
HAL Id: hal-00640584
https://hal.science/hal-00640584v1

Submitted on 31 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using camlp4 for presenting dynamic mathematics on
the web: DynaMoW, an OCaml language extension for
the run-time generation of mathematical contents and

their presentation on the web
Frédéric Chyzak, Alexis Darrasse

To cite this version:
Frédéric Chyzak, Alexis Darrasse. Using camlp4 for presenting dynamic mathematics on the web: Dy-
naMoW, an OCaml language extension for the run-time generation of mathematical contents and their
presentation on the web. ICFP 2011 - 16th ACM SIGPLAN International Conference on Functional
Programming, Sep 2011, Tokyo, Japan. pp.259-265, �10.1145/2034773.2034809�. �hal-00640584�

https://hal.science/hal-00640584v1
https://hal.archives-ouvertes.fr

Using Camlp4 for Presenting Dynamic Mathematics on
the Web: DynaMoW, an OCaml Language Extension

for the Run-Time Generation of Mathematical
Contents and their Presentation on the Web

An experience report

Frédéric Chyzak ∗

INRIA (Rocquencourt, France)

frederic.chyzak@inria.fr

Alexis Darrasse ∗

LIP6 (Paris, France)

alexis.darrasse@lip6.fr

Abstract

We report on the design and implementation of a program-
ming tool, DynaMoW, to control interactive and incremen-
tal mathematical calculations to be presented on the web.
This tool is implemented as a language extension of OCaml
using Camlp4. Fragments of mathematical code written for
a computer-algebra system as well as fragments of math-
ematical web documents are embedded directly and natu-
rally inside OCaml code. A DynaMoW-based application is
made of independent web services, whose parameter types
are checked by the OCaml extension. The approach is il-
lustrated by two implementations of online mathematical
encyclopedias on top of DynaMoW.

Categories and Subject Descriptors D.1.1 [PROGRAM-
MING TECHNIQUES]: Applicative (Functional) Program-
ming; H.3.5 [INFORMATION STORAGE AND RETRIEV-
AL]: On-line Information Services; I.1.3 [SYMBOLIC AND
ALGEBRAIC MANIPULATION]: Languages and Systems

General Terms Languages, Web Applications, Computer
Algebra, Symbolic Computation

Keywords mathematical encyclopedias, quotations, an-
tiquotations, metaprogramming, web services

1. Introduction

The communication of scientific knowledge is still commonly
carried out via written media. Such documents are essen-
tially fixed, even though they can now and then be brought
up to date through successive editions. In contrast, the web

∗ Frédéric Chyzak was partially supported by the Microsoft Re-
search – INRIA Joint Centre and most of the work was done when
Alexis Darrasse was a postdoctoral fellow there.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0865-6/11/09. . . $10.00

has in recent times allowed a rapid and reactive diffusion
of information, as well as an interactive access to electronic
content. Encyclopedias and handbooks specialised in spe-
cific fields of mathematics are subject to this change from
written media to web content, as their readers now prefer ob-
taining the mathematical formulas they need online, rather
than from books on their shelves. Two ambitious realisa-
tions of this kind are the On-Line Encyclopedia of Integer
Sequences1, which is essentially a database with predefined
mathematical queries, and the Digital Library of Mathe-
matical Functions2, which is a human-written mathemati-
cal text, specially typeset for the web. Both are successors
of best-seller books [1, 5].

But other encyclopedias make essential use of symbolic
calculations performed by computer-algebra systems, that
is, calculations with terms representing exact algebraic
quantities constructed over integers and symbols: polynomi-
als, matrices, differential equations, etc. Two such projects
are the Encyclopedia of Combinatorial Structures (“ECS”)
and the Encyclopedia of Special Functions (“ESF”)3. There,
the symbolic calculations were performed once and their
results stored statically, before publishing the web sites.
But, in the context of symbolically-generated mathematical
knowledge, a natural desire is to perform symbolic compu-
tations at run-time. For instance, ECS identifies a combina-
torial structure selected by the user through its first terms.
The reply by the system consists in a collection of data stat-
ically attached to the sequence and merely retrieved from
a database: name, combinatorial interpretation, references,
etc. A natural wish of the user would be, via new requests,
to obtain an arbitrary number of terms of the sequence, or
to draw an instance of the structure randomly. This new,
dynamic information would be calculated at the time of the
request by a computer-algebra server. For its part, ESF pro-
vides, for a special function given by the user, a large number
of formulas satisfied by the function, and several evaluation
graphics. In this output, a series expansion of a certain or-
der, for example, should be extendible at will, based on a
user-supplied parameter. Similarly, graphics should be able

1 http://oeis.org/
2 http://dlmf.nist.gov/
3 The first author has maintained some part of ECS and has seen
the development of ESF by close colleagues at INRIA.

to be recomputed and replotted interactively with respect
to different ranges of the variable.

