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Abstract

In this paper we introduce a projection method for the space of probability distribu-

tions based on the differential geometric approach to statistics. This method is based

on a direct L
2 metric as opposed to the usual Hellinger distance and the related Fisher

Information metric. We explain how this apparatus can be used for the nonlinear filtering

problem, in relationship also to earlier projection methods based on the Fisher metric.

Past projection filters focused on the Fisher metric and the exponential families that made

the filter correction step exact. In this work we introduce the mixture projection filter,

namely the projection filter based on the direct L2 metric and based on a manifold given

by a mixture of pre-assigned densities. The resulting prediction step in the filtering prob-

lem is described by a linear differential equation, while the correction step can be made

exact. We analyze the relationship of a specific class of L2 filters with the Galerkin based

nonlinear filters, and highlight the differences with our approach, concerning particularly

the continuous–time observations filtering problems.

Keywords: Finite Dimensional Families of Probability Distributions, Exponential Families,
Mixture Families, Hellinger distance, Fisher information metric, Direct L2 metric, Kullback
Leibler information
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1 Introduction

In this paper we consider the nonlinear filtering problem in continuous time. For a quick
introduction to the filtering problem see Davis and Marcus (1981) [16]. For a more complete
treatment see Liptser and Shiryayev (1978) [27] from a mathematical point of view or Jazwinski
(1970) [22] for a more applied perspective. For recent results see the collection of papers [15].

The nonlinear filtering problem has an infinite–dimensional solution in general. Construct-
ing of approximate finite-dimensional filters is an important area of research.

∗I am grateful towards Giuseppe Tinaglia and Alexander Pushnitski for help with geometry and topology.

All remaining errors are my own.
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When the system has continuous time signal and continuous time observations, the solution
of the filtering problem is a Stochastic PDE which can be seen as a generalization of the Fokker–
Planck equation expressing the evolution of the density of a diffusion process. This filtering
equation is called Kushner–Stratonovich equation, and an unnormalized (simpler) version of
it is known as the Duncan–Mortensen–Zakai Stochastic Partial Differential Equation. When
observations are in discrete time, the filtering problem decomposes into a prediction step, given
by the Fokker-Planck equation, and a correction step, given by Bayes formula.

In [13], [9] and [10] the Fisher metric is used to project the Kushner–Stratonovich (or the
Fokker–Planck) equation onto an exponential family of probability densities, yielding the new
class of approximate filters called projection filters. The projection filters are based on the
differential geometric approach to statistics, as developed by [2] and [30]. It is also shown that
one can choose the family so as to make the prediction step exact. Moreover, it is shown that
for exponential families the projection filters coincide with the assumed density filters.

In [11, 12] the Gaussian projection filter is studied in the small-noise setting.
In the present paper we choose a different differential geometric structure based on a direct

L2 metric as opposed to the usual Hellinger distance and the related Fisher Information metric.
We explain how this structure can be used to derive a different family of finite dimensional
filters that form a good approximation for the solution of the nonlinear filtering problem. This
structure is particularly suited to be applied to mixture families of distributions, similarly to
how exponential families are well suited to work with the Fisher information metric. In this
work we thus introduce the mixture projection filter, namely the projection filter based on the
direct L2 metric and based on a manifold given by a mixture of pre-assigned densities. One key
result we obtain is that the prediction step is given by a linear differential equation, whereas
the correction step can be made exact by updating the basis functions for the tangent space of
the manifold, namely the mixture components, at each observation time.

The exponential projection filter had a clear relationship with the assumed density filters,
as documented in [10]. The L2 mixture projection filter has a clear relationship with earlier
Galerkin-based approaches to non-linear filtering, see for example [3] and [24]. However, the
geometric structure and the exact L2 projection make the method in this paper more general,
giving the possibility to apply it to manifolds that are more general than the standard mixture
family. Morevoer, in the continuous time observations case, the L2 projection filter is based on
the Stratonovich calculus that is needed to keep the projected dynamics into the tangent space
of the manifold, whereas the Galerkin based projection filter [3] is based on Ito calculus. We
will explore in detail our mixture projection filter based on direct L2 metric as compared with
the Galerkin methods in future research, where we will also implement the mixture projection
filter equations numerically, both for the simple mixture family and for more general families
to which the Galerkin method cannot be applied. We will also investigate the choice of the
specific mixture family, starting with gaussian or lognormal mixtures, with possible likelihood
ratio corrections that make the correction step exact and allow for the definition of a rigorous
measure for the filtering error, based on a projection residual.

2 Statistical manifolds

On the measurable space (Rn,B(Rn)) we consider a non–negative and σ–finite measure λ, and
we define M(λ) to be the set of all non–negative and finite measures µ which are absolutely
continuous w.r.t. λ, and whose density

pµ =
dµ

dλ
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is positive λ–a.e. For simplicity, we restrict ourselves to the case where λ is the Lebesgue
measure on Rn. We also assume that the total measure is normalized to one, so as to represent
a probability measure. This in turn implies that pµ integrates to one.

In the following, we denote by H(λ) the set of all the densities of measures contained in
M(λ). Notice that, as all the measures in M(λ) are non–negative and finite, we have that if
p is a density in H(λ) then p ∈ L1(λ), that is

√
p ∈ L2(λ). The above remark implies that the

set R(λ) := {√p : p∈H(λ)} of square roots of densities of H(λ) is a subset of L2(λ). Notice

that all
√
p in R(λ) satisfy

√

p(x) > 0, for almost every x ∈ Rn.

We notice the important point that neither H(λ) nor R(λ) are vector subspaces of L1 or L
2

respectively. Hence, we cannot view them as normed subspaces or topological vector spaces.
We will be able to use the L2 norm to define a metric in R, but we will not be able to view

R as a normed space.

