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Using a multi-resolution technique, we analyze large in-plane fracture fronts moving slowly be-
tween two sintered Plexiglas plates. We find that the roughness of the front exhibits two distinct
regimes separated by a crossover length scale δ∗. Below δ∗, we observe a multi-affine regime and
the measured roughness exponent ζ−

‖
= 0.60 ± 0.05 is in agreement with the coalescence model.

Above δ∗, the fronts are mono-affine, characterized by a roughness exponent ζ+‖ = 0.35 ± 0.05,

consistent with the fluctuating line model. We relate the crossover length scale to fluctuations in
fracture toughness and the stress intensity factor.

PACS numbers: 62.20.Mk, 46.50.+a, 68.35.Ct

Since the pioneering work of Mandelbrot et al. [1]
demonstrating the self-affine character of fracture sur-
faces of metals, numerous studies have been devoted to
the morphology of fracture surfaces [2, 3]. In particu-
lar, the roughness exponent ζ⊥ characterizing this self-
affinity was shown to be very robust and further on con-
jectured to be universal [4] with ζ⊥ ∼ 0.8 over a large set
of materials and conditions [2–5] and up to very large
scales [6]. In the weak disorder limit when toughness
fluctuations are small compared to stress loading fluc-
tuations, there are data suggesting that ζ⊥ takes on a
smaller value, 0.4 [7, 8]. A first attempt at investigating
the origin of a universal fracture roughness exponent in
the quasistatic propagation limit was made by Hansen et
al. [9] who suggested that in two dimensions it might be
related to the directed polymer problem. This idea was
further developed by Räisänen et al. [10]: the fracture
surface follows the surface that minimizes the integrated
strength of the intact material. Numerical studies based
on this idea gave a roughness exponent ζ⊥ = 0.41± 0.02.
A different idea was proposed by Bouchaud et al. [11].
In their picture, the fracture surface is the "footprint"
of a passing fluctuating elastic line — the fracture front
— moving through a disordered three-dimensional land-
scape. This powerful idea opened up for the existence of
two roughness exponents: one describing the roughness
orthogonal to the average crack plane ζ⊥ and another de-
scribing the roughness of the front in the average rough-
ness plane ζ‖ [12].

In order to simplify the 3-d configuration, Schmittbuhl
et al. [13] proposed a numerical model where the crack
front is constrained to propagate along a weak plane (sup-
pressing the out-of-plane roughness). The in-plane rough-
ness exponent was found equal to ζ‖ = 0.35, and later
on, refined to ζ‖ = 0.39 by Rosso and Krauth [14]. Even
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FIG. 1: A typical fracture (using glass beads of a diameter
∅1 ∼ 50µm for roughening the samples) and a zoom of the
crack front y(x) to emphasize the effect of the optical resolu-
tion given by the pixel size a.

though such a fluctuating line approach [15] can match
several scaling exponents related to the crack front dy-
namics [16], it fails at reproducing the in-plane roughness
exponent ζ‖ measured up to now around 0.6 [17–19]. We
will adress precisely this problem in the present Letter,
insisting on the fact that the fluctuating line model is typ-
ically a perturbative approach assuming the local slope
of the front to be small, and ignoring crack coalescence
[20]. A theory based on a mapping of the fracture pro-
cess to a correlated percolation one [21, 22] considered
precisely the latter aspect. Numerical simulations based
on this model gave ζ‖ = 0.6, substantially larger than
the value found based on the fluctuating line model but
consistent with the experimental results obtained up to
now. The coalescence model also clarified the controversy
over the concept of self-affinity [23–25].

The goal of the present Letter is to address the possible
coexistence of two roughness scaling regimes in the case
of in-plane fracture. We analyze stable mode I fracture
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fronts propagating along the sand blasted and sintered
contact plane between two PMMA plates [16–19, 26].
An important contribution to our analysis comes from
the compilation of numerous observations at different
resolutions. We observe that the planar cracks follow
two distinct scaling regimes, multi-affine at small scales
and mono-affine at larger ones, characterized by different
roughness exponent ζ−‖ = 0.60 and ζ+‖ = 0.35, respec-

tively. We show that those two regimes are separated by
a well-defined crossover length δ∗ controlled by a bal-
ance between the stress intensity factor variability along
the fracture front and fluctuations in the fracture tough-
ness. Below δ∗, the value of the roughness exponent is in
agreement with the prediction of the coalescence model
ζ‖ = 0.60, while the large-scale exponent is consistent
with the value predicted by the fluctuating line model,
ζ‖ = 0.39. We argue in the second part of the manuscript
why both theories may be correct in describing the ex-
periment, but operating at different length scales.