Part of our project consists in developing these encyclo-
pedias towards more interactivity, and this triggered the de-
velopment of the present work: a tool to help developing
the above-mentioned encyclopedias. More than just assist-
ing the typing and typesetting of mathematical formulas,
a human-process that is prone to errors, what we needed
was a programming environment for the dynamic (run-time)
generation of (mathematical) symbolic content and its pre-
sentation online. We view this as dynamic mathematics on
the web, whence the name of our library and system, Dy-
naMoW4. Beside generated encyclopedias, we believe this
tool can have applications to design environments whose
users are no expert of computer algebra, but need some sort
of symbolic calculations following a number of fixed scenar-
ios. This would be the case, for instance, in education.

1.1 Desired Features

On the application level. Our main need was interactiv-
ity, requiring the ability for run-time symbolic (re)computa-
tions. This is well exemplified by our successor of ESF, the
Dynamic Dictionary of Mathematical Functions (DDMF)5

[3]. For example, its end users need to change parameters
like: ranges of plots, orders of asymptotic expansions, pre-
cisions in numerical evaluations, etc. Likewise, interaction
with ECS allows randomness in a page, to display random
generated combinatorial structures. Thus, the system to be
developed as a programming environment had to be able to
simultaneously monitor calculations in a computer-algebra
system and the generation of mathematical web documents.

System architecture: proper role of the computer-
algebra system. ECS and ESF are based on the general-
purpose computer-algebra system Maple6 for their algebraic
manipulations, but new encyclopedias could use other sys-
tems, including smaller ones specialised to various branches
of mathematics. Besides, specific scientific communities with
different habits could conceivably prefer another system,
whence the need for possibly several cooperating computer-
algebra systems in a future application.

For system tasks, both ECS and ESF have been exces-
sively Maple-centric, with a minimal part of the software in
Perl (the CGI). The choice of ESF to perform file manip-
ulations and generation of XML documents inside Maple
hinders the versatility towards various computer-algebra
systems. Generating Maple and HTML by Perl (ECS) or
just HTML by Maple (ESF) goes with heavy quotations of
strings of the guest language in print formats, as computer-
algebra system is typically not well suited for string manip-
ulations. By not dissociating the application from this gen-
eration (ECS), any modification of the application requires
changing the quotations again.

For both reasons, implementing the system in a computer-
algebra system was not an option, and the main language
naturally had to be a general-purpose language.

In addition, as we planned developing applications for
end users with limited knowledge of computer-algebra, we
could not expect any computer-algebra system to be in-
stalled on the user side. Thus, we confined ourselves to a
client-server architecture, with no local computation.

4 http://ddmf.msr-inria.inria.fr/DynaMoW/. Roughly 3800
lines of OCaml code in the current version, DynaMoW-1.0.0beta.
5 http://ddmf.msr-inria.inria.fr/
6 commercial product by Maplesoft, http://www.maplesoft.com/

Ease of programming and readability. The expected
close interaction between symbolic calculations and the rest
of the flow control suggested that computer-algebra code
could not be kept separate from the rest of the source. In
earlier projects, we had implemented as much as possible in
the computer-algebra system, with induced heaviness. Here,
we wanted several natures of programming languages to be
mixed naturally in the same source files: a general-purpose
language for the general control flow of the application; one
or several computer-algebra languages; some string repre-
sentation of literal fragments of web documents. Indeed, the
ease to merge variables and HTML in PHP7 has influenced
our development.

Also, values have to migrate naturally between computer-
algebra systems, control, and presentation, and, for read-
ability, we wanted to be able to write a symbolic expression
where it is used in the computer-algebra source code, rather
than postponed (if using a notation of formats like with
printf) or with an interruption in the syntax (if using a
notation of concatenated strings). This all spoke in favour
of a mechanism of quotations and antiquotations.

As to the general-purpose language, the wish for the com-
fort of a reasonably typed language immediately precluded
a computer-algebra system as the main language. (One pos-
sible exception could have been Sage, which, however, was
not so much developed at the time we started.)

1.2 Related Work

Ocsigen [2] is a complete system that provides facilities
for programming the web in a type-safe environment. It is
meant as a replacement for the pair Apache/PHP. It is writ-
ten in OCaml and proposes an OCaml extension, Eliom, to
develop OCaml applications. Our system DynaMoW works
on the same level as Eliom and could be extended into a
module for Ocsigen, so as to rely on it as a web server.

