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We prove that the integrated density of states of Hω has a Lifshitz behavior at the

bottom of the spectrum. We obtain a Lifshitz exponent equal to −d/2 and this
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of states at the bottom of the spectrum of a quasi-d-dimensional Anderson model is

the same as its behaviour for a d-dimensional Anderson model.
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I. INTRODUCTION

A. A general model

We study the Lifshitz tails behaviour of the integrated density of states (IDS for short) of random

Schrödinger operators of the form:

H0(ω) = −∆d ⊗ ID +
∑

n∈Zd

V (n)
ω (x− n), (1.1)

acting on the Hilbert space L2(Rd)⊗CD, where d ≥ 1 and D ≥ 1 are integers, ∆d is the d-dimensional

Laplacian and ID is the identity matrix of order D.

Let (Ω,A,P) be a complete probability space and let ω ∈ Ω. We assume that, for every n ∈ Zd, the

functions x 7→ V
(n)
ω (x) take values in the space SD(R) of real symmetric matrices of order D and

that these functions are supported on [−1
2
, 1
2
]d and bounded uniformly on x, n and ω. The sequence

(V
(n)
ω )n∈Zd is a sequence of independent and identically distributed (i.i.d. for short) random variables

on (Ω,A). We finally assume that the sequence (V
(n)
ω )n∈Zd is such that the family of random operators

{H0(ω)}ω∈Ω is Zd-ergodic. An operator like (1.1) is also called a quasi-d-dimensional Anderson model.

The vector space L2(Rd)⊗ CD is endowed with the usual scalar product:

< f, g >L2(Rd)⊗CD=

∫

Rd

< f(x), g(x) >CD dx =

D∑

i=1

∫

Rd

fi(x)gi(x)dx,

where f = (f1, . . . , fD), g = (g1, . . . , gD) and fi ∈ L2(Rd)⊗C, gi ∈ L2(Rd)⊗C are the i-th components

of f and g.

As the functions x 7→ V
(n)
ω (x), for every ω ∈ Ω and every n ∈ Zd, take values in SD(R) , the operator

H0(ω) is self-adjoint on the Sobolev space H2(Rd) ⊗ CD, for every ω ∈ Ω (see [20]). Thus, its

spectrum σ(H0(ω)) is included in R. Moreover, due to the hypothesis of Zd-ergodicity of the family

{H0(ω)}ω∈Ω, there exists a set Σ0 ⊂ R with the property: for P-almost-every ω ∈ Ω, σ(H0(ω)) = Σ0

(see [4]).

B. Existence of the IDS

We want to study the asymptotic behaviour of the IDS associated to H0(ω) near the bottom of

the almost-sure spectrum of H0(ω). The IDS of H0(ω) is the repartition function of energy levels, per
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unit volume, of H0(ω). To define it properly, we first need to restrict the operator H0(ω) to boxes of

finite volume. We set, for L ≥ 1 an integer,

CL =

[
−
2L+ 1

2
,
2L+ 1

2

]d
. (1.2)

Then, we consider H0,CL
(ω) the restriction of H0(ω) to the Hilbert space L2(CL)⊗CD with Dirichlet

boundary conditions on the border ∂CL of CL. To define the IDS, we now consider, for every E ∈ R,

the following thermodynamical limit:

N0(E) = lim
L→+∞

1

(2L+ 1)d
# {λ ≤ E | λ ∈ σ(H0,CL

(ω))} . (1.3)

We have already proved in [1] that, for the general modelH0(ω), for every E ∈ R, the limit (1.3) exists

and is P-almost-surely independent of ω ∈ Ω (see [1, Corollary 1]). The question of the existence of

(1.3) involves two problems to solve. First we had to prove that, for every E ∈ R and every ω ∈ Ω,

the cardinal #{λ ≤ E| λ ∈ σ(H0,CL
(ω))} is finite. Then we had to prove the existence of the limit

when L tends to infinity. Both solutions to these two problems rely strongly on the fact that the

semigroup (e−tH0,CL
(ω))t>0 has an L2-kernel, which is given through a matrix-valued Feynman-Kac

formula (see [1, Proposition 1]). Once we obtain that the cardinal #{λ ≤ E| λ ∈ σ(H0,CL
(ω))} is

finite, we prove the convergence, as L tends to infinity, of the sequence of Laplace transforms of the

counting measures of the spectral values of H0,CL
(ω) smaller than E. We prove the convergence of

this sequence by using Birkhoff’s ergodic theorem which leads to the existence of a Borel measure n0

on R, independent of ω, which is the desired limit. We finally set

∀E ∈ R, N0(E) = n0((−∞, E]), (1.4)

the distribution function of n0. The measure n0 is called the density of states of H0(ω).

C. A particular model

After this review of existence result of the IDS for the general model H0(ω), we may consider a

particular example of such model for which we will be able to prove precise results on Lifshitz tails

of the IDS at the bottom of the spectrum.

We consider

Hω = −∆d ⊗ ID +W (x) +
∑

n∈Zd




ω
(n)
1 V1(x−n) 0

...
0 ω

(n)
D

VD(x−n)


 , (1.5)
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acting on L2(Rd)⊗ CD, where d ≥ 1 and D ≥ 1 are integers, ∆d and ID are as in (1.1). We set:

H = −∆d ⊗ ID +W and Vω(x) =
∑

n∈Zd




ω
(n)
1 V1(x−n) 0

...
0 ω

(n)
D

VD(x−n)


 . (1.6)

For the model (1.5), we make the assumptions:

(H1) W : R
d → SD(R) is Zd-periodic, measurable and bounded.

(H2) V1, . . . , VD are nonnegative, bounded, measurable, real-valued functions supported on [−1
2
, 1
2
]d.

Moreover, we assume that, for every i ∈ {1, . . . ,D}, there exists a non-empty cube Ci ⊂ [−1
2
, 1
2
]d

which is not reduced to a single point such that Vi > 1Ci , where 1Ci is the characteristic function

of Ci.

(H3) For every i ∈ {1, . . . ,D}, (ω
(n)
i )n∈Zd is a family of i.i.d. random variables on a complete

probability space (Ω̃i, Ãi, P̃i), which are bounded, and whose support of their common law νi

contains zero and is not reduced to this single point. Moreover, we assume that,

∀i ∈ {1, . . . ,D}, lim sup
ε−→0+

log | log P̃i(ω
(0)
i ≤ ε)|

log ε
= 0. (1.7)

In particular, we can take Bernoulli random variables for the ω
(n)
i ’s. By adding a suitable constant

diagonal matrix to the periodic backgroundW , we may always assume that the ω
(n)
i ’s are nonnegative

valued (because of their boundedness). If we set

(Ω,A,P) =

(
⊗

n∈Zd

(Ω̃1 ⊗ · · · ⊗ Ω̃D),
⊗

n∈Zd

(Ã1 ⊗ · · · ⊗ ÃD),
⊗

n∈Zd

(P̃1 ⊗ · · · ⊗ P̃D)

)
,

then (Ω,A,P) is a complete probability space and {Hω}ω∈Ω is Zd-ergodic because of the non-

overlapping of the random variables ω
(n)
i . We denote by Σ the almost-sure spectrum ofHω. By adding

a suitable scalar matrix λID to the periodic potentialW , we may always assume that infΣ = 0, where

Σ is the almost sure spectrum of the Zd-ergodic family {Hω}ω∈Ω.

The model (1.5) is a particular case of (1.1) for which the potential split into a deterministic periodic

partW and a random part Vω which appears as a diagonal matrix. We will denote by N : E → N(E)

the IDS of Hω.