2.1 The Hellinger distance

The above remarks lead to the definition of the following metric in R(λ), see Jacod and
Shiryayev [21] or Hanzon [19], dR(

√
p1,

√
p2) := ‖√p1 −

√
p2‖,where ‖ · ‖ denotes the norm

of the Hilbert space L2(λ). This leads to the Hellinger metric on H(λ) (or M(λ)), obtained
by using the bijection between densities (or measures) and square roots of densities : if µ1

and µ2 are the measures having densities p1 and p2 w.r.t. λ, the Hellinger metric is defined
as dM(µ1, µ2) = dH(p1, p2) = dR(

√
p1,

√
p2). It can be shown, see e.g. [19], that the distance

dM(µ1, µ2) in M(λ) is defined independently of the particular λ we choose as basic measure,
as long as both µ1 and µ2 are absolutely continuous w.r.t. λ. As one can always find a λ such
that both µ1 and µ2 are absolutely continuous w.r.t. λ (take for example λ := (µ1+µ2)/2), the
distance is well defined on the set of all finite and positive measures on (Ω,F).

2.2 The L2 direct distance

There is another possibility for defining a metric in H . We consider the following subset of H :

H2(λ) = H(λ) ∩ L2(λ)

i.e. the set of L2 densities. Notice that here we do not take the square root, but we use the L2

structure directly on the densities. If we further assume that densities in H are bounded, then

H2(λ) = H(λ)

since bounded positive functions that are in L1 are also in L2.
This structure leads to the definition of the following metric inH2(λ): d2(p1, p2) := ‖p1−p2‖.

H2 with this metric is a metric space but, again, it is not a normed space, since it is not a
vector space. We call this metric the direct L2 distance, since it is taken directly on the densities
rather than mapping them to their square roots.

2.3 Neither (H(λ), dH) nor (H2(λ), d2) are L2 Hilbert manifolds

Despite being subsets of L2, neither (H(λ), dH) (or the equivalent (R(λ), dR)) nor (H2(λ), d2)
are locally homeomorphic to L2(λ), hence they are not manifolds modeled on L2(λ). Indeed,
any open set of L2(λ) contains functions which are negative in a set with positive λ–measure.
There is no open set of L2(λ) which contains only positive functions such as the functions of
H2(λ) or R(λ).
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2.4 Definition of Tangent vectors through the L2 structure

Consider an open subset M of L2(λ). Let x be a point of M , and let γ : (−ǫ, ǫ) → M be a
curve on M around x, i.e. a differentiable map between an open neighborhood of 0 ∈ R and
M such that γ(0) = x. We can define the tangent vector to γ at x as the Fréchet derivative
Dγ(0) : (−ǫ, ǫ) → L2(λ), i.e. the linear map defined in R around 0 and taking values in L2(λ)
such that the following limit holds :

lim
|h|→0

‖γ(h)− γ(0)−Dγ(0) · h‖
|h| = 0 .

The map Dγ(0) approximates linearly the change of γ around x. Let Cx(M) be the set of all
the curves on M around x. If we consider the space

LxM := {Dγ(0) : γ ∈ Cx(M)} ,

of tangent vectors to all the possible curves on M around x, we obtain again the space L2(λ).
This is due to the fact that for every v ∈ L2(λ) we can always consider the straight line
γv(h) := x + h v. Since M is open, γv(h) takes values in M for |h| small enough. Of course
Dγv(0) = v, so that indeed LxM = L2(λ).

2.5 Finite dimensional submanifold embedded in L2

The situation becomes different if we consider an m–dimensional manifold N that is a subset
of L2 (and, possibly, a subset of R or H2 above). As such, it can be endowed with the topology
induced by the L2 norm. Because N is m-dimensional, it is also locally homeomorphic to Rm.

We can consider the induced L2 structure on N as follows : suppose x ∈ N , and define
again

LxN := {Dγ(0) : γ ∈ Cx(N)} .
This is a linear subspace of L2(λ) called the tangent vector space at x, which does not co-
incide with L2(λ) in general (due to the finite dimension of N , this tangent space will be
m-dimensional). The set of all tangent vectors at all points x of N is called the tangent bundle,
and will be denoted by LN . In our work we shall consider finite dimensional manifolds N
embedded in L2(λ), which are contained in R(λ) or H2 as a set, i.e. N ⊂ R(λ) ⊂ L2(λ) or
N ⊂ H2(λ) ⊂ L2(λ), so that usually x =

√
p or x = p, respectively.

We analyze the two cases separately.

2.6 Finite dimensional manifolds N in (R, dR)
If N is m–dimensional, it is locally homeomorphic to Rm, and it may be described locally by
a chart : if

√
p ∈ N , there exists a pair (S1/2, φ) with S1/2 open neighbourhood of

√
p in N

for the topology induced by dR and φ : S1/2 → Θ homeomorphism of S1/2 with the topology
induced by dR onto an open subset Θ of Rm with the usual topology of Rm. By considering
the inverse map i of φ,

i : Θ −→ S1/2

θ 7−→
√

p(·, θ)

we can express S1/2 as

i(Θ) = {
√

p(·, θ) , θ ∈ Θ} = S1/2.
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We will work only with the single coordinate chart (S1/2, φ) as it is done in [2]. From the
fact that (S1/2, φ) is a chart, it follows that

{∂i(·, θ)
∂θ1

, · · · , ∂i(·, θ)
∂θm

}

is a set of linearly independent vectors in L2(λ). In such a context, let us see what the vectors

of L√
p(·,θ)

S1/2 are. We can consider a curve in S1/2 around
√

p(·, θ) to be of the form γ :

h7→
√

p(·, θ(h)), where h 7→ θ(h) is a curve in Θ around θ. Then, according to the chain rule,
we compute the following Fréchet derivative:

Dγ(0) = D
√

p(·, θ(h))
∣

∣

∣

∣

h=0
=

m
∑

k=1

∂
√

p(·, θ)
∂θk

θ̇k(0) =
m
∑

k=1

1

2
√

p(·, θ)
∂p(·, θ)
∂θk

θ̇k(0) .