The free open-source mathematics software named Sage8.
This project provides a unified interface to the major
free computer-algebra systems in a minimal variant of the
Python interpreter. Over the years, Sage has also become
a computer-algebra system per se: besides libraries exposed
from other systems, new code is being developed natively
for Sage. It provides users with a textual read-eval-print
loop, and thus is a system potentially used by DynaMoW9.
Sage also exports a web-presented symbolic shell, which
is thus mostly targeted at computer-algebra expert users.
Sage embeds literally dozens of computer-algebra systems
(whether big, general-purpose ones or smaller, dedicated
ones). This makes it a large application (around half a gi-
gabyte to download for the current release, 2.4 GB once
uncompressed and installed). By contrast, DynaMoW is de-
signed with web presentation as its main application and
is very lightweight. Another difference is that Sage imple-
ments all mathematical notions as objects, and manipulates
them mostly by interpreted Python libraries, with critical
sections written in the related but different compiled lan-
guage Cython10, while DynaMoW is intended for compiled
OCaml applications and does not require programmers to
use any OCaml object facility.

7 http://www.php.net/. PHP: Hypertext Preprocessor.
8 http://www.sagemath.org/. Sage Mathematics Software.
9 Indeed, we have a prototype plugin to glue to Sage.
10 http://www.cython.org/. Cython: C-Extensions for Python.

2. Interfacing a Computer-Algebra System

2.1 Types for Values in a Mathematical Shell

Few developers use computer-algebra libraries, and all
general-purpose computer-algebra systems behave as sym-
bolic shells, that is, users interact with them through a
textual read-eval-print loop. This makes a notion of a sym-
bolic session central to the application. The OCaml level
in DynaMoW thus makes successive interactions with the
symbolic session, and needs to refer to values that persist in
the symbolic memory inbetween.

To allow for several computer-algebra systems to be
used in the same application, parametrised types have
been used to represent symbolic values: the type for exter-
nal symbolic values is ’t DynaMoW.symb, with an abstract
type parameter ’t exported by the module implementing
a computer-algebra system. This parameter can itself be
parametrised, to express different datatypes in the same
computer-algebra system. Thus, a symbolic value is typi-
cally of a type ’a MyCAS.t DynaMoW.symb: the first level of
parametrisation protects against using a value from some
computer-algebra system with another, while the second
level can be used to protect against mixing types within the
same system, provided the application properly defines and
uses several types for ’a.

2.2 Computer-Algebra Programs as Quotations

In order to embed computer-algebra programs as directly
as possible inside OCaml source, the technique of choice is
quotations, which are available in OCaml by using Camlp4,
in the notation <:id<...>>, where id stands for an identifier
of the kind of quotation, and ... is the quoted text. We
believe that quotations were introduced into the (O)Caml
family by Mauny and de Rauglaudre [4].

The main kind of symbolic quotation is of the form
<:symb<...>>, and quotes a literal fragment of symbolic
code. The interpretation of such a quotation is, after evalu-
ation of the code by a computer-algebra system, a reference
to an externally-living symbolic value, represented by some
type ’a DynaMoW.symb.

The previous quotation is meaningful for values that can
have no OCaml counterpart, and thus have to remain ex-
ternal. Beside this, we made the informal assumption that
a computer-algebra system has types that correspond to
OCaml int, bool, and string, and designed additional
quotations of the forms <:int<...>>, <:bool<...>>, and
<:string<...>>, to denote computations whose results can
be returned as native OCaml datatypes. As typical program-
ming in a computer-algebra system uses a lot of side effects,
we added a quotation <:unit<...>> that evaluates some
code in the computer-algebra system, without actually re-
turning any value to OCaml.

Symbolic calculations need to be parametrised by OCaml-
generated values. Antiquotations are the dual of quotations
to address this need, and we followed the Camlp4 notation:
the syntax $(tau:expr) appearing in a quoted fragment
stands for an escape, to be replaced before symbolic evalu-
ation with a representation of the OCaml expression expr
of type tau that can be parsed by the computer-algebra
system. Thus,

let a = 3 in <:symb< f($(int:a)) >>

is intended to evaluate f(3) in the guest language, typically
a function call.

Each antiquotation is intended to take the role of a
syntactic entity in the guest language. For example,

let a = 3 in <:symb< f$(int:a) >>

expands as f (3) rather than f3. When Maple is the guest
language, the former results in a function call, while the
latter would be a Maple name11. We do not go beyond this
in ensuring the validity of the generated fragment, and in
particular we perform no parsing inside quotations.

The type of a <:symb<...>> quotation is ’a MyCAS.t
DynaMoW.symb: if the application programmer wants to use
different types of symbolic objects, it is his responsibility
to confine the use of <:symb<...>> quotations to an unsafe
section of the code, and to export safe functions, with more
limited types for ’a, to be used in the rest of the application.

2.3 Computer-Algebra System Plugins

Computer-algebra systems can be used with DynaMoW
through dedicated plugins, which are modules that abide
by a fixed interface. Currently distributed plugins are a well
tested Maple plugin, a simple OCaml plugin that serves as
an example, as well as experimental Mathematica and Sage
plugins. User-implemented plugins can also be developed.