Remark I.1. If we assume that, at least for one x ∈ Rd, W (x) is not a diagonal matrix, then we

cannot write Hω as a direct sum ⊗D
i=1Hω,i of scalar-valued operators Hω,i acting on L2(Rd)⊗ C and

for which all the results we will present here are already known.
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Remark I.2. The hypothesis (H2) on the boundedness of the functions Vi and the boundedness of

their support implies in particular that each Vi is in L
p(Rd)⊗CD with p = 2 if d ≤ 3, p > 2 if d = 4

and p > d
2
if d ≥ 5. These are the assumptions made in [11].

For d = 1, matrix-valued operators as (1.5) are also called quasi-one-dimensional Anderson models.

Localization results in both dynamical and spectral senses for such models, for particular simple

choices of W and V1, . . . , VD, are obtained in [2] and [3]. These quasi-one-dimensional models are of

physical interest as they can be considered as partially discrete approximations of Anderson models

on a two-dimensional continuous strip. Such a two-dimensional Anderson model on a continuous strip

can, by example, modelize electronic transport in nanotubes. Indeed, a two dimensional continuous

Anderson model is defined by:

Hcs(ω) = −∆2 +
∑

n∈Z

ω(n)V (x− n, y), (1.8)

acting on L2(R× [0, 1])⊗C with Dirichlet boundary conditions on R×{0} and R× {1}. The ω(n)’s

are i.i.d. random variables and V is supported in [0, 1]2. As the continuous strip R× [0, 1] has one

finite length dimension ([0, 1]) and one infinite length dimension (R), we can physically consider this

strip as a quasi-one-dimensional nanotube. The spectral properties of Hcs(ω) describe properties of

the electronic transport in the nanotube R× [0, 1].

D. The behaviour of the IDS

The main result of this paper is about Lifshitz tails for the IDS N(E) of Hω at the bottom of

the spectrum. In 1963, Lifshitz (see [13]) had conjecture that, for a continuous random Schrödinger

operator of IDS N(E), there exist c1, c2 > 0 such that N(E) satisfies the asymptotic:

N(E) ≃ c1 exp(−c2(E − E0)
− d

2 ), (1.9)

as E tends to E0, where E0 is the bottom of the spectrum of the considered Schrödinger operator.

The behaviour (1.9) is known as Lifshitz tails (for more details, see part IV.9.A of [19]) and the

exponent −d/2 is called the Lifshitz exponent of the operator. The principal results known on

Lifshitz tails are mainly shown for Schrödinger operators, in both continuous and discrete cases (see

[7, 8, 11, 14, 18, 22] and others) and for Schrödinger operators with magnetic fields (see [12, 15] ).

Up to our knowledge, all studied examples of Schrödinger operators are for scalar-valued operators,

and no adaptation of the known results to matrix-valued operators like (1.5) has been done yet.
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In a previous article of one of the author (see [1]), we had already obtain a result of Hölder continuity

of the IDS for a particular example of model Hω, in dimension d = 1. For d = 1, we can use the

formalism of transfer matrices and define Lyapunov exponents for Hω and, in this case, the sum of

the positive Lyapunov exponents is harmonically conjugated to the IDS of Hω, through a so-called

Thouless formula (see [1, Theorem 3]). It allows us to prove that under some assumptions on the

group generated by the transfer matrices, the Fürstenberg group of Hω, we have positivity of the

Lyapunov exponents, their Hölder continuity with respect to the energy parameter and thus, by the

Thouless formula, the same Hölder regularity for the IDS. This assumptions are hard to verify for a

general D (where D is the size of the matrix-valued potential), but we were able to verify them for

a very particular example of Hω in dimension d = 1, where the periodic and random potentials W

and Vω acts like constant functions. In [3], we studied the following Anderson operator:

Hℓ(ω) = −
d2

dx2
⊗ ID + V +

∑

n∈Z




c1ω
(n)
1 1[0,ℓ](x−ℓn) 0

...
0 cDω

(n)
D 1[0,ℓ](x−ℓn)


 , (1.10)

acting on L2(R)⊗CD, where D ≥ 1 is an integer, ID is the identity matrix of order D and ℓ > 0 is a

real number. The matrix V is a real D×D symmetric matrix. The constants c1, . . . , cD are non-zero

real numbers. For I ⊂ R, 1I is the characteristic function of I. The random variables ω
(n)
i are like

in model (1.5). As we can see, Hℓ(ω) is a particular example of Hω with W constant and Vi = 1[0,ℓ],

for every i ∈ {1, . . . ,D}. For this operator we had obtained the following regularity result:

Proposition I.3. [3, Proposition 6.2] For Lebesgue-almost every V ∈ SD(R) , there exist a finite set

SV ⊂ R and a real number ℓC := ℓC(D, V ) > 0 such that, for every ℓ ∈ (0, ℓC), there exists a compact

interval I(D, V, ℓ) ⊂ R such that, if I ⊂ I(D, V, ℓ)\SV is an open interval, then the integrated density

of states of Hℓ(ω), E 7→ Nℓ(E), is Hölder continuous on I.

Remark I.4. We actually proved even more : in such an open interval I with Σ ∩ I 6= ∅, we have

Anderson localization in both spectral and dynamical senses.

The Proposition I.3 is interesting in itself but doesn’t give any information about the behaviour of

the IDS at the bottom of spectrum and, until now, it was not clearly stated that it has a Lifshitz

behaviour. One of the motivation of the present article is to fill this lack of information of the IDS

for quasi-one-dimensional operators and in particular those like Hℓ(ω) we have studied before from

the localization point of view.
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E. The result

We can now state the main result of the present article.

Theorem I.5. Let Hω be the operator defined by (1.5) and let N be its IDS. We assume hypothesis

(H1), (H2) and (H3) and we also assume that inf Σ = 0. Then,

lim
E→0+

log | log
(
N(E)−N(0+)

)
|

log(E)
= −

d

2
. (1.11)

In particular, this limit does not depend on D.

Remark I.6. (1) Under some assumption on the behavior of the integrated density of states of the

background operator H, it might be possible to obtain a result for internal bands.

(2) Theorem I.5 could be used to give a different proof of localization than the one provided in [2]

(see [5, 16, 17, 23]).

It is important to insist on the fact that the Lifshitz exponent −d/2 obtained here does not depend

on the integer D ≥ 1. It means that, looking only at the Lifshitz behaviour of the IDS at the bottom

of the spectrum of the considered operator, we cannot distinguished a quasi-d-dimensional Anderson

model like (1.5) from a d-dimensional Anderson model (for D = 1).

One of the motivations in considering matrix-valued Anderson models is that we could expect, as

D tends to infinity, that we could obtain information about a (d + 1)-dimensional Anderson model

from a quasi-d-dimensional Anderson model. In particular, by obtaining a localization result for

(1.10) for an arbitrary D ≥ 1, we could have expect to obtain a similar localization result for the

continuous strip (1.8). The presence of the Lifshitz tails behaviour of the IDS is usually a strong

sign of the presence of localization at the bottom of the spectrum. If we wanted to use the Lifshitz

tails behaviour of the IDS to prove localization (like in [5]) and at the same time following the idea

of approaching a (d+ 1)-dimensional Anderson model by a quasi-d-dimensional Anderson model, we

would have expected a Lifshitz exponent depending onD in a way such that this exponent would tend

to −(d+ 1)/2 as D tends to infinity. But, Theorem I.5 contradicts this. So, we actually obtained an

argument in favor of the idea that we cannot really get a proof of localization in dimension 2 (or more

generally in dimension d+ 1) by an approximation procedure using quasi-one-dimensional Anderson

models. This, at least if we follow a localization proof based upon the Lifshitz tails behaviour of the

IDS.
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II. MATRIX-VALUED FLOQUET THEORY

A. Matrix-valued Floquet decomposition

In this section, we review the main results of the Floquet theory for the deterministic operator

H = −∆d ⊗ ID +W (2.12)

acting on L2(Rd)⊗CD, with periodic potential W , and we adapt them to the matrix-valued setting.