Experiments –The experimental setup allows for a sta-
ble mode I crack propagation along a weak plane in a
PMMA block from a displacement imposed normally [17].
Toughness fluctuations along the weak plane are artifi-
cially introduced during sample preparation, which con-
sists of annealing two sandblasted PMMA plates. In or-
der to modify the toughness fluctuations, we changed the
type and the size of the blasting particles using glass
beads of diameters around ∅1 ∼ 50µm, ∅2 ∼ 200µm,
and ∅3 ∼ 300µm and a glass-aluminum powder with a
typical particle size around S ∼ 50µm. We also changed
the loading speed and procedure, with interfaces recorded
during their propagation at various velocities. In order to
obtain a multi-high resolution description of the fronts,
we considered fracture fronts at rest. During those ex-
periments, after a slow crack propagation, the sample
was unloaded in order to arrest the crack. Then, we took
high resolution pictures (3871× 2592 pixels) of the front
at rest (Fig. 1) using a digital camera mounted on an
optical microscope. Using a translation stage that can
move the microscope in the x direction parallel to the
front (and perpendicular to the fracture propagation di-
rection y) neighboring pictures were taken. Up to 15 high
resolution pictures were then assembled resulting in frac-
ture fronts with around 25 000 data points and a pixel
size a = 0.48 µm. To remove acquisition artifacts, dif-
ferent resolutions of the front description were obtained
by changing the magnification of the optical zooms (see
Fig. 1). This results in images of the same fracture at res-
olutions, 4, 2, 1 and 0.48 µm per pixel with respectively
around 4000, 8000, 16000 and 25000 data points per im-
age. This procedure was repeated 20 times in order to
obtain 20 independent fracture fronts. The actual total
length of each analyzed crack was around 15 mm.

Two scaling regimes – We analyze the height fluctua-
tions of the crack fronts ∆y(δ) = y(x + δ) − y(x) where
y(x) is the advance of the front along the y direction at
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FIG. 2: Scaling behavior of the rms σ of the height fluctuations
∆y(δ) with two different roughness exponents ζ−

‖
∼ 0.63 and

ζ+‖ ∼ 0.37, below and above the typical scale δ∗ ∼ 100 µm

respectively. The inset shows that this scaling is independent
of the image resolution a.

position x. We will first consider fracture fronts at rest
for samples prepared with 200 µm glass beads. Then, we
will prove the universality of our results showing the same
analysis for various experimental conditions. In Fig. 2,
we examine the scaling behavior of the root mean square
(rms) of the height fluctuations σ(δ) = 〈∆y2(δ)〉1/2. At
small scales below δ∗ ∼ 100 µm, we observe a self-affine

scaling behavior: σ(δ) ∝ δ
ζ−
‖ with a roughness exponent

ζ−‖ = 0.60±0.05. This is consistent with previous experi-

mental measurements [16–19] and the value predicted by
the coalescence model [22]. However, at scales larger than
δ∗, we observe a crossover to another scaling regime with
a smaller roughness exponent ζ+‖ = 0.35 ± 0.05. This

value corresponds to the fluctuating line model predic-
tion ζ‖ = 0.39 [14]. Due to the limited scaling range for
δ > δ∗, our data do not rule out a possible slow crossover
to a flat front (no disorder regime), at large scales. In
the inset of Fig. 2, we demonstrate the robustness of our
results by showing that the two different scaling regimes
and the cross-over length scale observed are independent
of the sampling resolution of the interface.

In order to study in more details those different scal-
ing behaviors, we develop a multi-scaling analysis [26] by
performing a direct measurement of the pdf P [∆′y] of
the height fluctuations ∆′y(δ) = ∆y(δ)−〈∆y〉 and com-

puting their structure functions Ck(δ) = 〈|∆y(δ)|k〉1/kx .
On Fig. 3, we show the distributions of the height fluc-
tuations P [∆′y(δ)] for logarithmically increasing length
scales δ. Above the characteristic length scale δ∗ ∼ 100
µm, the shape of the distributions is Gaussian, while
for smaller length scales, we observe long tails consistent
with a non-Gaussian and multi-affine scaling. Indeed, we
show that the structures functions Ck(δ) –when normal-
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FIG. 3: We observe two different scaling regime of the nor-
malized structure functions CN

k (δ) = Ck(δ)/R
G

k (δ) separated
by the cross-over δ∗ ∼ 100 µm. The corresponding p.d.f. of
the height fluctuations ∆y(δ) are shown in inset where we plot

in semi-log P [∆′y(δ)].
√
2πσ2 vs. [∆′y(δ)]/

√
2σ2 for increasing

length scales δ, shifted vertically for visual clarity. Above δ∗,

the lines f(x) = e−x
2

fit the parabolic shape of the Gaussians.