A module is considered a plugin when it exports what
enables DynaMoW to view the computer-algebra system as
a shell, interacting with it through a read-eval-print loop:

• a type cas_code to store the symbolic commands after
expansion of antiquotations inside <:symb<...>> quota-
tions;

• “evaluators” that run a symbolic command and return ei-
ther a reference to the symbolic result (evaluator_symbolic
: cas_code -> ’a t DynaMoW.symb), or a LATEX repre-
sentation of the result (evaluator_latex: cas_code ->
latex), or an OCaml value (evaluator_int: cas_code

-> int for an integer value, and similarly for boolean,
strings, etc.);

• a serialisation function, used internally for argument
passing between services;

• a function to return a string containing a reference to
a symbolic value living in the computer-algebra system,
used internally to implement the $(symb:...) antiquo-
tation;

• a start and a reset function, used automatically by Dy-
naMoW to monitor a separate session for each service,
so that users do not need to run/quit sessions explicitly;

• additional pretty-printing and related functions.

To simplify the creation of plugins, the provided func-
tor DynaMoW_cas.Shell.Generic should be well adapted to
generate plugins for most computer-algebra systems with a
command-line interface. This functor takes as input a brief
module that contains a string for each symbolic command
needed by DynaMoW.

2.4 Interaction between Functional and
Imperative Programming Styles

DDMF is the main application developed using DynaMoW.
It consists of a mixture of functional code in OCaml and of
imperative code in Maple. As of version 1.6, it is made of:

• 5 kloc of OCaml with Maple quotations,

• 8 kloc of generated OCaml with Maple quotations,

11 For the sake of comparison, the quoted text in the preceding
example really expands in the implementation as f((3)), which
has the same interpretation as the announced f(3).

• 12 kloc of external Maple library (only a part is used).

At one end of the system, OCaml is used to organise the
structure of the produced web documents, the interplay be-
tween the web services that produce them, and the inter-
activity with the user. At the other end, Maple libraries
dedicated to the manipulation of the so-called “special func-
tions” of mathematics are called by Maple quotations in the
OCaml source. Additionally, one of our goals with DDMF
was to keep traces of the underlying symbolic calculations,
so as to be able to generate human-readable texts describ-
ing the ongoing calculations. Doing so was made possible
by instrumenting some part of our existing Maple library,
Algolib12. In quite a few cases, this instrumentation in fact
required us to port some of the Maple code to OCaml. What
we originally thought would be just syntactic transformation
became in a few cases a more involved manual operation.

Maple originally had no kind of records or data structure
with named fields. Although records have been introduced in
the language (rather recently), efficiency issues remain and,
more importantly, a huge amount of legacy code, including
a large part of ours, does not use them. Instead, the tradi-
tional programming style in Maple bases on “lists”, which
are in fact immutable arrays of heterogeneous values. The
same approach of dereferencing by the position applies to
accessing the “fields” of most Maple data structures: terms
in a polynomial, coefficients in a series, etc. Additionally, the
design of a data structure in a Maple application makes very
often the convention that a few of the first or last elements
provide information on the rest, which is then a collection
of values of the same type. Maple lists being immutable,
they are copied when modified, which makes one avoid ac-
cumulating values in a list: this would cause a use of mem-
ory quadratic in the length of the final list and lead to a
slowdown, owing to the interaction of the garbage collector.
Instead, the typical idiom is to generate data into a mutable
structure (a hash table), before flattening it into a list.

As OCaml lists behave differently, it made no sense to
keep this heavier approach in the port, and we constructed
OCaml lists directly, by mapping over an integer interval.

Finally, there remains needs for alternative iteration on
an iterable Maple data structure and its OCaml counterpart.
To this end, we provided two functions

symb_of_symb_list : ’a maple list -> ’a maple
symb_list_of_symb : ’a maple -> ’a maple list

(’a maple is a shorthand for ’a Maple.t DynaMoW.symb).
The latter takes a Maple object assumed to be a Maple

list and returns an OCaml list of Maple objects. The former
performs the opposite operation: it inputs an OCaml list of
Maple objects and returns a new Maple object, hiding (and
forgetting) that it is a Maple list.

3. Interfacing the Mathematical Web

3.1 Services as Modules

A DynaMoW application is structured around special
OCaml modules that we call services. Rather than OCaml
functions, these are independent components, communicat-
ing over the network by serialization and deserialisation.
Their general role is the computation of symbolic OCaml
values enriched with some presentation format. To this end,
a service returns a product of the form doc * obj, where
type doc represents a document that can be serialised and

12 http://algo.inria.fr/libraries/

served by a CGI and type obj is the type of returned val-
ues. Services can call one another, taking decisions based
on the symbolic values (obj types) so as to recombine the
document values (doc types).