More precisely, we assume here that W is a Zd-periodic function in Lp(Rd) ⊗ SD(R) with p = 2 if

d ≤ 3, p > 2 if d = 4 and p > d
2
if d ≥ 5. If W is Zd-periodic, measurable and bounded as in model

(1.5), it is in such an Lp(Rd) ⊗ SD(R) space. Then, H is essentially selfadjoint on C∞
0 (Rd) ⊗ C

D

(the space of compactly supported function, CD-valued, of class C∞) with domain the Sobolev space

H2(Rd)⊗ CD [20].

First of all, let us notice that the formalism and all the general results about constant fiber direct

integrals are still valid in our setting of matrix-valued operators. We refer to [21, Section XIII.16] for

a complete presentation of these results.

For y ∈ Rd, we denote by τy the operator of translation by y which is defined, for u ∈ L2(Rd)⊗ CD

and x ∈ Rd, by (τyu)(x) = u(x− y). Then, because W is Zd-periodic, the operator H is invariant by

conjugation by τn, for every n ∈ Zd: ∀n ∈ Zd, τn ◦H ◦ τ ∗n = τn ◦H ◦ τ−n = H.

Thus, H is a Zd-periodic operator. Let (e1, . . . , ed) be the canonical basis of Rd. We recall that C0

can be considered as the fundamental cell of the lattice Zd,

C0 =

{
x1e1 + . . .+ xded

∣∣∣ ∀j ∈ {1, . . . , d},−
1

2
≤ xj ≤

1

2

}
.

If C∗
0 is the fundamental cell of the dual lattice (Zd)∗ ≃ 2πZd, then C∗

0 is identified to the torus

T∗ = Rd/2πZd. Let θ ∈ T∗. We denote by D
′

θ the space of CD-valued, θ-quasiperiodic distributions

in Rd, which is the space of distributions u ∈ D
′

(Rd)⊗ CD such that, for any n ∈ Zd, τnu = e−in.θu.

Let Hθ = (L2
loc(R

d)⊗ CD) ∩ D
′

θ, endowed with the norm on L2(C0)⊗CD. We also define, for k ∈ Z,

the spaces Hk
θ = (Hk

loc(R
d)⊗CD)∩D

′

θ, where H
k
loc(R

d)⊗CD is the space of distributions that locally

belong to the Sobolev space Hk(Rd)⊗ CD. In order to define the Fourier decomposition we will use

later, it remains to define the space:

H =
{
u ∈ (L2

loc(R
d)⊗ L2(T∗))⊗ C

D
∣∣ ∀(x, θ, n) ∈ R

d × T
∗ × Z

d, u(x+ n, θ) = ein.θu(x, θ)
}
,

endowed with the norm:

∀u ∈ H, ||u||H =
1

vol(T∗)

∫

T∗

||u(., θ)||L2(C0)⊗CD dθ.



9

For θ ∈ Rd and u ∈ L2(Rd)⊗ CD, we define Uu ∈ H by

∀x ∈ R
d, ∀θ ∈ T

∗, (Uu)(x, θ) =
∑

n∈Zd

ein.θ(τnu)(x) =
∑

n∈Zd

ein.θu(x− n). (2.13)

Actually, the expression (2.13) is well-defined for u ∈ S(Rd) ⊗ C
D, the Schwartz space, and by

Parseval theorem, this expression can be extended as an isometry from L2(Rd)⊗CD to H. For every

v ∈ H, we can define U∗, the inverse of U by:

∀x ∈ R
d, (U∗v)(x) =

1

vol(T∗)

∫

T∗

v(x, θ) dθ. (2.14)

Indeed, we have, for v ∈ H and x ∈ R
d,

(UU∗v)(x) =
∑

n∈Zd

ein.θ(U∗v)(x− n) =
∑

n∈Zd

ein.θ
1

vol(T∗)

∫

T∗

v(x− n, θ) dθ

=
∑

n∈Zd

ein.θ
1

vol(T∗)

∫

T∗

e−in.θv(x, θ) dθ =
∑

n∈Zd

ein.θv̂n(x) = v(x, θ).

Thus, U∗ is a left inverse for U which is an isometry from L2(Rd)⊗ CD to H, therefore U is unitary

and U∗ = U−1. To obtain a Floquet decomposition for the operator H , it remains to prove that the

operators U and H commute. As, for any j ∈ {1, . . . , d} and any n ∈ Zd, the partial derivation ∂j

commute with the translation τn, we have [∂j , U ] = 0. Thus, [−∆d ⊗ ID, U ] = 0. Then, using the

Zd-periodicity of W , we also have, for every u ∈ L2(Rd)⊗ CD, every x ∈ Rd and every θ ∈ T∗,

(U ◦W )(u)(x, θ) =
∑

n∈Zd

ein.θW (x− n)u(x− n) =
∑

n∈Zd

ein.θW (x)u(x− n)

= W (x)
∑

n∈Zd

ein.θu(x− n) = W (x)(Uu)(x, θ) = (W ◦ U)(u)(x, θ),

as at x fixed, the multiplication by W (x) ∈ SD(R) is continuous. Thus, [W,U ] = 0 and we finally

have [H,U ] = 0. As we can see, even in the matrix-valued case we still have that H and U commute.

Following [21], we deduce that H admits the Floquet decomposition:

UHU∗ =

∫ ⊕

T∗

Hθ dθ, (2.15)

where Hθ is the selfadjoint operator H acting on Hθ with domain H2
θ. Having this Floquet decompo-

sition, we can continue to follow [21] to obtain that Hθ has a compact resolvent. It is a consequence

on the assumptions made on the Lp-regularity of W which ensure that H is elliptic. As Hθ has a

compact resolvent, its spectrum is discrete and we denote by

E0(θ) ≤ E1(θ) ≤ . . . ≤ Ej(θ) ≤ . . .
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its eigenvalues, called the Floquet eigenvalues of H . Moreover, the functions θ 7→ Ej(θ), for j ∈ N,

are continuous and, if j tends to infinity, then Ej(θ) tends to +∞, uniformly in θ. Actually, as Hθ

depends analytically on θ, we also have that θ 7→ Ej(θ) is an analytic function in the neighborhood

of any point θ0 ∈ T∗ such that Ej(θ
0) is an eigenvalue of multiplicity one of Hθ0.

The set Ej(T
∗) is a closed interval called the j-th spectral band of H and the spectrum of H is given

by

σ(H) =
⋃

j∈N

Ej(T
∗).

If d ≥ 2, the bands can overlap, but it is not the case in dimension 1 (except maybe at an edge

point).

Remark II.1. Heuristically, the difference between the usual scalar-valued case (D = 1) and the

matrix-valued case is that they are “D times” more Floquet eigenvalues in the matrix-valued case

and thus the multiplicities of the Ej(θ)’s are a priori bigger in the matrix-valued case than in the

scalar-valued case.

We finish this section by proving a result of nondegeneracy of the minimum of the first Floquet

eigenvalue.