We obtain that a basis for the tangent vector space at
√

p(·, θ) to the space S1/2 of square roots
of densities of S is given by :

L√
p(·,θ)

S1/2 = span{ 1

2
√

p(·, θ)
∂p(·, θ)
∂θ1

, · · · , 1

2
√

p(·, θ)
∂p(·, θ)
∂θm

} . (1)

As i is the inverse of a chart, these vectors are actually linearly independent, and they indeed
form a basis of the tangent vector space. One has to be careful, because if this were not true,
the dimension of the above spanned space could drop.

The inner product of any two basis elements is defined, according to the L2 inner product

〈 1

2
√

p(·, θ)
∂p(·, θ)
∂θi

,
1

2
√

p(·, θ)
∂p(·, θ)
∂θj

〉 = 1
4

∫

1

p(x, θ)

∂p(x, θ)

∂θi

∂p(x, θ)

∂θj
dλ(x) = 1

4
gij(θ) . (2)

This is, up to the numeric factor 1
4
, the Fisher information metric, see for example [2], [28]

and [1]. The matrix g(θ) = (gij(θ)) is called the Fisher information matrix.
Next, we introduce the orthogonal projection between any linear subspace V of L2(λ) con-

taining the finite dimensional tangent vector space (1) and the tangent vector space (1) itself.
Let us remember that our basis is not orthogonal, so that we have to project according to the
following formula:

Π : V −→ span{w1, · · · , wm}

v 7−→
m
∑

i=1

[
m
∑

j=1

W ij 〈v, wj〉] wi

where {w1, · · · , wm} are m linearly independent vectors, W := (〈wi, wj〉) is the matrix formed
by all the possible inner products of such linearly independent vectors, and (W ij) is the inverse
of the matrix W . In our context {w1, · · · , wm} are the vectors in (1), and of course W is, up to
the numeric factor 1

4
, the Fisher information matrix given by (2). Then we obtain the following

projection formula, where (gij(θ)) is the inverse of the Fisher information matrix (gij(θ)) :

Πθ : L2(λ) ⊇ V −→ span{ 1

2
√

p(·, θ)
∂p(·, θ)
∂θ1

, · · · , 1

2
√

p(·, θ)
∂p(·, θ)
∂θm

}

Πθ[v] =
m
∑

i=1

[
m
∑

j=1

4gij(θ) 〈v, 1

2
√

p(·, θ)
∂p(·, θ)
∂θj

〉] 1

2
√

p(·, θ)
∂p(·, θ)
∂θi

.

(3)
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Let us go back to the definition of tangent vectors for our statistical manifold. Amari [2] uses
a different representation of tangent vectors to S at p. Without exploring all the assumptions
needed, let us say that Amari defines an isomorphism between the actual tangent space and
the vector space

span{∂ log p(·, θ)
∂θ1

, · · · , ∂ log p(·, θ)
∂θm

} .

On this representation of the tangent space, Amari defines a Riemannian metric given by

Ep(·,θ){
∂ log p(·, θ)

∂θi

∂ log p(·, θ)
∂θj

} ,

where Ep{·} denotes the expectation w.r.t. the probability density p. This is again the Fisher
information metric, and indeed this is the most frequent definition of Fisher metric. In fact, it
is easy to check that

Ep(·,θ){
∂ log p(·, θ)

∂θi

∂ log p(·, θ)
∂θj

} =
∫

∂ log p(x, θ)

∂θi

∂ log p(x, θ)

∂θj
p(x, θ) dλ(x)

(4)

=
∫ 1

p(x, θ)

∂p(x, θ)

∂θi

∂p(x, θ)

∂θj
dλ(x) = gij(θ) .

From the above relation and from (2) it is clear that, up to the numeric factor 1
4
, the Fisher

information metric and the Hellinger metric coincide on the two representations of the tangent
space to S at p(·, θ).

There is another way of measuring how close two densities of S are. Consider the Kullback–
Leibler information between two densities p and q of H(λ) :

K(p, q) :=
∫

log
p(x)

q(x)
p(x) dλ(x) = Ep{log

p

q
} .

This is not a metric, since it is not symmetric and it does not satisfy the triangular inequality.
When applied to a finite dimensional manifold such as S, both the Kullback–Leibler information
and the Hellinger distance are particular cases of α–divergence, see [2] for the details. One
can show that the Fisher metric and the Kullback–Leibler information coincide infinitesimally.
Indeed, consider the two densities p(·, θ) and p(·, θ + dθ) of S. By expanding in Taylor series,
we obtain

K(p(·, θ), p(·, θ + dθ)) = −
m
∑

i=1

Ep(·,θ){
∂ log p(·, θ)

∂θi
} dθi

−
m
∑

i,j=1

Ep(·,θ){
∂2 log p(·, θ)
∂θi∂θj

} dθi dθj +O(|dθ|3)

=
m
∑

i,j=1

gij(θ) dθi dθj +O(|dθ|3) .

The interested reader is referred to [1].