Services share a lot of (parametrised) logistic code, still,
they could not be generated by a mere functor application.
Instead, a service is declared through a dedicated keyword
let_service whose expansion by Camlp4 reveals a large
boilerplate. The returned module just exports the input
and output types of the service, together with the optional
default values of its parameters and functions to call it.
As an example, suppose we want a service named LogInt
to calculate the integral of the nth power of the logarithm
function. This can be declared as follows:

let_service LogInt (n : int) : string * maple =
let res = <:symb< int(log(x)^$(int:n), x) >> in
(<:string< sprintf("%a", $(res)) >>, res)

Here the “document” returned by the service is a string,
the result of letting Maple pretty print the algebraic quantity
by sprintf; the next section will explain how more general
web documents can be generated.

Often, the pair calculated by a service corresponds to the
same symbolic value in two forms: the first intended for pre-
sentation to the end user, the second for further processing
in OCaml. A more pragmatical view is that obj is only that
part of the computed symbolic object that is really needed
in further calculations. So, for some services and typically
those that generate a whole web page rather than a section
in a web page, obj is just OCaml’s unit. (Compare files
Definition.ml and GeneralFormulaForTaylorBound.ml in
the DDMF source, available from the DDMF web site.)

When calling a service, the caller has access to either
output via the functions obj and descr: Function obj im-
mediately computes and returns the value in symbolic form:

LogInt.obj (3, ()) ;;

- : LogInt.obj = << ln(x)^3*x-3*x*ln(x)^2+6*x*ln(x)-6*x >>

Function descr delays evaluation: it creates a descriptor
that can later be used with function DynaMoW_services.
Services.call to obtain the presentation as a string:

let descr = LogInt.descr 3 None ;;

val descr : LogInt.doc_type DynaMoW_services.service_descr
= <abstr>

DynaMoW_services.Services.call descr ;;

- : DynaMoW_services.Services.service_type * string =
("Binary", "ln(x)^3*x-3*x*ln(x)^2+6*x*ln(x)-6*x")

Most computer-algebra systems leave a lot of side effects
in a running session. To achieve some context independence
of web services, we chose to make each symbolic session local
to one service execution. This immobilises much resource,
which made it not desirable to allow for recursive services.
(And we have not felt the need for it in practice.) To forbid
this, the two functions obj and descr are not exposed to
the service definition.

3.2 Web Documents as Nested Quotations

Web documents are structured, tree-like documents that are
usually stored in some XML string representation, often a
combination of HTML, MathML, SVG, and similar XML
dialects. Each variant language is specific to some kind of
data to be displayed—MathML for mathematics, SVG for
graphics—, but XML dialects all describe static trees. And
all such languages share, by nature, a source of heaviness:
the markups used to create a very regularly well-balanced

language. This makes them better suited for automatic
document generation than for human generation.

Concerning the generation of dynamic web documents,
PHP was our first candidate. But we rejected this choice
as it could not accommodate the symbolic code as easily as
the document code, and also, we have to admit, for a matter
of taste against the programming style. Another option to
be considered was JavaScript, which embeds naturally in
HTML. JavaScript allows to refer to the document, but in
too low a level, and would also not have accommodated the
symbolic code nicely.

Just as symbolic programs have been incorporated di-
rectly into OCaml code, we wanted to be able to write the
pieces of text that make up a mathematical web document
as quotations. Additionally, let us remark that some literal
mathematics have to be part of the source code, typically to
display equations of the form “f(x) = computed value”. This
could be obtained in DynaMoW by an expression of the form
<:imath<f(x) = $(symb:v)>>. For the literal part, f(x) =
in the example, we had to choose a language that a human
would easily type, and LATEX looked like the only reason-
able choice: MathML was ruled out by its verbosity. Thus,
although we defined few quotation kinds for documents, an
added complexity came from more levels of possible nesting,
as a consequence of three input kinds that can contribute to
texts in documents:

• literal strings, playing a role akin to the “character data”
(CDATA) of XML, to write natural-language text;

• literal LATEX code fragments, which appear as escapes
from literal strings to denote a mathematical formula;

• symbolic code fragments, which appear as escapes from
LATEX code to denote a symbolic calculation whose result
has to be displayed.

Literal strings with LATEX escapes are introduced by either
of the two quotations kinds <:par<...>> and <:text<...>>,
which correspond respectively: (i) to full paragraphs possi-
bly disrupted by displayed mathematical formulas; (ii) to
linear text used for titles and the like, as well as to portions
of sentences that have to receive a special rendering style.
Literal LATEX is introduced by either of the two quotations
kinds <:imath<...>> and <:dmath<...>>, which stand re-
spectively for an inline and for a displayed mathematical
formula. Finally, the same notation <:symb<...>> as used
directly in OCaml allows the inclusion of generated LATEX,
by introducing a symbolic evaluation whose output is con-
verted to LATEX by the symbolic plugin before presentation.
(The plugin will typically use the computer-algebra system
for this task if it exports a conversion facility.)