Proposition II.2. Let θ0 ∈ T
∗ be a minimum of θ 7→ E0(θ). Then, there exist δ > 0 and C > 0

such that

∀θ ∈ T
∗, |θ − θ0| < δ ⇒ C|θ − θ0|2 ≤ E0(θ)− E0(θ

0) ≤ |θ − θ0|2. (2.16)

This proposition means that a minimum of the function θ 7→ E0(θ) is always nondegenerate.

Proof. We will follow the ideas of [9] and [11] and adapt them to the matrix-valued case. Let

S(·, θ0) ∈ GLD(C) be the fundamental solution of the differential system Hθ0ψ = E0(θ
0)ψ. We have,

Hθ0S(·, θ
0) = E0(θ

0)S(·, θ0). (2.17)

We define a new scalar product on the space Hθ0 by:

∀f, g ∈ Hθ0, < f, g >θ0=

∫

C0

< S(x, θ0)f(x),S(x, θ0)g(x) >CD dx.

We denote by H̃θ0 the Hilbert space (Hθ0 , < ·, · >θ0). Then, for every θ ∈ T
∗, we define on H̃θ0 the

operator H̃θ of domain

D(H̃θ) =
{
u ∈ Hθ0 | S(·, θ0)u ∈ H2

θ

}
,
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and given by

∀u ∈ D(H̃θ), ∀x ∈ R
d, (H̃θu)(x) = S(x, θ0)−1(Hθ −E0(θ

0))(S(x, θ0)u)(x).

Let θ ∈ T∗. For every u ∈ D(H̃θ),

< u, H̃θu >θ0 =

∫

C0

< (S(x, θ0)u)(x), (Hθ − E0(θ
0))(S(x, θ0)u)(x) >CD dx

=
D∑

i=1

∫

C0

((S(x, θ0)u)(x))i ((Hθ − E0(θ0))(S(x, θ0)u)(x))idx,

where (v)i denote the i-th coordinate of the vector v ∈ CD. Let i ∈ {1, . . . , D}. Since S(x, θ0) is

invertible for every x ∈ C0, one can perform the same change of coordinates in
∫

C0

((S(x, θ0)u)(x))i ((Hθ − E0(θ0))(S(x, θ0)u)(x))idx

than the one done in [6, (4.6)]. Then we can follow the proof of [6, Proposition 4.4D] to obtain :
∫

C0

((S(x, θ0)u)(x))i ((Hθ − E0(θ0))(S(x, θ0)u)(x))idx =

∫

C0

((S(x, θ0)∇u)(x))i ((S(x, θ0)∇u)(x))idx

and thus, by summing over i ∈ {1, . . . , D},

∀u ∈ D(H̃θ), < u, H̃θu >θ0= ||∇u||2θ0. (2.18)

We have, using (2.18) at the second equality, for every u ∈ D(H̃θ),

(E0(θ)− E0(θ
0)) < u, u >θ0 = < u,E0(θ)u >θ0 − < u,S(x, θ0)−1HθS(x, θ

0)u >θ0

+ < u,S(x, θ0)−1(Hθ − E0(θ
0))S(x, θ0)u >θ0

= − < u,S(x, θ0)−1(Hθ −E0(θ))S(x, θ
0)u >θ0 +||∇u||2θ0. (2.19)

Since, by definition, E0(θ) is the smallest eigenvalue of the compact resolvent operator Hθ, one has

< u,S(x, θ0)−1(Hθ −E0(θ))S(x, θ
0)u >θ0=

∫

C0

< (S(x, θ0)u)(x), (Hθ − E0(θ))(S(x, θ
0)u)(x) >CD dx ≥ 0.

Thus,

∀u ∈ D(H̃θ), (E0(θ)− E0(θ
0))||u||2θ0 ≤ ||∇u||2θ0. (2.20)

Moreover, if one choose u0 = S(·, θ0)−1S(·, θ)(1, 0, . . . , 0), then S(·, θ0)u0 is an eigenfunction of Hθ

associated to E0(θ) and < u0,S(·, θ
0)−1(Hθ − E0(θ))S(·, θ

0)u0 >θ0= 0. For such a particular u0,

(E0(θ)−E0(θ
0))||u0||

2
θ0 = ||∇u0||

2
θ0 and we have

E0(θ)− E0(θ
0) = inf

{
||∇u||2θ0
||u||2θ0

; u ∈ D(H̃θ)

}
. (2.21)
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Now we choose an other particular u1 in Hθ0 : u1 = (0, . . . , 0, ei(θ−θ0)·, 0 . . . , 0). Then,

||∇u1||
2
θ0 = ||(θ − θ0)(0, . . . , 0, ei(θ−θ0)·, 0 . . . , 0)||2θ0 = |θ − θ0|2||u1||θ0.

Setting this u1 in (2.21), one gets

E0(θ)−E0(θ
0) ≤

||∇u1||
2
θ0

||u1||2θ0
= |θ − θ0|2. (2.22)

To prove the lower bound in (2.16), let u2 ∈ D(H̃θ) be such that

||∇u2||
2
θ0

||u2||2θ0
= E0(θ)−E0(θ

0). (2.23)

The vector u2 is a vector where u 7→< u, H̃θu >θ0 is minimal. Since {Hθ}θ∈T∗ is an analytic family

of operators, one can use its Taylor expansion near θ0 to write

∃δ > 0, ∃C > 0, ∀θ ∈ T
∗, |θ − θ0| < δ,

∫

C0

< (S(x, θ0)u2)(x), (Hθ −E0(θ
0))(S(x, θ0)u2)(x) >CD dx

≥

∫

C0

< (S(x, θ0)u2)(x), (Hθ0 − E0(θ
0))(S(x, θ0)u2)(x) >CD dx (2.24)

+(θ − θ0)

d∑

j=1

∂

∂θj

∫

C0

< (S(x, θ0)u2)(x), Hθ(S(x, θ
0)u2)(x) >CD dx

∣∣∣∣
θ=θ0

(2.25)

+C|θ − θ0|2
∫

C0

< (S(x, θ0)u2)(x), (S(x, θ
0)u2)(x) >CD dx (2.26)

≥ C|θ − θ0|2||u2||
2
θ0. (2.27)

Indeed, the integral in (2.24) is equal to zero by definition of S(·, θ0). Moreover, the derivatives in

(2.25) vanish since θ0 is where θ 7→ E0(θ) is minimal and u2 verifies (2.23). Finally, for the inequality

and the existence of C > 0 in (2.26), one uses a compactness argument as in the proof of [11,

Proposition 1.1]. So we have

∃δ > 0, ∃C > 0, ∀θ ∈ T
∗, |θ − θ0| < δ,

< u2, H̃θu2 >θ0

||u2||2θ0
≥ C|θ − θ0|2. (2.28)

Using (2.18), (2.22), (2.23) and (2.28), one finally gets :

∃δ > 0, ∃C > 0, ∀θ ∈ T
∗, |θ−θ0| < δ, C|θ−θ0|2 ≤

< u2, H̃θu2 >θ0

||u2||2θ0
=

||∇u2||
2
θ0

||u2||2θ0
= E0(θ)−E0(θ

0) ≤ |θ−θ0|2,

which achieves the proof.
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B. Wannier basis

We recall concepts used in [11, 15]. Let E ⊂ L2(Rd) ⊗ CD be a closed subspace, invariant by

Z
d-translations, i.e., for every n ∈ Z

d, ΠE = τ ∗nΠ
Eτn, where ΠE is the orthogonal projection on E .

