of real numbers such that

0 < tk ≤ pεp+1

πp2(2r)2p−1β coth(2βr) + pεp
, lim

k→∞
tk = 0 and

∞
∑

k=0

tk = +∞.

Then the sequence (xk)k is contained in B̄(a, ρ) and converges to ep.

The following proposition gives the error estimations of the gradient descent
algorithms in Theorem 12.

Proposition 4. Assume that tk < C−1
p,µ,K for every k in Theorem 12, then the

following error estimations hold:
i) if 1 < p < 2, then for k ≥ 1,

ρ2(xk, ep) ≤ 4r2
k−1
∏

i=0

(1 − Cp,µ,Kti)

+ C(β, r, p)

( k−1
∑

j=1

t2j−1

k−1
∏

i=j

(1− Cp,µ,Kti) + t2k−1

)

:= bk;

ii) if p ≥ 2, then for k ≥ 1,

Hp(xk)−Hp(ep) ≤ (2r)p
k−1
∏

i=0

(1− Cp,µ,K ti)

+ C(β, r, p)

( k−1
∑

j=1

t2j−1

k−1
∏

i=j

(1 − Cp,µ,Kti) + t2k−1

)

:= ck,

where the constant

C(β, r, p) =

{

p2(2r)2p−1β coth(2βr), if 1 < p < 2;

p3(2r)3p−4 (2βr coth(2βr) + p− 2) , if p ≥ 2.

Moreover, the sequences (bk)k and (ck)k both tend to zero.



6 Riemannian geometry of Toeplitz covariance matrices

and applications to radar target detection

In this section we study the Riemannian geometry of the manifold of Toeplitz
covariance matrices of order n. The explicit expression of the reflection coef-
ficients reparametrization and its inverse are obtained. With the Riemannian
metric given by the Hessian of a Kähler potential, we show that the manifold
is in fact a Cartan-Hadamard manifold with lower sectional curvature bound
−4. The geodesics in this manifold are also computed. Finally, we apply the
subgradient algorithm introduced in section 3 and the Riemannian geometry of
Toeplitz covariance matrices to radar target detection. We refer to [33] for more
mathematical details of this section.

6.1 Reflection coefficients parametrization

Let Tn be the set of Toeplitz Hermitian positive definite matrices of order n. It
is an open submanifold of R2n−1. Each element Rn ∈ Tn can be written as

Rn =











r0 r1 . . . rn−1

r1 r0 . . . rn−2

...
. . .

. . .
...

rn−1 . . . r1 r0











.

For every 1 ≤ k ≤ n−1, the upper left (k+1)-by-(k+1) corner of Rn is denoted
by Rk. It is associated to a k-th order autoregressive model whose Yule-Walker
equation is











r0 r1 . . . rk
r1 r0 . . . rk−1

...
. . .

. . .
...

rk . . . r1 r0





















1

a
(k)
1
...

a
(k)
k











=











Pk

0
...
0











,

where a
(k)
1 , . . . , a

(k)
k are the optimal prediction coefficients and Pk = detRk+1/ detRk

is the mean squared error.

The last optimal prediction coefficient a
(k)
k is called the k-th reflection co-

efficient and is denoted by µk. It is easily seen that µ1, . . . , µn−1 are uniquely
determined by the matrix Rn. Moreover, the classical Levinson’s recursion gives
that |µk| < 1. Hence, by letting P0 = r0, we obtain a map between two subman-
ifolds of R2n−1:

ϕ : Tn −→ R∗
+ ×Dn−1, Rn 7−→ (P0, µ1, . . . , µn−1),

where D = {z ∈ C : |z| < 1} is the unit disc of the complex plane.
Using the Cramer’s rule and the method of Schur complement we get the

following proposition.



Proposition 5. ϕ is a diffeomorphism, whose explicit expression is

µk = (−1)k
detSk

detRk
, where Sk = Rk+1

(

2, . . . , k + 1

1, . . . , k

)

is the submatrix of Rk+1 obtained by deleting the first row and the last column.
On the other hand, if (P0, µ1, . . . , µn−1) ∈ R∗

+ × Dn−1, then its inverse image
Rn under ϕ can be calculated by the following algorithm:

r0 = P0, r1 = −P0µ1,

rk = −µkPk−1 + αT
k−1Jk−1R

−1
k−1αk−1, 2 ≤ k ≤ n− 1,

where

αk−1 =







r1
...

rk−1






, Jk−1 =









0 . . . 0 1
0 . . . 1 0
. . .