On the implementation side, nesting quotations no longer
rely solely on the ability of Camlp4 to detect quoted strings
by parsing OCaml. But, fortunately, the analysis of nested
quotations does not require more than counting opening and
closing parentheses, making the implementation very simple.

In addition to quotations, natural antiquotations allow
insertion of simple datatypes in literal text and LATEX, and
content-manipulation functions can next be used to trans-
form or combine the quotation-generated contents. Thus,

let l = [2; 3; 5; 7] in let n = List.length l in
List.fold_left

(fun s a = s @:@ <:par<, $(int:a)>>)
<:par<There are $(int:n) elements \

in this list, viz.>> l

where (@:@) is a DynaMoW operator to merge the con-
tents of two <:par<...>>, results in the display

There are 4 elements in this list, viz., 2, 3, 5, 7

More functions combine paragraphs into lists, sections, etc.
These content quotations in DynaMoW have to be con-

trasted with the quotations proposed by another OCaml-
based tool, OCamlDuce, a general XML transducer and val-
idator: its quotations embed general XML strings, including
XML markups (or, provided a DTD is given, this can be a
string in some XML dialect). By contrast, the <:par<...>>
and <:text<...>> quotations of DynaMoW allow no HTML
markup. Indeed, the choice with DynaMoW is to generate
a web document by calling constructors directly on sub-
documents, much like using the module XHTML.M in Eliom,
the OCaml language extension that comes with the web pro-
gramming framework Ocsigen [2]. A difference is that Dy-
naMoW proposes a restricted set of document constructs,
rather than arbitrary HTML markups: the rationale here is
to make it easier to achieve the uniformity of presentation
over a whole generated web site.

3.3 Mathematical Presentation Online

Beside symbolic computations, mathematical presentation is
another key component of DynaMoW. At the time of writ-
ing, no technical solution is as good as what we would want
for our purpose, as the existing tools either provide with no
completely nice rendering or are too slow for dynamic use,
as they were implemented for static-only presentation.

The oldest method for presenting mathematical formulas
is to embed Gif or PNG pictures. Fast conversion from LATEX
is nowadays possible on the server, and we use latex and
dvipng for this task. However, this approach is subject to
pixelisation when the user zooms in.

A more modern way is to let the client do the rendering.
A nice tool for this is jsMath, implemented in JavaScript.
Here, mathematical formulas are embedded directly into
the web page, using dedicated markups. On the client,
jsMath processes the LATEX, typesetting it very much like
LATEX would, and using LATEX mathematical fonts for the
display. The rendering is very fine, but JavaScript can lead
to unwanted latency and can be slow on some systems13.

MathML is what is presented as the future, although, at
the time of writing, it is reliably supported by Firefox only.
The rendering is as fast as non-mathematical text, but it is
a bit less nice than a typical LATEX rendering, owing mostly
to too rigid alignments. As LATEX is the necessary format at
an intermediate stage of our translation process, we had to
use a converter from LATEX to MathML. We could find no
perfect tool for this:

• Distler’s itex2MML (in C) is as fast as we need, but it
understands a variant of TEX that we could not produce
easily (spaces are needed to denote mathematical prod-
ucts) and cannot easily be extended to understand the
AMS-TEX constructs we use;

• Miller’s LATEXML (in Perl) does an excellent job in pro-
ducing very nice LATEX, but it is meant to be used offline,
and is too slow by a factor 100 to be used for run-time
generation of MathML (the slowness is caused by the
very general LATEX parser).

The current version of DynaMoW uses a cocktail of
solutions (MathML produced by LATEXML, jsMath, and
PNG produced by dvipng) so as to get reasonable results

13 Internet Explorer, whether 8 or 9, on Windows 7. It is not clear
whether this is due to IE itself or to the specific glue of jsMath.

on the main five browser families. At the same time, we
continue evaluating MathJax, a new software under very
active development, which should supersede our solutions
above; MathJax has specific code for Internet Explorer, but
still was too slow for our needs at the time of writing.

4. Security and Performance Issues

Security and robustness. Minimal measures prevent
simple attacks on the server: parameter passing between
services is secured by authentication to prevent injection of
symbolic code; an instance of a computer-algebra system
will be given limited time and memory resources to avoid
denial of service.