Example 2.1 (The Gaussian family and the Fisher metric with canonical parame-
ters). We may consider the Fisher metric for the Gaussian family of densities. The Gaussian
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family may be defined as a particular exponential family, represented with canonical parameters

θ, given by

{p(x, θ) = exp(θ1x+ θ2x
2 − ψ(θ)), θ2 < 0}

where one has easily

ψ(θ) = 1
2
ln

(

π

−θ2

)

− θ21
4θ2

and the Fisher metric is

g(θ) =

[

−1/(2θ2) θ1/(2θ
2
2)

θ1/(2θ
2
2) 1/(2θ22)− θ21/(2θ

3
2)

]

The familiar representation of Gaussian densities is in terms of mean and variance, given

respectively by

µ = −θ1/(2θ2), v = σ2 = (1/θ2 − θ21/θ
2
2)/2

The Fisher metric is used ideally to compute the distance between two infinitesimally near
points p(·, θ) and p(·, θ + dθ). Informally, we can write

dH(p(·, θ), p(·, θ + dθ)) = (dθ)Tg(θ)dθ

Notice that the matrix changes when changing coordinates, whereas the distance must clearly
be the same. Hence if we have another set of coordinates η related by diffeomorphism η = η(θ)
to θ, with inverse θ = θ(η), then clearly

dH(p(·, η), p(·, η + dη)) = (dη)T (∂ηθ(η))
T g(θ(η)) ∂ηθ(η) dη

where ∂ηθ(η) is the Jacobian matrix of the transformation. It follows that

g(η) = (∂ηθ(η))
T g(θ(η)) ∂ηθ(η)

Example 2.2 (The Gaussian family and the Fisher metric with expectation pa-
rameters). We may consider the Fisher metric for the Gaussian family of densities in the

parameters µ and v. These are related to the so called expectation parameters µ and v + µ2.

With this coordinate system the Fisher metric is much simpler and the matrix is diagonal,

resulting in

g(µ, v) =
1

v

[

1 0
0 1/(2v)

]

This can be derived either by applying the change of coordinates formula, or Eq. 2 directly, with

the parameters θ1, θ2 replaced by µ, v.

2.7 Finite dimensional manifolds N in (H2, d2)

Alternatively, if we use H2 instead of R as a set where N is contained, N can still be described
locally by a chart : if p ∈ N , there exists a pair (S, ψ) with S open neighbourhood of p in N
for the topology induced by d2 and ψ : S → Θ homeomorphism of S with the topology induced
by d2 onto an open subset Θ of Rm with the usual topology.

By considering the inverse map j of ψ,

j : Θ −→ S

θ 7−→ p(·, θ)
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we can express S as
j(Θ) = {p(·, θ) , θ ∈ Θ} = S.

We will work only with the single coordinate chart (S, ψ). From the fact that (S, ψ) is a
chart, it follows that

{∂j(·, θ)
∂θ1

, · · · , ∂j(·, θ)
∂θm

}

is a set of linearly independent vectors in L2(λ). In such a context, let us see what the vectors
of Lp(·,θ)S are. We can consider a curve in S around p(·, θ) to be of the form γ : h7→p(·, θ(h)),
where h 7→ θ(h) is a curve in Θ around θ. Then, according to the chain rule, we compute the
following Fréchet derivative:

Dγ(0) = Dp(·, θ(h))|h=0 =
m
∑

k=1

∂p(·, θ)
∂θk

θ̇k(0) =
m
∑

k=1

∂p(·, θ)
∂θk

θ̇k(0) .

We obtain that a basis for the tangent vector space at p(·, θ) to the space S is given by :

Lp(·,θ)S = span{∂p(·, θ)
∂θ1

, · · · , ∂p(·, θ)
∂θm

} . (5)

As j is the inverse of a chart, these vectors are actually linearly independent, and they indeed
form a basis of the tangent vector space. One has to be careful, because if this were not true,
the dimension of the above spanned space could drop.

The inner product of any two basis elements is defined, according to the L2 inner product

〈∂p(·, θ)
∂θi

,
∂p(·, θ)
∂θj

〉 =
∫

∂p(x, θ)

∂θi

∂p(x, θ)

∂θj
dλ(x) = hij(θ) . (6)

This is different from the Fisher information metric. The matrix h(θ) = (hij(θ)) is called the
direct L2 metric.

Next, we introduce the orthogonal projection between any linear subspace V of L2(λ) con-
taining the finite dimensional tangent vector space (5) and the tangent vector space (5) itself.

Πθ : L2(λ) ⊇ V −→ span{∂p(·, θ)
∂θ1

, · · · , ∂p(·, θ)
∂θm

}

Πθ[v] =
m
∑

i=1

[
m
∑

j=1

hij(θ) 〈v, ∂p(·, θ)
∂θj

〉] ∂p(·, θ)
∂θi

.

(7)

Example 2.3 (The Gaussian family and the direct L2 metric in canonical parame-
ters). We may consider the L2 metric for the Gaussian family of densities introduced earlier.

The L2 metric is

h(θ) =
1

8

√
2√

−θ2π





1 θ1
−θ2

θ1
−θ2

3
4

1
(−θ2)

+ θ1
2

θ2
2





and, as expected, it is different from the Fisher metric seen earlier.

Example 2.4 (The Gaussian family and the direct L2 metric in expectation param-
eters). We may consider the L2 metric for the Gaussian family in the coordinates µ, v. The

L2 metric is

h(µ, v) =
1

8v
√
vπ

[

1 0
0 3

4v

]

and, as expected, it is different from the µ, v Fisher metric seen earlier, although it is still a

diagonal matrix.
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3 Exponential families and Mixture families

Earlier research in [9], [10], [6] and [7] illustrated in detail how the Hellinger distance and the
related Fisher information metric are ideal tools when using the projection onto exponential
families of densities. This idea was first sketched by Hanzon in [18]. The above references
illustrate this by applying the above framework to the infinite dimensional stochastic PDE
describing the optimal solution of the nonlinear filtering problem. This generates an approx-
imate filter that is locally the closest filter in Fisher metric to the optimal one. The use of
exponential families allows the correction step in the filtering algorithm to become exact, so
that only the prediction step is approximated. Furthermore, and independently from the fil-
tering application, exponential families and the Fisher metric are known to interact well. For
example, the Fisher metric is obtained by double differentiation of the normalizing exponent
in the exponential family and has a straightforward link with the expectation parameters. See
for example [5].