ized by the set of values RG
k =

√
2
(

Γ
(

k+1
2

)

/
√
π
)1/k

cor-
responding to the ratios RG

k = CG
k (δ)/CG

2 (δ) obtained for
a Gaussian and mono-affine signal (see [26] for details)–
collapse and follow a self-affine scaling with a unique
roughness exponent ζ+‖ = 0.35 ± 0.05 corresponding to

the elastic line prediction. Below δ∗, the fanning of the
structure functions confirms the deviation to the Gaus-
sian statistics and reveals an effective multi-affine behav-
ior consequence of the heterogeneities along the interface
leading to steep crack front slopes. A fit to C2(δ) on that
range gives ζ−‖ = 0.60± 0.05, in agreement with the co-

alescence model [22].
Cross-over length scale – We now investigate what con-

trols the crossover length δ∗. We base our discussion on
the Griffith criterion that assumes a balance between the
stress intensity factor K and the fracture toughness, Kc.
We introduce a mean field argument to describe the stress
intensity factor variation in the direction of the propaga-
tion around the average position of the front ȳ: K(y) =
K0(ȳ)+K ′(y− ȳ) where K ′ = ∂K/∂y is the average local
gradient of the stress intensity factor. Then, the tough-
ness of the asperities along the weak plane is supposed
to be random around an average K∗

c and uncorrelated
beyond the asperity size δc. We assume that K0(ȳ) = K∗

c

and that the fluctuation of the toughness over the front
width σ(δc) reads as: Kc(ȳ ± σ(δc)) = K∗

c ± ∆Kc(δc)
where ∆Kc is the magnitude of the toughness fluctua-
tions on scale equal or larger than δc. Finally, we estimate
the width of the crack front σ(δc) to be the typical scale
in the y-direction at which the failure criterion is met:
K(ȳ+ σ(δc)) ≈ Kc(ȳ+ σ(δc)). Hence at a first order, we
get an estimate of the front width at the asperity scale as

a function of the magnitude of the toughness fluctuations
∆Kc and the local stress gradient K ′: σ(δc) = ∆Kc/K

′.
Due to the self-affinity of the front with a roughness ex-
ponent ζ‖, our argument leads to an estimate of the pref-
actor of this scaling as:

σ(δ) = σ(δc)

(

δ

δc

)ζ‖

=

(

∆Kc

K ′

)(

δ

δc

)ζ‖

. (1)

An important consequence is that the scaling of the frac-
ture front will be hidden in the no disorder limit: when
either the toughness disorder disappears (∆Kc → 0) or
when the loading gradient becomes very large (K ′ → ∞).

We now address the estimate of the local slope of the
crack front at the asperity scale, i.e., σ(δc)/δc. Two cases
emerge. First, if the local slope is small, σ(δc) ≪ δc the
front may be described using a perturbative approach.
We expect in this case that the fluctuating line model
to be valid, leading to a roughness exponent ζ+‖ ≈ 0.39.

We note here that σ(δ) ≪ δ is valid for all δ > δc if
it is fulfilled for δc due to the self affinity of the front.
The second situation occurs when σ(δc) ≥ δc. In this
case, we assume the coalescence model to be valid with
a roughness exponent ζ−‖ = 0.6. Hence, the slope at a

scale δ scales as σ(δ)/δ ∝ δζ
−
‖
−1, which means that it

decreases with increasing δ. This implies that there is a
scale δ∗ at which the slope σ(δ∗)/δ∗ = α with α < 1, and
where the fluctuating line model is assumed to take over.
Subsequently, we estimate

δ∗ =

(

∆Kc

αK ′

)1/(1−ζ−
‖
)

δ
−ζ−

‖
/(1−ζ−

‖
)

c . (2)