As ΠE is Zd-periodic, it admits a Floquet decomposition similar to the one of H and, using the

orthogonality, one gets:

ΠE =

∫ ⊕

T∗

ΠE
θ dθ,

where ΠE
θ is the operator ΠE acting on Hθ. The operator ΠE

θ is therefore an orthogonal projection

acting on L2(C0)⊗C
D. As for (Hθ)θ∈T∗ , the family (ΠE

θ )θ∈T∗ is continuous in θ and thus is of constant

rank. If we fix θ ∈ T∗, we can find an orthonormal system (wm,0)m∈M , with M ⊂ N a set of indices

independent of θ, that spans the range of ΠE
θ . Taking the image by U∗ of this orthonormal system, one

gets an orthonormal system (w̃m,0)m∈M . If we set, for n ∈ Zd, w̃m,n = τn(w̃m,0), then (w̃m,n)(m,n)∈M×Zd

is an orthonormal basis of E . Such a system is called a Wannier basis of E . The vectors (w̃m,0)m∈M

are called the Wannier generators of E .

Let E ⊂ L2(Rd)⊗CD be a space which is invariant by Zd-translations. The closed subspace E is said

to be of finite energy for H if ΠEHΠE is a bounded operator. In this case, E admits a finite set of

Wannier generators. We now assume that E is of finite energy for H .

Let J0 be the set of indices of the Floquet eigenvalues of H which take the value 0 for some values

of θ ∈ T∗. We identify J0 to {1, ..., n0}. Let Z be the set of θ ∈ T∗ for which there exists j ∈ J0 such

that, Ej(θ) = 0. When θ0 is a nondegenerate minimum of Ej, Z is a set of isolated points (see [11]).

It occurs when the density of states n has a nondegenerate behavior at 0 (see [10]). For j ∈ J0, we

define Zj = {θ ∈ T∗ ; Ej(θ) = 0}. The sequence (Zj)j∈J0 is decreasing for the inclusion and Z1 = Z.

For θ0 ∈ Z, Mθ0 ⊂ N is the set of indices such that Ej(θ
0) = 0.

We will denote by wj(·, θ) a Floquet eigenvector associated with the Floquet eigenvalue Ej(θ) of H .

For (θ, θ′) ∈ (T∗)2, we define Tθ→θ′ : Hθ → Hθ′ by:

∀v ∈ Hθ, ∀x ∈ R
d, (Tθ→θ′v)(x) = eix·(θ

′−θ)v(x).

Lemma II.3. There exists (vj(·, θ))j∈J0, a family of functions on Hθ, such that:

1) for θ0 ∈ Z and j ∈ Mθ0, there exists Vθ0 a neighborhood of θ0 in T∗ such that the map θ ∈ Vθ0 7→

vj(·, θ) ∈ Hθ is real analytic (i.e. θ 7→ Tθ→θ0vj(·, θ) is analytic as a function from Vθ0 to Hθ0) and,

for θ ∈ Vθ0, span〈(vj(·, θ))j∈Mθ0
〉 = span〈(wj(·, θ))j∈M

θ0
〉.

2) For θ ∈ T∗, the system (vj(·, θ))j∈M
θ0
is orthonormal in Hθ and span〈(wj(·, θ))j∈J0〉 = span〈(vj(·, θ))j∈J0〉.
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Proof. We refer to [11, 15], Lemma 3.1.

In the next section, we will use this notion of Wannier basis and the notations we have just introduce

to reduce our problem on estimating N(E)−N(0+) to a discrete problem.

III. REDUCTION OF THE PROBLEM

The goal of this section is to give an estimate of N(E)−N(0+) for an energy E close to 0. This

will be accomplished by means of the IDS of certain reference operators, which are discrete operators.

In this section we will use the notations introduced in Section II.

A. Reduction to a discrete problem

The reduction procedure consists into decomposing the operatorHω according to various translation-

invariant subspaces. The random operators thus obtained are what we consider as reference operators.

They will be used to prove the upper bound on the IDS.

We denote by Π0(θ) the orthogonal projection in Hθ on the vector space generated by (wj(·, θ))j∈J0.

One defines

Π0 = U−1
(∫

T∗

Π0(θ)dθ
)
U : L2(Rd)⊗ C

D → L2(Rd)⊗ C
D. (3.29)

Π0 is an orthogonal projection on L2(Rd)⊗ CD and, for every n ∈ Zd, we have τ ∗nΠ0τn = Π0. Thus,

Π0 is Zd-periodic. We set E0 = Π0(L
2(Rd)⊗ CD). This space is translation-invariant because of the

Zd-periodicity of Π0. Moreover E0 is of finite energies for H as defined in (1.6). The main result

justifying this reduction procedure is the following theorem which compares E 7→ N(E), the IDS of

Hω, to E 7→ NE0 , the IDS of the discretize operator H0
ω = Π0HωΠ0.

Theorem III.1. Let Hω be defined by (1.5) with the assumptions (H1), (H2) and (H3). There exist

ε > 0 and C > 1 such that, for 0 ≤ E ≤ ε we have

0 ≤ N(E)−N(0+) ≤ NE0(C ·E), (3.30)

where NE0 is the IDS of the discretized operator H0
ω = Π0HωΠ0.

Proof. See Theorem 4.1 in [11].
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B. Periodic approximations

In order to get bounds on the density of states of Π0HωΠ0, we will now define periodic approxi-

mations of the operator Hω. For these approximations, we will be able to control the density of state

near 0 by comparing it to some reduced operators. Then by taking a limit on the density of state

of the reduced operators, we can get bounds on the density of states of Π0HωΠ0 and thus on the

density of states of Hω itself by using Theorem III.1. Let k an integer larger than 1. We define the

following periodic operator

Hω,k = −∆d ⊗ ID +W (x) +
∑

n∈Ck∩Zd

∑

β∈(2k+1)Z




ω
(n)
1 V1(x−(n+β)) 0

...
0 ω

(n)
D VD(x−(n+β))



 . (3.31)

The operator Hω,k is (2k + 1)Zd-periodic and essentially selfadjoint. It is an H-bound perturbation

of H with relative bound zero. Because of the (2k + 1)Zd-periodicity, we introduce the torus T∗
k =

Rd/(2(2k + 1)πZd). We also define Nω,k, the IDS of Hω,k by

Nω,k(E) =
1

(2π)d

∑

j∈N

∫

{θ∈T∗

k
, Eω,k,j(θ)≤E}

dθ. (3.32)

where Eω,k,j is the j-th Floquet eigenvalue of the periodic operator Hω,k. Let dNω,k be the derivative

of Nω,k, in the distribution sense. As E 7→ Nω,k(E) is an increasing function, dNω,k is a positive

measure, it is the density of states of Hω,k. Then, by [11, 21], for every ϕ ∈ C∞
0 (R), the distribution

dNω,k verifies

〈ϕ, dNω,k〉 =
1

(2π)d

∫

θ∈T∗

k

trHθ

(
ϕ(Hω,k,θ)

)
dθ,=

1

vol(Ck)
tr
(
1Ck

ϕ(Hω,k)1Ck

)
, (3.33)

where tr(A) is the trace of a trace-class operator A. We index this trace by Hθ if the trace is taken

in Hθ and here, the operator 1Ck
ϕ(Hω,k) is a trace-class operator. The proof of (3.33) is given in [11,

Proposition 5.1].

We want to take a limit on the density of states dNω,k of the periodic approximations in order to

recover properties of the density of states of Hω from properties of dNω,k. The following theorem

ensure that it is possible.

Theorem III.2. 1) For any ϕ ∈ C∞
0 (R) and for almost every ω ∈ Ω, we have

lim
k→∞

〈ϕ, dNω,k〉 = 〈ϕ, dN〉.