The study of the projection filter for exponential families has been carried out in details int
he above references, especially [13], [9] and [10].

However, besides exponential families, there is another general framework that is powerful
in modeling probability densities, and this is the mixture family. Mixture distributions are
ubiquitous in statistics and may account for important stylized features such as skewness,
multi-modality and fat tails.

We define a mixture family as follows. Suppose we are given m+1 fixed squared integrable
probability densities in H2, say q = [q1, q2, . . . , qm+1]

T . Suppose we define the following space
of probability densities:

SM(q) = {θ1q1+ θ2q2+ · · ·+ θmqm+(1− θ1−· · ·− θm)qm+1, θi ≥ 0 for all i, θ1+ · · ·+ θm < 1}

For convenience, define the transformation

θ̂(θ) := [θ1, θ2, . . . , θm, 1− θ1 − θ2 − . . .− θm]
T

for all θ. We will often write θ̂ instead of θ̂(θ) for brevity. With this definition,

SM(q) = {θ̂(θ)T q, θi ≥ 0 for all i, θ1 + · · ·+ θm < 1}

We will occasionally refer to this manifold of densities as to the ”Simple Mixture” family. While
for exponential families the Hellinger distance and the related Fisher metric are ideal, given
also the expression (4), for mixture families it is less than ideal. For example, the calculation
of the Fisher information matrix g(θ) becomes cumbersome, and the related projection is quite
convoluted. Instead, if we consider the L2 distance and the related structure, the metric h(θ)
and the related projection become very simple. Indeed, one can immediately check from the
definition of h that for the mixture family we have

∂p(·, θ)
∂θi

= qi − qm+1

and
hij(θ) =

∫

(qi(x)− qm(x))(qj(x)− qm(x))dλ(x) =: hij

i.e., the L2 metric (and matrix) does not depend on the specific point θ of the manifold. The
same holds for the tangent space at p(·, θ), which is given by

Lp(·,θ)S = span{q1 − qm+1, q2 − qm+1, · · · , qm − qm+1}



D. Brigo. The direct L2 geometric structure with applications to Filtering 10

Also the L2 projection becomes particularly simple:

Πθ : L2(λ) ⊇ V −→ span{q1 − qm+1, q2 − qm+1, · · · , qm − qm+1}

Πθ[v] =
m
∑

i=1

[
m
∑

j=1

hij 〈v, qj − qm+1〉] (qi − qm+1) .
(8)

It is therefore worthwhile to try and apply the L2 metric and the related structure to the
projection of the infinite dimensional filter onto the mixture family above.

4 The nonlinear filtering problem

In order to present the key geometric ideas without being overwhelmed by technicalities on
stochastic PDEs, we consider the filtering problem with continuous time state and discrete time
observations, and in this setup we take a scalar system. We will consider multi-dimensional
systems later on, in the case with continuous time observations.

In this model, the state process is a continuous time stochastic differential equation

dXt = ft(Xt) dt+ σt(Xt) dWt ,

but only discrete–time observations are available

Zn = h(Xtn) + Vn ,

at times 0 = t0 < t1 < · · · < tn < · · · regularly sampled, where {Vn , n ≥ 0} is a Gaussian white
noise sequence independent of {Xt , t ≥ 0}.

The nonlinear filtering problem consists in finding the conditional density pn(x) of the state
Xtn given the observations up to time tn, i.e. such that P [Xtn ∈ dx | Zn] = pn(x) dx, where
Zn := σ(Z0, · · · , Zn). We define also the prediction conditional density p−n (x) dx = P [Xtn ∈
dx | Zn−1]. The sequence {pn , n ≥ 0} satisfies a recurrent equation, and the transition from
pn−1 to pn is decomposed in two steps, as explained for example in [22].

There is first a prediction step: Between time tn−1 and tn, we solve the Fokker–Planck
equation

∂pnt
∂t

= L∗
t p

n
t , pntn−1

= pn−1 (9)

where the forward diffusion operator is defined as

L∗
tφ = − ∂

∂x
[ft φ] +

1
2

∂2

∂x2
[σ2

t φ] ,

while its dual backwards diffusion operator is defined as

Lt = ft
∂

∂x
+ 1

2
(σ2

t )
∂2

∂x2
.

The solution at final time tn defines the prediction conditional density p−n = pntn .
We have then a second step, the correction step:
At time tn, the newly arrived observation Zn is combined with the prediction conditional

density p−n via the Bayes rule
pn(x) = cn Ψn(x) p

−
n (x) , (10)

where cn is a normalizing constant, and Ψn(x) denotes the likelihood function for the estimation
of Xtn based on the observation Zn only, i.e.

