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Abstract

In this paper we introduce a projection method for the space of probability distribu-

tions based on the differential geometric approach to statistics. This method is based

on a direct L
2 metric as opposed to the usual Hellinger distance and the related Fisher

Information metric. We explain how this apparatus can be used for the nonlinear filtering

problem, in relationship also to earlier projection methods based on the Fisher metric.

Past projection filters focused on the Fisher metric and the exponential families that made

the filter correction step exact. In this work we introduce the mixture projection filter,

namely the projection filter based on the direct L2 metric and based on a manifold given

by a mixture of pre-assigned densities.
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1 Introduction

In this paper we consider the (scalar) nonlinear filtering problem in continuous time. For a
quick introduction to the filtering problem see Davis and Marcus (1981) [14]. For a more
complete treatment see Liptser and Shiryayev (1978) [21] from a mathematical point of view
or Jazwinski (1970) [19] for a more applied perspective. For recent results see the collection of
papers [13].

The nonlinear filtering problem has an infinite–dimensional solution in general. Construct-
ing of approximate finite-dimensional filters is an important area of research.

When the system has continuous time signal and continuous time observations, the solution
of the filtering problem is a Stochastic PDE which can be seen as a generalization of the Fokker–
Planck equation expressing the evolution of the density of a diffusion process. This filtering
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equation is called Kushner–Stratonovich equation, and an unnormalized (simpler) version of
it is known as the Duncan–Mortensen–Zakai Stochastic Partial Differential Equation. When
observations are in discrete time, the filtering problem decomposes into a prediction step, given
by the Fokker-Planck equation, and a correction step, given by Bayes formula.

In [11], [7] and [8] the Fisher metric is used to project the Kushner–Stratonovich (or the
Fokker–Planck) equation onto an exponential family of probability densities, yielding the new
class of approximate filters called projection filters. The projection filters are based on the
differential geometric approach to statistics, as developed by [2] and [25]. It is also shown that
one can choose the family so as to make the prediction step exact. Moreover, it is shown that
for exponential families the projection filters coincide with the assumed density filters.

In [9, 10] the Gaussian projection filter is studied in the small-noise setting.
In the present paper we choose a different differential geometric structure based on a direct

L2 metric as opposed to the usual Hellinger distance and the related Fisher Information metric.
We explain how this structure can be used to derive a different family of finite dimensional
filters that form a good approximation for the solution of the nonlinear filtering problem. This
structure is particularly suited to be applied to mixture families of distributions, similarly to
how exponential families are well suited to work with the Fisher information metric. In this
work we thus introduce the mixture projection filter, namely the projection filter based on the
direct L2 metric and based on a manifold given by a mixture of pre-assigned densities. The
prediction step is given by a linear differential equation, whereas the correction step can be
made exact by updating the basis functions for the tangent space of the manifold, namely the
mixture components, at each observation time.

The exponential projection filter had a clear relationship with the assumed density filters, as
documented in [8]. This method has a clear relationship with earlier Galerkin-based approaches
to non-linear filtering, see for example [23]. In our opinion however the geometric structure
and the exact projection make the method in this paper more rigorous than the usual Galerkin
methods. We will explore in detail the relationship between our mixture projection filter based
on direct L2 metric and Galerkin methods in future research, where we will also implement
the mixture projection filter equations numerically. We will also investigate the choice of the
specific mixture family, starting with gaussian or lognormal mixtures.

2 Statistical manifolds

On the measurable space (Rn,B(Rn)) we consider a non–negative and σ–finite measure λ, and
we define M(λ) to be the set of all non–negative and finite measures µ which are absolutely
continuous w.r.t. λ, and whose density

pµ =
dµ

dλ

is positive λ–a.e. For simplicity, we restrict ourselves to the case where λ is the Lebesgue
measure on Rn. We also assume that the total measure is normalized to one, so as to represent
a probability measure. This in turn implies that pµ integrates to one.

In the following, we denote by H(λ) the set of all the densities of measures contained in
M(λ). Notice that, as all the measures in M(λ) are non–negative and finite, we have that if
p is a density in H(λ) then p ∈ L1(λ), that is

√
p ∈ L2(λ). The above remark implies that the

set R(λ) := {√p : p∈H(λ)} of square roots of densities of H(λ) is a subset of L2(λ). Notice

that all
√
p in R(λ) satisfy

√

p(x) > 0, for almost every x ∈ Rn.
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We notice the important point that neither H(λ) nor R(λ) are vector subspaces of L1 or L
2

respectively. Hence, we cannot view them as normed subspaces or topological vector spaces.
We will be able to use the L2 norm to define a metric in R, but we will not be able to view

R as a normed space.