2) For any E ∈ R a continuity point for N , we have lim
k→∞

E(Nω,k(E)) = N(E).

Proof. The result of Theorem III.2 is close to that of Theorem 5.1 of [11]. The proof is also similar

and is based on functional analysis.
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IV. PROOF OF THEOREM I.5

We will proceed in two steps. First, we will prove a lower bound and then an upper bound.

A. Lower bound

In this subsection we prove

Theorem IV.1. Let Hω, be the operator defined by (1.5) with the assumptions (H1), (H2) and

(H3). We have

lim inf
E−→0+

log
∣∣∣ log

(
N(E)−N(0+)

)∣∣∣
logE

≥ −
d

2
. (4.34)

The proof of Theorem IV.1: As 0 is the bottom of the spectrum, for ε > 0 we have N(ε)−N(0) =

N(ε)− N(−ε). To prove Theorem IV.1, we will lower bound N(ε)− N(−ε). Then, for L large, we

will show that Hω,CL
(we recall that Hω,CL

is Hω restricted to CL with Dirichlet boundary conditions)

has a large number of eigenvalues in [−ε, ε] with a large probability. To do this we will construct a

family of approximate eigenvectors associated to approximate eigenvalues of Hω,CL
in [−ε, ε]. These

functions will be constructed from an eigenvector of −∆d ⊗ ID +W (x) associated to 0. Locating

this eigenvector in θ and imposing to ω
(n)
1 to be small for n in some well chosen box, one obtains an

approximate eigenfunction of Hω,CL
. Locating the eigenfunction in x in several disjointed places, we

get several eigenfunctions two by two orthogonal.

In order to simplify the notations, we assume in what follows that θ0 = 0 is a point where E0(θ)

reaches 0. From the same arguments as in [15] and using Proposition II.2, there exists C > 0 such

that, for f̃(·, θ) := (f1(·, θ), · · · , fD(·, θ)) = v1(·, θ) in L
2(Rd) ⊗ CD, (v1 is the vector constructed in

Lemma II.3) one has

||(−∆d ⊗ ID +W (x))f̃(·, θ)||L2(C0)⊗CD ≤ C|θ|2. (4.35)

This is due to the fact that locally near θ = 0, we can reduce the study of −∆d ⊗ ID +W (x) which

is analytic in θ and is equal to 0 when θ = 0 and to the use of (2.16) and (2.17).

We assume, without loss of generality, that f1 6= 0 and we set

f(·, θ) =
f1(·, θ)

|θ1|
(1, 0, · · · , 0). (4.36)

Let 0 < ξ < 1 be a small constant. Let χ ∈ C∞
0 (R) being positive, supported in [ ξ

2
, ξ] and such that∫

[ ξ
2
,ξ]

χ(t)2dt = 2.
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For ε > 0, we define

Wε(θ) = ε−d/4

d∏

j=1

χ(ε−
1
2θj) ∈ L2(T∗) and Wf

ε (·, θ) = Wε(θ) · f(·, θ) ∈ L2(C0)⊗ C
D. (4.37)

Now let us estimate ||(−∆d ⊗ ID +W (x))Wf
ε ||

2
H. We have

||(−∆d ⊗ ID +W (x))Wf
ε ||

2
H =

1

vol(T∗)

∫

T∗

||(−∆d ⊗ ID +W (x))(θ)f(·, θ)||2L2(C0)⊗CD |Wε(θ)|
2dθ.

So using (4.35) and (4.37), we get

||(−∆d ⊗ ID +W (x))Wf
ε ||

2
H ≤ C2

∫

T∗

|θ|4| Wε(θ)|
2dθ ≤ C2ε2

∫

[ ξ
2
,ξ]d

|θ|4
d∏

j=1

χ2(θj)dθ ≤
ε2

8
, (4.38)

if ξ is small enough. For β ∈ Zd, we define

Wf
ε,β(·, θ) = e−iβ·θWf

ε (·, θ) and Wf
α,ε,β,ζ(·, θ) = e−iβ·θ(ΠΛα(ζ)W

f
ε )(·, θ),

where Λα(ζ) is the cube defined by

Λα(ζ) =
{
n ∈ Z

d
∣∣∣ for 1 ≤ j ≤ d, |nj | ≤ ζ−( 1

2
+α)
}

and ΠΛα(ζ) is the orthogonal projection on Λα(ζ), i.e it is the operator of orthogonal projection on

L2(T∗) on the space spanned by vectors θ → eiγθ, γ ∈ Λα(ζ).

We set

Uf
ε,β(x) =

∫

T∗

Wf
ε,β(x, θ)dθ and Uf

α,ε,β,ζ(x) =

∫

T∗

Wf
α,ε,β,ζ(x, θ)dθ.

For L large and β and (ω
(n)
1 )n∈Zd well chosen, Uf

α,ε,β,ζ will be an approximate eigenfunction of Hω,CL

associated to an approximate eigenvalue in the interval [−ε, ε].

We notice that Uf
α,ε,β,ζ ∈ L2(Rd)⊗ C

D and Uf1
α,ε,β,ζ ∈ L2(Rd). As in [15] one gets that

∣∣∣∣Uf
α,ε,β,ζ

∣∣∣∣
L2(Rd)⊗CD ≥

∣∣∣∣Uf1
α,ε,β,ζ

∣∣∣∣
L2(Rd)

> C > 0.

Now we have to look to the conditions under which we have
∣∣∣
∣∣∣
(
−∆d ⊗ ID +W (x)

)
Uf
α,ε,β,ζ

∣∣∣
∣∣∣
2

L2(Rd)⊗CD
≤ ε2. (4.39)

Note that
∣∣∣
∣∣∣Hω,CL

Uf
α,ε,β,ζ

∣∣∣
∣∣∣
2

L2(Rd)⊗CD
≤
∣∣∣
∣∣∣Hω · Uf

α,ε,β,ζ

∣∣∣
∣∣∣
2

L2(Rd)⊗CD

≤ 2
∣∣∣
∣∣∣
(
−∆d ⊗ ID +W (x)

)
Uf
α,ε,β,ζ

∣∣∣
∣∣∣
2

L2(Rd)⊗CD
+ 2
∣∣∣
∣∣∣VωUf

α,ε,β,ζ

∣∣∣
∣∣∣
2

L2(Rd)⊗CD
.(4.40)

Equation (4.39) give the bound on the first member of (4.40). It just remains to control the second

term. To do so, one needs the following lemma
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Lemma IV.2. Let ζ = ε. There exists K > 0, such that
∣∣∣
∣∣∣Vω · Uf

α,ε,β,ε

∣∣∣
∣∣∣
2

L2(Rd)⊗CD
≤ ε4 +K ·

(
sup

n∈β+2Λα(ε)

ω
(n)
1

)2
. (4.41)

Before proving this lemma let us use it to finish the proof of Theorem IV.1.

Taking (4.39) and (4.40) into account, we get that there exists K > 0 such that
∣∣∣
∣∣∣Hω · Uf

α,ε,β,ε

∣∣∣
∣∣∣
2

≤ 4ε2 +K
(

sup
n∈β+2Λα(ε)

ω
(n)
1

)2
. (4.42)

Now, for L large, we may divide CL into L(ε) disjoints cubes of size 2Λα(ε). For α <
1
2
, there exists

C > 0 such that L(ε) satisfies

L(ε) ≃
(2L)d

ε−d( 1
2
+α)

≥
(Lε)d

C
. (4.43)

We can find β1, . . . , βL(ε) in Zd such that :

L(ε)⋃

j=1

(βj + 2Λα(ε)) ⊂ CL and, for j 6= j′, (βj + 2Λα(ε)) ∩ (βj′ + 2Λα(ε)) = ∅.