Scalability and efficiency. A large effort, both in the de-
sign of DynaMoW and in the implementation of our appli-
cations, has been put to realise the statelessness of each ser-
vice. This allows the replication of servers, and, as a bonus,
independent page fragments are loaded asynchronously and
can be calculated in parallel, with no need for any explicit
syntax when programming: the right server configuration
automates parallelism provided the programmer implements
in a sufficiently modular way. This is well exemplified by
the file SpecialFunction.ml in the DDMF source, which
encodes the skeleton of each article in DDMF: each of the
eight calls to DC.inline_service results in a different sec-
tion in the web page, which is computed asynchronously.

With respect to our server architecture, DDMF and ECS
use for now a simple model with one instance of a computer-
algebra system per DynaMoW instance, setting up several
DynaMoW instances behind a web server. In the future, we
plan to have a single DynaMoW instance with potentially
many instances of the same computer-algebra system and
a cache for both documents and symbolic values (caching
outputs from each service, keyed by the inputs). This will
counterbalance the need for repeating some calculations in
order to maximise independence of page fragments.

Still, computing a full fresh web page can require a
dozen seconds of sequential calculations, primarily because
of complex symbolic calculations. To mitigate this, we rely
heavily on the web-server cache for better performance,
which proves beneficial especially when the site is visited
by web crawlers.

Text-based communication with the computer-algebra
system is the main bottleneck. Using an API like OpenMaple
will give better performance but is more system specific.

Client-side calculations One could think to take advan-
tage of client-side resources for both scalability and effi-
ciency. A typical general-purpose computer-algebra system
is too large an application to be transmitted from server to
client (not to mention license issues). A reimplementation
in, say JavaScript, seems unfeasible, even for a limited set of
functionality, and could prove to be too slow. Additionally,
it would hardly be portable, as linking to C libraries would
be necessary (at least for arbitrary-precision integers). A
more appealing approach would be to run another instance
of a DynaMoW plugin on the client side, with the computer-
algebra system installed on the client.

5. Conclusions

Development and debugging process. The source of
DDMF shows two extremes of coding styles: one with long
symbolic quotations and no call to any external symbolic
library, another with short quotations to a large exter-

nal library. (Compare files DiffeqToRecurrence.ml and
TaylorExpansion.ml in the DDMF source.) The first case is
needed for an intrusive instrumentation of preexisting Maple
libraries. With time, we want to show more certificates of
the computed data on the web site, which will lead to more
instrumented Maple code and increase the proportion of
quotations. To modify code, we either modify the external
Maple library or the OCaml code, or both. Introducing an
adequate ocamltop that is able to call Maple and display
(external) symbolic values made the debugging much easier.

Advantages of functional style. Using a language that
favours functional style had two main advantages:

First, it made it very easy to deal with the content
trees representing web documents. By making us have a
recursive representation of the final document, we could now
easily implement a translator to a different document format
(say, PDF). By contrast, in an earlier implementation in
imperative style, we just printed HTML along the execution
of our symbolic calculations.

Second, and maybe more importantly, it incited and
helped us to refactor the symbolic code in more independent
functions. This made the interactivity of the site and the
reactivity of the server easier to achieve, by enabling incre-
mental and/or distributed calculations of independent parts.

Types in antiquotations. The main torment in the
prototyping phase concentrated around the adequacy of
Camlp4 to our project, to the point that it has not been
clear immediately that DynaMoW should be an OCaml li-
brary. Indeed, for our first prototype (used before DDMF
v1.5), we wrote an (OCaml) interpreter for a “BASIC with
quotations and antiquotations”. In the end, the main draw-
back with the final choice is that Camlp4 does not offer type
analysis at preprocessing-time. This leads to too much type
annotation. The following example makes this clear:

let a = 3 in <:symb< f($(int:a)) >>

If the preprocessing stage done by Camlp4 was aware of
types, we could simplify $(int:a) to $(a). Our source of
DDMF proves that a typical application will have many such
annotations. We could partially alleviate this by choosing
default antiquotation types, but ironically enough, such an-
notations were not needed in our first “BASIC” prototype.
It turns out that we chose Camlp4 as it provides syntax ex-
tensions and quotations in the same tool, but there clearly
is room for a quotation/antiquotation extension tool that
could infer type information and perform different calcula-
tions based on it.

Declarations of services: Functor application is not
enough. The main reason why services require a language
extension and cannot be obtained just by a functor ap-
plication is the need for serialisation and deserialisation
of the parameters exchanged between services via query
strings in URLs. As the number and types of parame-
ters vary, we could generate serialisation and deserialisation
functions only on the meta-level, using Camlp4. For com-
parison sake, the Eliom module Eliom_parameters also pro-
vides a representation for the GET parameters of a service,
and also requires a language extension. A difference is that
services are not intended to be called from the OCaml code
(with the exception, to some extent, of the use of the func-
tion Eliom_services.preapply). Service declarations and
calls in DynaMoW resemble function calls, whereas decla-
rations of service parameters in Eliom are done by provid-
ing the parameter names as strings together with a rep-

resentation of their types to a service registering function
(Eliom_services.new_service).