2.1 The Hellinger distance

The above remarks lead to the definition of the following metric in R(λ), see Jacod and
Shiryayev [18] or Hanzon [16], dR(

√
p1,

√
p2) := ‖√p1 −

√
p2‖,where ‖ · ‖ denotes the norm

of the Hilbert space L2(λ). This leads to the Hellinger metric on H(λ) (or M(λ)), obtained
by using the bijection between densities (or measures) and square roots of densities : if µ1

and µ2 are the measures having densities p1 and p2 w.r.t. λ, the Hellinger metric is defined
as dM(µ1, µ2) = dH(p1, p2) = dR(

√
p1,

√
p2). It can be shown, see e.g. [16], that the distance

dM(µ1, µ2) in M(λ) is defined independently of the particular λ we choose as basic measure,
as long as both µ1 and µ2 are absolutely continuous w.r.t. λ. As one can always find a λ such
that both µ1 and µ2 are absolutely continuous w.r.t. λ (take for example λ := (µ1+µ2)/2), the
distance is well defined on the set of all finite and positive measures on (Ω,F).

2.2 The L2 direct distance

There is another possibility for defining a metric in H . We consider the following subset of H :

H2(λ) = H(λ) ∩ L2(λ)

i.e. the set of L2 densities. Notice that here we do not take the square root, but we use the L2

structure directly on the densities. If we further assume that densities in H are bounded, then

H2(λ) = H(λ)

since bounded positive functions that are in L1 are also in L2.
This structure leads to the definition of the following metric inH2(λ): d2(p1, p2) := ‖p1−p2‖.

H2 with this metric is a metric space but, again, it is not a normed space, since it is not a
vector space. We call this metric the direct L2 distance, since it is taken directly on the densities
rather than mapping them to their square roots.

2.3 Neither (H(λ), dH) nor (H2(λ), d2) are L2 Hilbert manifolds

Despite being subsets of L2, neither (H(λ), dH) (or the equivalent (R(λ), dR)) nor (H2(λ), d2)
are locally homeomorphic to L2(λ), hence they are not manifolds modeled on L2(λ). Indeed,
any open set of L2(λ) contains functions which are negative in a set with positive λ–measure.
There is no open set of L2(λ) which contains only positive functions such as the functions of
H2(λ) or R(λ).

2.4 Definition of Tangent vectors through the L2 structure

Consider an open subset M of L2(λ). Let x be a point of M , and let γ : (−ǫ, ǫ) → M be a
curve on M around x, i.e. a differentiable map between an open neighborhood of 0 ∈ R and
M such that γ(0) = x. We can define the tangent vector to γ at x as the Fréchet derivative
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Dγ(0) : (−ǫ, ǫ) → L2(λ), i.e. the linear map defined in R around 0 and taking values in L2(λ)
such that the following limit holds :

lim
|h|→0

‖γ(h)− γ(0)−Dγ(0) · h‖
|h| = 0 .

The map Dγ(0) approximates linearly the change of γ around x. Let Cx(M) be the set of all
the curves on M around x. If we consider the space

LxM := {Dγ(0) : γ ∈ Cx(M)} ,

of tangent vectors to all the possible curves on M around x, we obtain again the space L2(λ).
This is due to the fact that for every v ∈ L2(λ) we can always consider the straight line
γv(h) := x + h v. Since M is open, γv(h) takes values in M for |h| small enough. Of course
Dγv(0) = v, so that indeed LxM = L2(λ).

2.5 Finite dimensional submanifold embedded in L2

The situation becomes different if we consider an m–dimensional manifold N that is a subset
of L2 (and, possibly, a subset of R or H2 above). As such, it can be endowed with the topology
induced by the L2 norm. Because N is m-dimensional, it is also locally homeomorphic to Rm.

We can consider the induced L2 structure on N as follows : suppose x ∈ N , and define
again

LxN := {Dγ(0) : γ ∈ Cx(N)} .
This is a linear subspace of L2(λ) called the tangent vector space at x, which does not co-
incide with L2(λ) in general (due to the finite dimension of N , this tangent space will be
m-dimensional). The set of all tangent vectors at all points x of N is called the tangent bundle,
and will be denoted by LN . In our work we shall consider finite dimensional manifolds N
embedded in L2(λ), which are contained in R(λ) or H2 as a set, i.e. N ⊂ R(λ) ⊂ L2(λ) or
N ⊂ H2(λ) ⊂ L2(λ), so that usually x =

√
p or x = p, respectively.