In particular, for j 6= j′, Uf
α,ε,βj,ε

and Uf
α,ε,βj′ ,ε

are orthogonal. Then,

E

(
#
{
eigenvalues of ΠCL

HωΠCL
in [−ε, ε]

})
≥ E

(
#
{
j ∈ {1, . . . , L(ε)}

∣∣∣ ||HωU
f
α,ε,βj ,ε

||L2(Rd)⊗CD ≤ ε
})

≥ E




L(ε)∑

j=1

Bj(ω)


 , (4.44)

where

Bj(ω) =






1 if K ·
(
supn∈βj+2Λα(ε) ω

(n)
1

)2
≤ ε2

2
.

0 if not.

The (Bj)1≤j≤L(ε) are i.i.d. Bernoulli random variables. So equations (4.44) and (4.43) imply that

there exists C > 0 such that one has

1

(2L+ 1)d
E

(
#
{
eigenvalues of ΠCL

HωΠCL
in [−ε, ε]

})
≥

L(ε)

(2L+ 1)d
P(B1 = 1) ≥

1

C
εdP(B1 = 1).

Hence, taking the limit L→ ∞, we get that, for ε > 0 small,

N(ε)−N(−ε) ≥
1

C
εdP(B1 = 1). (4.45)

It just remains to estimate P(B1 = 1). If, for 1 ≤ j ≤ L(ε) and n ∈ βj +2Λα(ε), one has ω
(n)
1 ≤

ε · ε

2K
,

then for ε rather small

K
(

sup
n∈βj+2Λα(ε)

ω
(n)
1

)2
≤
ε2

2
.
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As the random variables are i.i.d., one has the estimate

P(B1 = 1) ≥ P̃1

(
ω
(0)
1 ≤

ε

2K

)#(2Λα(ε))

.

Hence, taking the double logarithm of (4.45), using assumption (H3) and the fact that #(2Λα(ε)) ≃

ε−(d
2
+d·α), we get that

lim
ε→0+

log
∣∣∣ log

(
N(ε)−N(0)

)∣∣∣
log ε

≥ −
d

2
− dα. (4.46)

The equation (4.46) is true for any α > 0, by letting α tend to 0, we end the proof of Theorem IV.1.

2

It remains to prove Lemma IV.2 to finish this section on the lower bound.

The proof of Lemma IV.2. We have :

∣∣∣
∣∣∣Vω · Uf

α,ε,β,ε

∣∣∣
∣∣∣
2

L2(C0)⊗CD
.
∣∣∣
∣∣∣
∑

n∈Zd

ω
(n)
1 V1(x− n)Uf1

α,ε,β,ε

∣∣∣
∣∣∣
2

L2(C0)
. (4.47)

Then, ∣∣∣
∣∣∣
∑

n∈Zd

ω
(n)
1 V1(x− n)Uf1

α,ε,β,ε

∣∣∣
∣∣∣
2

. ε5 +

∫

Rd

(∑

n∈Zd

ω
(n)
1 V1(x− n)

)2∣∣∣Uf1
ε,β(x)

∣∣∣
2

dx. (4.48)

Here we used the fact that Uf1
α,ε,β,ε and Uf1

ε,β are close to each other.

We set

Sβ,ε ≤ K
∑

η∈Zd




∑

n∈η+Λα(ε)

ω
(n)
1




2

·

∫

C0

∣∣∣Uf1
ε,η−β(x)

∣∣∣
2

dx. (4.49)

So for our choice of f1 and using the fact that V1 is supported in C0, we deal with a with a simple

quantity to control using the non-stationary phase and which was already estimated in [11, 15].2

To finish the proof of Theorem I.5, it remains to prove the upper bound.

B. Upper bound

We start this section by recalling that, as we deal with the bottom of the spectrum, we have non-

degeneracy of the first Floquet eigenvalue at the bottom of the spectrum as shown in Proposition

II.2. Using this, we prove the following theorem:

Theorem IV.3. Let Hω be the operator defined by (1.5) with the assumptions (H1), (H2) and (H3).

Then

lim sup
E−→0+

log | log(N(E)−N(0+))|

logE
≤ −

d

2
.
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The proof of Theorem IV.3. To prove the upper bound, it is enough to prove the same upper

bound on NE0 (as defined in Theorem III.1). To do this, we show that NE0 (and so N) may be

compared to the IDS of some well chosen discrete Anderson model whose behavior of its IDS is

already known.

We begin by isolating the contributions from the various points for which Ej(θ) take the value 0. We

recall that the band at 0 is generated by (Ej(θ))1≤j≤n0. For 1 ≤ j ≤ n0, Zj = {θ ∈ T∗;Ej(θ) = 0}.

The sequence (Zj)1≤j≤n0 is decreasing (Zj+1 ⊂ Zj). Let θ0 ∈ Z. We set j(θ0) = supMθ0 with

Mθ0 = {j ; 1 ≤ j ≤ n0, Ej(θ
0) = 0}. We replace the Floquet eigenvectors (wj(·, θ))1≤j≤j(θ0) associated

to (Ej(θ))1≤j≤j(θ0) by the vectors (vj(·, θ))1≤j≤j(θ0) constructed in Lemma II.3. They are analytic in a

neighborhood Vθ0 of θ
0. Let θ be close to θ0. The operator H0(θ) = Π0H(θ)Π0 is unitarily equivalent

to the multiplication operator by a function on L2(T∗) with values in Mn0(C). This matrix-valued

function takes the following block diagonal form :




Bj(θ0)(θ) 0 0 ... 0

0 Ej(θ0)+1(θ) 0 ... 0

0 0
. . .

. . . :

0 0 ... 0 En0(θ)



,

where the matrix Bj(θ0)(θ) is of size j(θ
0)× j(θ0) and is given by




〈v1(·, θ), H(θ)v1(·, θ)〉L2(C0)⊗CD ... 〈v1(·, θ), H(θ)vj(θ0)(·, θ)〉L2(C0)⊗CD

:
. . . :

〈vj(θ0)(·, θ), H(θ)v1(·, θ)〉L2(C0)⊗CD ... 〈vj(θ0)(·, θ), H(θ)vj(θ0)(·, θ)〉L2(C0)⊗CD


 .

The matrix Bj(θ0)(θ) has (Ej(θ))1≤j≤j(θ0) for eigenvalues. The operator V 0
ω = Π0VωΠ0 is unitarily

equivalent to the multiplication operator by the matrix with entries (〈Vωvi, vj〉)1≤i,j≤n0.

For u ∈ L2(T∗)⊗ C
D, Π0u =

∑n0

i=1〈u, vi〉L2(C0)⊗CDvi. For θ
0 ∈ Z, we set

̟θ0(θ) =
d∑

j=1

(
1− cos(θj − θ0j )

)
.