Ψn(x) := exp
{

− 1
2
|Zn − h(x)|2

}

. (11)
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5 The mixture projection filter (MPF)

We now introduce the mixture projection filter.
We will now work on the prediction step first, in order to derive the projected version of the

Fokker Planck equation, living in the manifold SM . We adopt the following technique. Take a
curve in the mixture family SM ,

t 7→ p(·, θ(t))
and notice that the left hand side of the Fokker Planck equation for this density would read

∂p(·, θ(t))
∂t

=
m
∑

i=1

∂p(·, θ(t))
∂θi

d

dt
θi(t) =

m
∑

i=1

(qi − qm+1)
d

dt
θi(t)

and project the right hand side of the Fokker Planck equation as

Πθ[L∗
tp(·, θ)] =

m
∑

i=1

[
m
∑

j=1

hij 〈L∗
tp(·, θ), qj − qm+1〉] (qi − qm+1) =

=
m
∑

i=1

[
m
∑

j=1

hij 〈p(·, θ),Lt(qj − qm+1)〉] (qi − qm+1)

where we used integration by parts in the last step. Now equating the two sides we obtain

m
∑

i=1

(qi − qm+1)
d

dt
θi(t) =

m
∑

i=1

[
m
∑

j=1

hij 〈p(·, θ),Lt(qj − qm+1)〉] (qi − qm+1)

which yields the ordinary differential equation for the parameters θ of the projected density:

d

dt
θi(t) =

m
∑

j=1

hij 〈p(·, θ),Lt(qj − qm+1)〉

Now, by taking into account the structure of p(·, θ) and the fact that such densities are linear
in θ, we see that the above equation is a linear differential equation:

d

dt
θi(t) =

m
∑

j=1

hij
[

m
∑

k=1

θk〈qk,Lt(qj − qm+1)〉+ (1− θ1 − · · · − θm)〈qm+1,Lt(qj − qm+1)〉
]

.

If we define, for two vector functions f and g, the matrix 〈f, g〉 and the vector Ltf as

(〈f, g〉)i,j := 〈fi, gj〉, (Ltf)i := Lt(fi)

then we can write the above ODE in compact form as

d

dt
θ(t) = h−1〈 Lt(q1:m − 1mqm+1), q 〉 θ̂(θ(t)) (12)

where q
1:m

is the vector with the first m components of q, and 1m is a m-dimensional (column)
vector of ones.

In [9] and [10] it is shown that, by carefully choosing the exponential family, the Fisher metric
exponential projection filter makes the correction step exact. In the mixture framework under
the L2 metric we are using now, this is harder to achieve unless we are willing to redefine the
manifold at every correction step. Let us therefore focus on the correction step first. Suppose
we are in [tn−1, tn) and we obtained a prediction for the density up to t−n , whose parameter
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we call θ−n . At tn a new observation Zn arrives and we update the density. Substituting the
prediction p(·, θ−n ) into formula (10), we observe that the resulting density leaves the original
mixture family SM(q). The updated density at tn is

cnΨn(x)p(x, θ
−
n ) = cnΨn(x) θ̂

T
q

and is outside SM(q). However, we may keep the update step exact by re-defining the basis
functions q as follows.

Suppose that we change basis functions at every discrete date observation step. The first
basis function vector is q0, then at update time t1 we will select a new vector of basis functions
q1, and so on. At every point in time we keep the vector m+1 dimensional. Suppose the basis
functions in [tn−1, tn) are q

n−1. We run the prediction step up to t−n , getting θ
−
n . At time tn, we

define the new basis functions as

qni (x) := ci,nΨn(x)q
n−1
i (x) for all i = 1, . . . , m+ 1

and where ci,n is the normalizing constant for the density on the right hand side. Every qni is
a normalized densities and we can define a mixture of such densities as the new space. In this
case, the correction step amounts to set, at tn:

Correction Step:

At tn : θn = θntn , and the new manifold is SM(qn)

We may now focus on the prediction step.
Before doing so, it is important to notice that the L2 metric changes as well when we change

the manifold, so that it is safe to index as follows:

hnij =
∫

(qni (x)− qnm(x))(q
n
j (x)− qnm(x))dλ(x)

Prediction step Between time tn−1 and tn, we solve the ODE’s

d

dt
θn(t) = (hn−1)−1〈Lt(q

n−1
1:m

− 1mq
n−1
m+1), q

n−1〉 θ̂(θn(t)), θntn−1
:= θn−1 .

The solution at final time tn defines the prediction parameters θ−n = θntn .

6 Relationship with Galerkin methods

Consider the prediction step in the above section. This is the same step we would have obtained
through Galerkin methods, see for example [3].

In [3], the Galerkin method is applied to the filtering problem with continuous time obser-
vations. We will address the continuous time observations setup in the next section.

Here we keep discrete time observations and we show the Galerkin approximation on the
prediction step.

The Galerkin approximation is obtained by approximating the exact solution of the Fokker–
Planck equation (9) with a function of the form

p̃t(x) :=
m+1
∑

i=1

ci(t)φi(x), (13)
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see for example [3] for more details. The method works by replacing the exact solution of the
Fokker–Planck equation with the solution of the equations

〈−∂p̃t
∂t

+ L∗
t p̃t , ξ〉 = 0

for a suitable family of smooth L2 test functions ξ. By using the approximation (13) in this
last expression, and by taking ξ = φj for j = 1, . . . , m+ 1, and finally by setting

ci(t) = θi(t) and φi(x) = qi(x)− qm+1(x) for i = 1, . . . , m, cm+1(t) = 1, φm+1(x) = qm+1(x)

we can see that the method provides exactly Equation (12). Therefore, for simple mixture
families the L2 projection filter prediction step will coincide with the Galerkin method based
prediction step.