We analyze the two cases separately.

2.6 Finite dimensional manifolds N in (R, dR)
If N is m–dimensional, it is locally homeomorphic to Rm, and it may be described locally by
a chart : if

√
p ∈ N , there exists a pair (S1/2, φ) with S1/2 open neighbourhood of

√
p in N

for the topology induced by dR and φ : S1/2 → Θ homeomorphism of S1/2 with the topology
induced by dR onto an open subset Θ of Rm with the usual topology of Rm. By considering
the inverse map i of φ,

i : Θ −→ S1/2

θ 7−→
√

p(·, θ)

we can express S1/2 as

i(Θ) = {
√

p(·, θ) , θ ∈ Θ} = S1/2.

We will work only with the single coordinate chart (S1/2, φ) as it is done in [2]. From the
fact that (S1/2, φ) is a chart, it follows that

{∂i(·, θ)
∂θ1

, · · · , ∂i(·, θ)
∂θm

}
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is a set of linearly independent vectors in L2(λ). In such a context, let us see what the vectors

of L√
p(·,θ)

S1/2 are. We can consider a curve in S1/2 around
√

p(·, θ) to be of the form γ :

h7→
√

p(·, θ(h)), where h 7→ θ(h) is a curve in Θ around θ. Then, according to the chain rule,
we compute the following Fréchet derivative:

Dγ(0) = D
√

p(·, θ(h))
∣

∣

∣

∣

h=0
=

m
∑

k=1

∂
√

p(·, θ)
∂θk

θ̇k(0) =
m
∑

k=1

1

2
√

p(·, θ)
∂p(·, θ)
∂θk

θ̇k(0) .

We obtain that a basis for the tangent vector space at
√

p(·, θ) to the space S1/2 of square roots
of densities of S is given by :

L√
p(·,θ)

S1/2 = span{ 1

2
√

p(·, θ)
∂p(·, θ)
∂θ1

, · · · , 1

2
√

p(·, θ)
∂p(·, θ)
∂θm

} . (1)

As i is the inverse of a chart, these vectors are actually linearly independent, and they indeed
form a basis of the tangent vector space. One has to be careful, because if this were not true,
the dimension of the above spanned space could drop.

The inner product of any two basis elements is defined, according to the L2 inner product

〈 1

2
√

p(·, θ)
∂p(·, θ)
∂θi

,
1

2
√

p(·, θ)
∂p(·, θ)
∂θj

〉 = 1
4

∫

1

p(x, θ)

∂p(x, θ)

∂θi

∂p(x, θ)

∂θj
dλ(x) = 1

4
gij(θ) . (2)

This is, up to the numeric factor 1
4
, the Fisher information metric, see for example [2], [22]

and [1]. The matrix g(θ) = (gij(θ)) is called the Fisher information matrix.
Next, we introduce the orthogonal projection between any linear subspace V of L2(λ) con-

taining the finite dimensional tangent vector space (1) and the tangent vector space (1) itself.
Let us remember that our basis is not orthogonal, so that we have to project according to the
following formula:

Π : V −→ span{w1, · · · , wm}

v 7−→
m
∑

i=1

[
m
∑

j=1

W ij 〈v, wj〉] wi

where {w1, · · · , wm} are m linearly independent vectors, W := (〈wi, wj〉) is the matrix formed
by all the possible inner products of such linearly independent vectors, and (W ij) is the inverse
of the matrix W . In our context {w1, · · · , wm} are the vectors in (1), and of course W is, up to
the numeric factor 1

4
, the Fisher information matrix given by (2). Then we obtain the following

projection formula, where (gij(θ)) is the inverse of the Fisher information matrix (gij(θ)) :

Πθ : L2(λ) ⊇ V −→ span{ 1

2
√

p(·, θ)
∂p(·, θ)
∂θ1

, · · · , 1

2
√

p(·, θ)
∂p(·, θ)
∂θm

}

Πθ[v] =
m
∑

i=1

[
m
∑

j=1

4gij(θ) 〈v, 1

2
√

p(·, θ)
∂p(·, θ)
∂θj

〉] 1

2
√

p(·, θ)
∂p(·, θ)
∂θi

.