A nice side effect of the language extension for service
declaration in DynaMoW is also to avoid repetitions in
boilerplate (argument names, etc.).

Mathematical rendering. It seems our applications nat-
urally generate web pages with larger formulas than what
the online presentation tools are targeting. This made it dif-
ficult for us to find the right trade-off between a nice and a
fast mathematical rendering (see section 3.3).

In particular, even jsMath and its successor MathJax
provide too slow rendering on certain systems. But we had
no time to test the version 1.1 of MathJax, which has been
released very little time before the present submission, and
promises “a number of performance improvements”.

Interfacing with Ocsigen. We have not used Ocsigen in
DynaMoW as it provides with more general XML than what
we wanted to expose to our programmers (see end of §3.2)14.
Thus, we still rely on an external general-purpose web server
(Apache or lighttpd), with DynaMoW a FastCGI15. We
want to explore the possibility of making DynaMoW a
module for Ocsigen and expect added efficiency by doing so.

Expressivity of interactivity. Although the ability of
Sage with respect to web display is merely to display clas-
sical symbolic sheets using HTML and JavaScript, in a way
that is not intended for an all-user web site, Sage contains
a few nice interaction functionalities. Particularly so is the
@interact function, which from the user’s point of view
presents the input of a parameter in a range as a draggable
slider. Besides being nice, this solves the question of sound-
ness checking of the input data. In the same vein, the in-
teraction with parameters limited to a (closed) enumeration
type could be rendered better than by using textual fields.
We plan to develop such aspects in the future.

(Symbolic) Code extraction. Early in the development
of the project, we realised that instrumenting a symbolic
library under continued development would lead to the
need of double maintenance. Indeed, we need to keep a
version of the library for computations off the web. We
have prototyped the extraction of pure Maple libraries from
our OCaml-with-Maple application just enough to realise
that a complete code extraction would imply automatically
undoing some of the paradigm-changing port described in
section 2.4. This automation is not mature yet and will be
the subject of future work.

Acknowledgments

The conception of DynaMoW has benefited greatly from
discussions with James Leifer, Marc Mezzarobba, Nicolas
Pouillard, and Didier Rémy. As DynaMoW was initially
developed as the underlying engine of DDMF, it has also
been influenced a lot by discussions with DDMF developers.

References

[1] M. Abramowitz and I. A. Stegun, editors. Handbook of
mathematical functions. Dover, New York, 1992.

[2] V. Balat, J. Vouillon, and B. Yakobowski. Experience report:
Ocsigen, a web programming framework. In A. Tolmach,
editor, ICFP’09, pages 311–315, 2009.

14 and for unclear license issues
15 http://www.fastcgi.com/

File Trigo.ml:

use_cas Maple
type_symb maple = unit Maple.t DynaMoW.symb

let_service Trigo (n : int = 2) :
DynaMoW_services.Content.sec_entities * unit =
let m_expr = << cos($(int:n) * x) >> in
let s = Expand.obj (m_expr, ()) in
let par_intro =

<:par<The expansion of <:imath<\cos nx>>
when <:imath<n = $(int:n)>>
contains <:imath<$(int:s)>> terms:>>

and par_math =
DynaMoW_services.Content.inline_service

(Expand.descr m_expr None) in
let par =

DynaMoW_services.Content.(@@@) par_intro par_math in
(DynaMoW_services.Content.section

<:text<My Trigonometric Service>> par,
())

File Expand.ml:

use_cas Maple
type_symb maple = unit Maple.t DynaMoW.symb

let_service Expand (expr : maple) :
DynaMoW_services.Content.sec_entities * int =
let s = << expand($(expr)) >> in
(<:par<<:dmath<$(symb:expr) = $(symb:s)>>>>,
<:int< nops($(s)) >>)

Table 1. Code for a simple service Trigo that calls a simple
service Expand and, at the top, the resulting display. Proper
configuration makes it available from the URL http://.../
example?service=Trigo&rendering=jsMath&n=5. After en-
tering the default web page (without final &n=5), which ren-
dered the case n = 2, we changed the value to 5 in the form
so as to get the display above.

[3] A. Benoit, F. Chyzak, A. Darrasse, S. Gerhold, M. Mez-
zarobba, and B. Salvy. The Dynamic Dictionary of Math-
ematical Functions (DDMF). In The Third International
Congress on Mathematical Software (ICMS 2010), volume
6327 of Lecture Notes in Computer Science, pages 35–41,
2010.

[4] M. Mauny and D. de Rauglaudre. A complete and realistic
implementation of quotations for ML. In Proc. of the
Workshop on ML and its applications, 1994.

[5] N. J. A. Sloane and S. Plouffe. The Encyclopedia of Integer
Sequences. Academic Press, 1995.