However, this holds only for the case where the manifold S on which we project is the simple
mixture family. More complex families, such as the ones we will hint at in the continuous
observation case, will not allow for a Galerkin-based filter and only the L2 projection filter
can be defined there. Furthermore, even under the simple mixture family, in the continuous
observations case there is a further fundamental difference. Our L2 projection filter in the
continuos time observations case will be different from the Galerkin projection filter in [3],
because we use Stratonovich calculus to project the Kushner-Stratonovich equation in L2 metric.
In [3] the Ito version of the Kushner-Stratonovich Equation is used instead, but since Ito calculus
does not work on manifolds, due to the second order term moving the dynamics out of the
tangent space (see for example [6]), we use the Stratonovich version instead. The Ito-based and
Stratonovich based Galerkin projection filters will therefore differ for simple mixture families,
and again, only the second one can be defined for manifolds of densities beyond the simplest
mixture family. A particularly important manifold for which only the L2 based filter can be
defined is a manifold that makes the correction step exact also in continuous time. For such a
family one can define a rigorous measure of the filtering error in L2 norm, which is impossible
to obtain with the standard Galerkin method. This will be made explicit in future work.

7 The Filtering Problem with continuous-time observa-

tions

In the above part of the paper we decided to take discrete time observations in order to limit
technicalities. In this section we consider a continuos time framework both for the observations
Y and for the signal X , and we allow both to be multi-dimensional processes.

dXt = ft(Xt) dt+ σt(Xt) dWt, X0,

dYt = bt(Xt) dt+ dVt, Y0 = 0 .
(14)

These equations are Itô stochastic differential equations (SDE’s). In the continuous observations
case we shall use both Itô SDE’s (for example for the signal X) and Stratonovich (Str) SDE’s
(when dealing with manifolds and projections). The Str form will be denoted by the presence
of the symbol ‘◦’ in between the diffusion coefficient and the Brownian motion of a SDE. The
use of Str SDE’s is necessary in order to be able to deal with stochastic calculus on manifolds,
since in general one does not know how to interpret the second order terms arising in Itô’s
calculus in terms of manifold structures. The interested reader is referred to [17].

In (14), the unobserved state process {Xt , t ≥ 0} and the observation process {Yt , t ≥ 0}
are taking values in Rn and Rd respectively, the noise processes {Wt , t ≥ 0} and {Vt , t ≥ 0}
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are two Brownian motions, taking values in Rp and Rd respectively, with covariance matrices
Qt and Rt respectively. We assume that Rt is invertible for all t ≥ 0, which implies that,
without loss of generality, we can assume that Rt = I for all t ≥ 0. Finally, the initial state
X0 and the noise processes {Wt , t ≥ 0} and {Vt , t ≥ 0} are assumed to be independent. We
assume that the initial state X0 has a density p0 w.r.t. the Lebesgue measure λ on Rn, and
has finite moments of any order, and we make the following assumptions on the coefficients ft,
at := σtQt σ

T
t , and bt of the system (14)

(A) Local Lipschitz continuity : for all R > 0, there exists KR > 0 such that

|ft(x)− ft(x
′)| ≤ KR |x− x′| and ‖at(x)− at(x

′)‖ ≤ KR |x− x′| ,

for all t ≥ 0, and for all x, x′ ∈ BR, the ball of radius R.

(B) Non–explosion : there exists K > 0 such that

xT ft(x) ≤ K (1 + |x|2) and trace at(x) ≤ K (1 + |x|2) ,

for all t ≥ 0, and for all x ∈ Rn.

(C) Polynomial growth : there exist K > 0 and r ≥ 0 such that

|bt(x)| ≤ K (1 + |x|r) ,

for all t ≥ 0, and for all x ∈ Rn.

Under assumptions (A) and (B), there exists a unique solution {Xt , t ≥ 0} to the state
equation, see for example [25], and Xt has finite moments of any order. Under the additional
assumption (C) the following finite energy condition holds

E
∫ T

0
|bt(Xt)|2 dt <∞ , for all T ≥ 0.

The nonlinear filtering problem consists in finding the conditional probability distribution
πt of the state Xt given the observations up to time t, i.e. πt(dx) := P [Xt ∈ dx | Yt], where
Yt := σ(Ys , 0 ≤ s ≤ t). Since the finite energy condition holds, it follows from Fujisaki,
Kallianpur and Kunita [23] that {πt , t ≥ 0} satisfies the Kushner–Stratonovich equation, i.e.
for any smooth and compactly supported test function φ defined on Rn

πt(φ) = π0(φ) +
∫ t

0
πs(Lsφ) ds+

d
∑

k=1

∫ t

0
[πs(b

k
s φ)− πs(b

k
s) πs(φ)] [dY

k
s − πs(b

k
s) ds] , (15)

where for all t ≥ 0, the backward diffusion operator Lt is defined by

Lt =
n
∑

i=1

f i
t

∂

∂xi
+ 1

2

n
∑

i,j=1

aijt
∂2

∂xi∂xj
.

The Str form of equation (15) is obtained, after straightforward computations, as :

πt(φ) = π0(φ) +
∫ t

0
πs(Ls φ) ds− 1

2

∫ t

0
[πs(|bs|2 φ)− πs(|bs|2) πs(φ)] ds

+
d

∑

k=1

∫ t

0
[πs(b

k
s φ)− πs(b

k
s) πs(φ)] ◦ dY k

s .

(16)
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From now on we proceed formally, and we assume that for all t ≥ 0, the probability distribution
πt has a density pt w.r.t. the Lebesgue measure on Rn. Then {pt , t ≥ 0} satisfies the Itô–type
stochastic partial differential equation (SPDE)

dpt = L∗
t pt dt+

d
∑

k=1

pt [b
k
t − Ept{bkt }] [dY k

t − Ept{bkt } dt] (17)

in a suitable functional space, where Ept{·} denotes the expectation w.r.t. the probability
density pt, i.e. the conditional expectation given the observations up to time t, and where for
all t ≥ 0, the forward diffusion operator L∗

t is defined by

L∗
tφ = −

n
∑

i=1

∂

∂xi
[f i

t φ] +
1
2

n
∑

i,j=1

∂2

∂xi∂xj
[aijt φ] ,

for any test function φ defined on Rn. The corresponding Str form of the SPDE (17) is :

dpt = L∗
t pt dt− 1

2
pt [|bt|2 − Ept{|bt|2}] dt+

d
∑

k=1

pt [b
k
t −Ept{bkt }] ◦ dY k

t .