1 . . . 0 0









and Pk−1 = P0

k−1
∏

i=1

(1 − |µi|2).

6.2 Riemannian geometry of Toeplitz covariance matrices

From now on, we regard Tn as a Riemannian manifold whose metric, which is
introduced in [8] by the Hessian of the Kähler potential

Φ(Rn) = − ln(detRn)− n ln(πe),

is given by

ds2 = n
dP 2

0

P 2
0

+
n−1
∑

k=1

(n− k)
|dµk|2

(1− |µk|2)2
, (8)

where (P0, µ1, . . . , µn−1) = ϕ(Rn).
The metric (8) is a Bergman type metric and it has be shown in [33] that

this metric is not equal to the Fisher information metric of Tn. But J. Burbea
and C. R. Rao have proved in [18, Theorem 2] that the Bergman metric and
the Fisher information metric do coincide for some probability density functions
of particular forms. A similar potential function was used by S. Amari in [2] to
derive the Riemannian metric of multi-variate Gaussian distributions by means
of divergence functions. We refer to [29] for more account on the geometry of
Hessian structures.

With the metric given by (8) the space R∗
+×Dn−1 is just the product of the

Riemannian manifolds (R∗
+, ds

2
0) and (D, ds2k)1≤k≤n−1, where

ds20 = n
dP 2

0

P 2
0

and ds2k = (n− k)
|dµk|2

(1− |µk|2)2
.

The latter is just n− k times the classical Poincaré metric of D. Hence (R∗
+ ×

Dn−1, ds2) is a Cartan-Hadamard manifold whose sectional curvatures K verify



−4 ≤ K ≤ 0. The Riemannian distance between two different points x and y in
R∗

+ ×Dn−1 is given by

d(x, y) =

(

nσ(P,Q)2 +

n−1
∑

k=1

(n− k)τ(µk, νk)
2

)1/2

,

where x = (P, µ1, . . . , µn−1), y = (Q, ν1, . . . , νn−1),

σ(P,Q) = | ln(Q
P
)| and τ(µk, νk) =

1

2
ln

1 + | νk−µk

1−µ̄kνk
|

1− | νk−µk

1−µ̄kνk
|
.

The geodesic from x to y in Tn parameterized by arc length is given by

γ(s, x, y) = (γ0(
σ(P,Q)

d(x, y)
s), γ1(

τ(µ1, ν1)

d(x, y)
s), . . . , γ1(

τ(µn−1, νn−1)

d(x, y)
s)),

where γ0 is the geodesic in (R∗
+, ds

2
0) from P to Q parameterized by arc length

and for 1 ≤ k ≤ n−1, γk is the geodesic in (D, ds2k) from µk to νk parameterized
by arc length. More precisely,

γ0(t) = Pet sign(Q−P ),

and for 1 ≤ k ≤ n− 1,

γk(t) =
(µk + eiθk)e2t + (µk − eiθk)

(1 + µ̄keiθk)e2t + (1− µ̄keiθk)
, where θk = arg

νk − µk

1− µ̄kνk
.

Particularly,

γ′(0, x, y) = (γ′
0(0)

σ(P,Q)

d(x, y)
, γ′

1(0)
τ(µ1, ν1)

d(x, y)
, . . . , γ′

n−1(0)
τ(µn−1, νn−1)

d(x, y)
).

Let v = (v0, v1, . . . , vn−1) be a tangent vector in Tx(R
∗
+ ×Dn−1), then the

geodesic starting from x with velocity v is given by

ζ(t, x, v) = (ζ0(t), ζ1(t), . . . , ζn−1(t)),

where ζ0 is the geodesic in (R∗
+, ds

2
0) starting from P with velocity v0 and for

1 ≤ k ≤ n − 1, ζk is the geodesic in (D, ds2k) starting from µk with velocity vk.
More precisely,

ζ0(t) = Pe
v0
P

t,

and for 1 ≤ k ≤ n− 1,

ζk(t) =
(µk + eiθk)e

2|vk|t

1−|µk|2 + (µk − eiθk)

(1 + µ̄keiθk)e
2|vk|t

1−|µk|2 + (1− µ̄keiθk)

, where θk = arg vk.