We recall that the eigenvalues (Ej(θ))1≤j≤j(θ0) are non-degenerate at 0. So there exists Ṽθ0 (an open

neighborhood of θ0) and C > 1 such that, for θ ∈ Ṽθ0 , we have, for 1 ≤ j ≤ j(θ0), CEj(θ) ≥ ̟θ0(θ)

and, for j ≥ j(θ0), CEj(θ) ≥ 2d. We remark that the neighborhood Ṽθ0 can be chosen such that

Vθ0 ⊂ Ṽθ0 , where Vθ0 was defined in Lemma II.3.
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Let Hb
θ0(θ) be the n0 × n0 diagonal matrix with identical diagonal entries equal to ̟θ0 . For θ ∈ Ṽθ0 ,

we have

Hb
θ0(θ) ≤ C ·H0(θ). (4.50)

Finally, we note that (Ṽθ0)θ0∈Z can be chosen so that they cover T∗, (i.e. ∪θ0∈Z Ṽθ0 = T
∗) and such

that each one of them contains only one point of Z (i.e. for θ ∈ Z, θ′ ∈ Z such that θ 6= θ′, we have

θ′ /∈ Ṽθ). We order the points in Z = {θk; 1 ≤ k ≤ m0}, wherem0 = #Z. Let (χk)1≤k≤m0 be functions

in C∞(T∗) which form a partition of the unity on T∗ such that, for 1 ≤ k ≤ m0, supp (χk) ⊂ Ṽθk ,

0 ≤ χk ≤ 1 and χk ≡ 1 in a neighborhood of θk.

So there exists C > 1 such that, for any θ ∈ T∗, we have,

1

m0
≤

m0∑

k=1

χ2
k ≤ 1 and

m0∑

k=1

Hb
θk(θ)χ

2
k ≤ CH0(θ). (4.51)

For t ∈ (L2(T∗) ⊗ CD) ⊗ Cn0 ⊗ Cm0 , we set t = (tj,k)1≤j≤n0;1≤k≤m0. We consider t as a system

of m0 columns denoted by (t.,k)1≤k≤m0 . Each column belongs to (L2(T∗) ⊗ CD) ⊗ Cn0 . We endow

(L2(T∗)⊗ CD)⊗ Cn0 ⊗ Cm0 with the scalar product generating the following Euclidean norm:

∥∥∥t
∥∥∥
2

(L2(T∗)⊗CD)⊗Cn0⊗Cm0
=

m0∑

k=1

∥∥∥t·,k
∥∥∥
2

(L2(T∗)⊗CD)⊗Cn0
=

∑

1≤j≤n0,1≤k≤m0

∥∥∥tj,k
∥∥∥
2

L2(T∗)⊗CD
.

We define the mapping S : (L2(T∗)⊗ C
D)⊗ C

n0 −→ (L2(T∗)⊗ C
D)⊗ C

n0 ⊗ C
m0 by

S(t) = (χkt)1≤k≤m0 = (χktj)1≤j≤n0, 1≤k≤m0 , if t = (tj)1≤j≤n0 ∈ (L2(T∗)⊗ C
D)⊗ C

n0 .

Here, for any 1 ≤ j ≤ n0, tj = (tij)1≤i≤D ∈ L2(T∗)⊗ C
D.

The adjoint of S, S∗ : (L2(T∗)⊗ CD)⊗ Cn0 ⊗ Cm0 −→ (L2(T∗)⊗ CD)⊗ Cn0 is defined by

S∗(t) =

(
∑

1≤k≤m0

χktj,k

)

1≤j≤n0

for t = (tj,k)1≤j≤n0;1≤k≤m0 ∈ (L2(T∗)⊗ C
D)⊗ C

n0 ⊗ C
m0 .

Here, for any 1 ≤ j ≤ n0 and any 1 ≤ k ≤ m0, we have tj,k = (ti,j,k)1≤i≤D. According to equation

(4.51) we have 1
m0
I ≤ S∗ ◦ S ≤ I, (here I is the identity in (L2(T∗) ⊗ CD) ⊗ Cn0), thus S is one to

one. Using the boundedness assumption on the Vi and on the support of the ω
(n)
i , one shows the

following lemma:

Lemma IV.4. There exists C > 0 such that, for t ∈ (L2(T∗)⊗ CD)⊗ Cn0, we have

〈Ha
ωS(t), S(t)〉(L2(T∗)⊗CD)⊗Cn0⊗Cm0 ≤ C〈H0

ωt, t〉(L2(T∗)⊗CD)⊗Cn0 ,
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where the operator Ha
ω acting on (L2(T∗)⊗ CD)⊗ Cn0 ⊗ Cm0 is defined by

Ha
ωt =

(
Ha

k ti,j,k + V a
ω,iti,j,k

)

1≤i≤D, 1≤j≤n0, 1≤k≤m0

.

Here, Ha
k is the multiplication by ̟θk acting as a multiplication operator on L2(T∗), V a

ω,i =
∑

n∈Zd ω
(n)
i Πn, where Πn is the orthogonal projection on the vector θ 7→ einθ in L2(T∗), and H0

ω is de-

fined in Section IIIA. For A = (ai,j)1≤i,j≤n0, and t ∈ (L2(T∗)⊗CD)⊗Cn0 , At ∈ (L2(T∗)⊗CD)⊗Cn0,

with (At)j =
∑n0

i=1 aj,iti

The proof of this lemma follow the same steps as Lemma 5.5 in [15]. We use it to end the proof of

Theorem IV.3. Let us first notice that the operator Ha
ω could be written as a direct sum of n0 copies

of m0 × D random scalar-valued continuous Anderson models. Indeed, we can write

(L2(T∗)⊗ C
D)⊗ C

n0 ⊗ C
m0 =

⊕

1≤i≤D, 1≤j≤n0, 1≤k≤m0

L2(T∗)⊗ C̃i ⊗ C̃j ⊗ C̃k.

Here, for 1 ≤ j ≤ l, we use the notation C̃j = {0}j−1 × C× {0}l−j. So Ha
ω is unitarily equivalent to

⊕

1≤i≤D, 1≤j≤n0, 1≤k≤m0

HAnd
ω,i,k,

Here HAnd
ω,i,k acts on L2(T∗)⊗ C̃i ⊗ C̃j ⊗ C̃k. Using the discrete Fourier transformation, we get that for

every k ∈ {1, . . . , m0}, H
And
ω,i,k is unitarily equivalent to hAnd

ω,i , where h
And
ω,i acts on ℓ2(Zd) and is defined

by

hAnd
ω,i = −∆Zd +

∑

n∈Zd

ω
(n)
i πn. (4.52)

Here, if δn is the vector (δnm)β∈Zd where δnm is the Kronecker’s symbol, then πn is the orthogonal

projection on δn and −∆Zd is the discrete Laplacian defined by :

∀u ∈ l2(Zd), (∆Zdu)n =
1

2

∑

|m−n|=1

(un − um). (4.53)

Using the fact that for operators A and B, we have N(A ⊕ B,E) = N(A,E) + N(B,E) (see [19]),

we get that

NE0(ε) ≤ n0 ×m0 ×
D∑

i=1

N(hAnd
ω,i , C.m0.ε). (4.54)

To satisfy assumptions of [22], we set, for every i ∈ {1, . . . ,D}, si = supn∈Zd ω
(n)
i and :

∀i ∈ {1, . . . ,D}, ω̃
(n)
i =





0 if ω

(n)
i ∈ [0, si/2]

si/2 if ω
(n)
i ∈ (si/2, si]
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By changing ω
(n)
i into ω̃

(n)
i in (4.52), we define a new operator which we denote by h̃And

ω,i . We notice

that h̃And
ω,i lower bound hAnd

ω,i with the same bottom of the spectrum. As it is known that each h̃And
ω,i

exhibits Lifshitz tails with Lifshitz exponent −d/2 (see [7, 22]), using Theorem III.1 and (4.54), we

get that

lim sup
ε−→0+

log | log(N(ε)−N(0+))|

log ε
≤ −

d

2
.

This ends the proof of Theorem IV.3.2
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