This length scale δ∗ is different to the Larkin length [27]
separating various pinning regimes [28] of an elastic line
in a random medium. It rather corresponds to the onset
of steep front slopes or overhangs (Fig.1) leading to de-
viations to the Gaussian and mono-affine scaling of the
fronts (Fig.3), and therefore limiting the range of validity
of the elastic line models. In Fig. 4 we plot σ(δ∗)/δ∗ = α
for α = 0.35 and check that it accounts for the crossover
between the two scaling regimes for the various exper-
iments performed in different conditions. We conclude
that the crossover length scale δ∗ is a function of the as-
perity size δc, the toughness fluctuations ∆Kc and the
stress intensity factor gradient K ′. Following the above
arguments, the measure of the crossover δ∗ provides an
estimate of the link between the magnitude of the tough-
ness fluctuations ∆Kc and the asperity size δc knowing
the loading conditions K ′. The crossover δ∗ depends on
∆Kc and K ′ through a power law with a positive expo-
nent 1/(1 − ζ−‖ ) ≈ 5/2, very different from its variation

with δc, −ζ−‖ /(1 − ζ−‖ ) ≈ −3/2. Also the crossover δ∗ is

not expected to scale linearly with the asperity size δc as
suggested in [29] except if the toughness fluctuations are
proportional to the asperity size: ∆Kc ∝ δc.
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Disorder effect – In order to check the effect of disorder
and material microstructure (i.e. ∆Kc and δc), we mod-
ified the heterogeneities of the sintered interface between
the two Plexiglas plates by preparing different samples
using glass beads of different diameters ∅1 ∼ 50 µm,
∅2 ∼ 200 µm and ∅3 ∼ 300 µm. We show in Fig. 4 the
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FIG. 4: Effect of disorder on the scaling of interfacial crack
fronts. We plot the rms σ of the height fluctuations ∆y as a
function of the scale δ for crack fronts at rest and samples
blasted with glass beads of various diameters ∅1 ∼ 50 µm,
∅2 ∼ 200 µm and ∅3 ∼ 300 µm. The line σ(δ) = 0.35 δ sep-
arates the two scaling regimes. To insist on the robustness of
our results, we add various data obtained during previous ex-
periments with many different experimental conditions: glass-
aluminium powder with a typical size around S ∼ 50µm and
crack front propagating at various velocities v [16, 18, 19, 26].

scaling behaviour of the interfacial crack fronts with those
various types of disorder that influence the toughness
fluctuations (unfortunately the measurement of the link
between sand-blasting particle size and toughness fluctu-
ations was not possible). We observe mainly the same fea-
tures as in previous figures with the two different scaling
behaviours separated by a characteristic size respectively
δ∗
∅1

, δ∗
∅2

and δ∗
∅3

. For instance, when using smaller glass
beads (∅1 ∼ 50 µm), the amplitude of the height fluctua-
tions of the fronts decreases (vertical shift) as well as the
scaling range at small scales providing a roughness expo-
nent ζ−‖ ∼ 0.6 up to the scale δ∗

∅1
∼ 35 µm. We checked

that all observations are independent of the sampling res-
olution, and the analysis techniques (see Fig. 2 and Fig.
3). Moreover, we also verified on Fig. 4 that those results
are consistent with the morphology of planar cracks ob-
tained during previous experiments [16, 18, 19, 26] with
various conditions concerning both the sample prepara-
tion (glass beads mixed with an aluminum powder with
a wider size distribution) and the fracturing process with
both crack front at rest (v = 0) or propagating at various
velocities (0.4µm/s < v < 40µm/s).

Conclusion – We have analyzed the scaling properties

of long planar crack fronts moving along a rough inter-
face between two sintered Plexiglas plates. We identified
two scaling regimes separated by a length scale δ∗ that
depends on the ratio of the local stress drop and the local
toughness disorder. Above δ∗, the fronts are mono-affine,
characterized by a roughness ζ+‖ = 0.35 ± 0.05, consis-

tent with the fluctuating line model. Below δ∗, we see a
different scaling regime, multi-affine, with a roughness ex-
ponent ζ−‖ = 0.60 ± 0.05. The later roughness exponent

is in agreement with the coalescence model. A similar
picture may explain observations for the scaling of crack
surfaces [7, 29–31] suggesting that crack coalescence is
the mechanism operating at small scales corresponding
to the process zone while the fluctuations of the elastic
front line is the dominating one at larger scales.
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