6.3 Radar simulations

Now we give some simulating examples of the median method applied to radar
target detection.

Since the autoregressive spectra are closely related to the speed of targets,
we shall first investigate the spectral performance of the median method. In
order to illustrate the basic idea, we only consider the detection of one fixed
direction. The range along this direction is subdivided into 200 lattices in which
we add two targets, the echo of each lattice is modeled by an autoregressive
process. The following Figure 4 gives the initial spectra of the simulation, where
x axis represents the lattices and y axis represents frequencies. Every lattice is
identified with a 1×8 vector of reflection coefficients which is calculated by using
the regularized Burg algorithm [11] to the original simulating data. The spectra
are represented by different colors whose corresponding values are indicated in
the colorimetric on the right.
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Fig. 4. Initial spectra with two added targets



For every lattice, by using the subgradient algorithm, we calculate the median
of the window centered on it and consisting of 15 lattices and then we get the
spectra of medians shown in Figure 5. Furthermore, by comparing it with Figure
6 which are spectra of barycenters, we see that in the middle of the barycenter
spectra, this is just the place where the second target appears, there is an obvious
distortion. This explains that median is much more robust than barycenter when
outliers come.
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Fig. 5. Median spectra
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Fig. 6. Barycenter spectra



The principle of target detection is that a target appears in a lattice if the
distance between this lattice and the median of the window around it is much
bigger than that of the ambient lattices. The following Figure 7 shows that
the two added targets are well detected by the median method, where x axis
represents lattice and y axis represents the distance in T8 between each lattice
and the median of the window around it.
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Fig. 7. Detection by median

We conclude our discussion by showing the performance of the median method
in real target detection. As above, we give the images of autoregressive spectra
and the figure of target detection obtained by using real data which are records
of a radar located on a coast. These records consist of about 5000 lattices of
a range of about 10km-140km as well as 109 azimuth values corresponding to
approximately 30 scanning degrees of the radar. For simplicity we consider the
data of all the lattices but in a fixed direction, hence each lattice corresponds
to a 1× 8 vector of reflection coefficients computed by applying the regularized
Burg algorithm to the original real data. Figure 8 gives the initial autoregressive
spectra whose values are represented by different color according to the colori-
metric on the right. For each lattice, by using the subgradient algorithm, we
calculate the median of the window centered on it and consisting of 17 lattices
and then we get the spectra of medians shown in Figure 9.

In order to know in which lattice target appears, we compare the distance
between each lattice and the median of the window around it. The following
Figure 10 shows that the four targets are well detected by our method, where x
axis represents distance and y axis represents the distance in T8 between each
lattice and the median of the window around it.
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Fig. 8. Initial spectra of real radar data
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Fig. 9. Median spectra of real radar data
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paces de matrices de covariance : équations de diffusion et calculs de médianes,
GRETSI’09 conference, Dijon, September 2009

10. F. Barbaresco, New Foundation of Radar Doppler Signal Processing based on Ad-

vanced Differential Geometry of Symmetric Spaces: Doppler Matrix CFAR and

Radar Application, Radar’09 Conference, Bordeaux, October 2009



11. F. Barbaresco, Annalyse Doppler: régularisation d’un problème inverse mal posé,
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Annales de l’I.H.P., tome 10, no4 (1948), p. 215-310.
24. H. Karcher, Riemannian center of mass and mollifier smoothing, Communications

on Pure and Applied Mathematics, vol xxx (1977), 509-541.
25. W. S. Kendall, Probability, convexity, and harmonic maps with small image I:

uniqueness and fine existence, Proc. London Math. Soc., (3) 61 (1990), no. 2, 371-
406.

26. R. Noda, T. Sakai and M. Morimoto, Generalized Fermat’s problem, Canad. Math.
Bull. Vol. 34(1), 1991, pp. 96-104.

27. J. Picard, Barycentres et martingales sur une variété, Ann. Inst. H. Poincaré
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