In order to simplify notation, we introduce the following definitions :

γ0t (p) := 1
2
[|bt|2 − Ep{|bt|2}] p,

γkt (p) := [bkt −Ep{bkt }]p ,
(18)

for k = 1, · · · , d. The Str form of the Kushner–Stratonovich equation reads now

dpt = L∗
t pt dt− γ0t (pt) dt+

d
∑

k=1

γkt (pt) ◦ dY k
t . (19)

This equation can be projected according to the L2 direct metric we introduced above,
similarly to how we projected the Fokker Planck equation for the prediction step in the discrete
time observation case. There the projection transformed a PDE into a ODE, whereas in our
current case the projection will transform a SPDE into a SDE.

Take again a curve in the mixture family SM ,

t 7→ p(·, θ(t))

and notice that the left hand side of the Kushner-Strantonovich SPDE for this density would
read

dtp(·, θ(t)) =
m
∑

i=1

∂p(·, θ(t))
∂θi

dtθi(t) =
m
∑

i=1

(qi − qm+1) dθi(t)

and project the right hand side terms of the Kushner-Strantonovich SPDE (19) as

Πθ[L∗
tp(·, θ)] =

m
∑

i=1

[
m
∑

j=1

hij 〈p(·, θ),Lt(qj − qm+1)〉] (qi − qm+1),

Πθ[γ
k
t (p(·, θ))] =

m
∑

i=1

[
m
∑

j=1

hij 〈γkt (p(·, θ)), qj − qm+1〉] (qi − qm+1)

Now equating the two sides we obtain

m
∑

i=1

(qi − qm+1)dtθi(t) =
m
∑

i=1

[ m
∑

j=1

hij
{

〈p(·, θ),Lt(qj − qm+1)〉dt− 〈γ0t (p(·, θ)), qj − qm+1〉dt
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+
d

∑

k=1

〈γkt (p(·, θ)), qj − qm+1〉 ◦ dY k
t

}]

(qi − qm+1)

which yields the stochastic differential equation for the parameters θ of the projected density:

dtθi(t) =
m
∑

j=1

hij
{

〈p(·, θ),Lt(qj − qm+1)〉dt− 〈γ0t (p(·, θ)), qj − qm+1〉dt

+
d
∑

k=1

〈γkt (p(·, θ)), qj − qm+1〉 ◦ dY k
t

}

Similarly to what we did for the discrete time observations case, we can write this SDE in more
compact form as

dtθ(t) = h−1〈Lt(q1:m − 1mqm+1), q〉 θ̂(θ(t))dt− h−1〈γ0t (p(·, θ)), q1:m − 1mqm+1)〉dt+

+h−1
d

∑

k=1

〈γkt (p(·, θ)), q1:m − 1mqm+1〉 ◦ dY k
t (20)

Notice that now only the prediction dt part is linear. More generally, by inspection one can
see that the equation is quadratic. One can define a projection residual in L2 norm, measuring
the local projection error of the filter. This residual can be made rigorous under a specific
mixture family incorporating a pseudo likelihood ratio update factor into each mixture family
member function q. This, and a numerical investigation on the effectiveness of the filter for
some standard systems is under investigation in [8].

8 Conclusion and Further Research

We introduced a projection method for the space of probability distributions based on the
differential geometric approach to statistics. This method makes use of a direct L2 metric as
opposed to the usual Hellinger distance and the related Fisher Information metric. We applied
this apparatus to the nonlinear filtering problem. Past projection filters concentrated on the
Fisher metric and the exponential families that made the filter correction step exact. Instead,
in this work we introduce the mixture projection filter, namely the projection filter based on
the direct L2 metric and based on a manifold given by a mixture of pre-assigned densities.
We derived the filter equations for the discrete time observation case first. We showed how
an update on the manifold functions, even when keeping the same dimension, can make the
correction step exact. A key result is that the prediction step is a simple linear ordinary
differential equation.

We then derived the continuous time observations filter by projecting the Kushner Stratonovich
stochastic PDE in Stratonovich form, and obtained a SDE whose drift is linear but with addi-
tional quadratic terms both in the drift and in the diffusion part.

We finally remarked that the exponential projection filter had a clear relationship with the
assumed density filters, as documented in [10]. The mixture projection filter introduced here
has a clear relationship with earlier Galerkin-based approaches when applied to simple mixture
families, although even for such families there are important differences in the continuous time
observations case. In future work [8] we will also implement the mixture projection filter
equations numerically and will investigate the choice of the specific mixture family and the
projection error.
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[26] J. Lévine, Finite dimensional realizations of stochastic PDE’s and application to filtering,
Stochastics and Stochastic Reports 43 (1991) 75–103.

[27] R.S. Liptser, A.N. Shiryayev, Statistics of Random Processes I, General Theory (Springer
Verlag, Berlin, 1978).

[28] M. Murray and J. Rice - Differential geometry and statistics, Monographs on Statistics
and Applied Probability 48, Chapman and Hall, 1993.

[29] D. Ocone, E. Pardoux, A Lie algebraic criterion for non-existence of finite dimensionally

computable filters, Lecture notes in mathematics 1390, 197–204 (Springer Verlag, 1989)

[30] Pistone, G., and Sempi, C. (1995). An Infinite Dimensional Geometric Structure On the
space of All the Probability Measures Equivalent to a Given one. The Annals of Statistics
23(5), 1995