(3)

Let us go back to the definition of tangent vectors for our statistical manifold. Amari [2] uses
a different representation of tangent vectors to S at p. Without exploring all the assumptions
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needed, let us say that Amari defines an isomorphism between the actual tangent space and
the vector space

span{∂ log p(·, θ)
∂θ1

, · · · , ∂ log p(·, θ)
∂θm

} .

On this representation of the tangent space, Amari defines a Riemannian metric given by

Ep(·,θ){
∂ log p(·, θ)

∂θi

∂ log p(·, θ)
∂θj

} ,

where Ep{·} denotes the expectation w.r.t. the probability density p. This is again the Fisher
information metric, and indeed this is the most frequent definition of Fisher metric. In fact, it
is easy to check that

Ep(·,θ){
∂ log p(·, θ)

∂θi

∂ log p(·, θ)
∂θj

} =
∫ ∂ log p(x, θ)

∂θi

∂ log p(x, θ)

∂θj
p(x, θ) dλ(x)

(4)

=
∫

1

p(x, θ)

∂p(x, θ)

∂θi

∂p(x, θ)

∂θj
dλ(x) = gij(θ) .

From the above relation and from (2) it is clear that, up to the numeric factor 1
4
, the Fisher

information metric and the Hellinger metric coincide on the two representations of the tangent
space to S at p(·, θ).

There is another way of measuring how close two densities of S are. Consider the Kullback–
Leibler information between two densities p and q of H(λ) :

K(p, q) :=
∫

log
p(x)

q(x)
p(x) dλ(x) = Ep{log

p

q
} .

This is not a metric, since it is not symmetric and it does not satisfy the triangular inequality.
When applied to a finite dimensional manifold such as S, both the Kullback–Leibler information
and the Hellinger distance are particular cases of α–divergence, see [2] for the details. One
can show that the Fisher metric and the Kullback–Leibler information coincide infinitesimally.
Indeed, consider the two densities p(·, θ) and p(·, θ + dθ) of S. By expanding in Taylor series,
we obtain

K(p(·, θ), p(·, θ + dθ)) = −
m
∑

i=1

Ep(·,θ){
∂ log p(·, θ)

∂θi
} dθi

−
m
∑

i,j=1

Ep(·,θ){
∂2 log p(·, θ)
∂θi∂θj

} dθi dθj +O(|dθ|3)

=
m
∑

i,j=1

gij(θ) dθi dθj +O(|dθ|3) .

The interested reader is referred to [1].

Example 2.1 (The Gaussian family and the Fisher metric with canonical parame-
ters). We may consider the Fisher metric for the Gaussian family of densities. The Gaussian

family may be defined as a particular exponential family, represented with canonical parameters

θ, given by

{p(x, θ) = exp(θ1x+ θ2x
2 − ψ(θ)), θ2 < 0}
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where one has easily

ψ(θ) = 1
2
ln

(

π

−θ2

)

− θ21
4θ2

and the Fisher metric is

g(θ) =

[

−1/(2θ2) θ1/(2θ
2
2)

θ1/(2θ
2
2) 1/(2θ22)− θ21/(2θ

3
2)

]

The familiar representation of Gaussian densities is in terms of mean and variance, given

respectively by

µ = −θ1/(2θ2), v = σ2 = (1/θ2 − θ21/θ
2
2)/2

The Fisher metric is used ideally to compute the distance between two infinitesimally near
points p(·, θ) and p(·, θ + dθ). Informally, we can write

dH(p(·, θ), p(·, θ + dθ)) = (dθ)Tg(θ)dθ

Notice that the matrix changes when changing coordinates, whereas the distance must clearly
be the same. Hence if we have another set of coordinates η related by diffeomorphism η = η(θ)
to θ, with inverse θ = θ(η), then clearly

dH(p(·, η), p(·, η + dη)) = (dη)T (∂ηθ(η))
T g(θ(η)) ∂ηθ(η) dη

where ∂ηθ(η) is the Jacobian matrix of the transformation. It follows that

g(η) = (∂ηθ(η))
T g(θ(η)) ∂ηθ(η)

Example 2.2 (The Gaussian family and the Fisher metric with expectation pa-
rameters). We may consider the Fisher metric for the Gaussian family of densities in the

parameters µ and v. These are related to the so called expectation parameters µ and v + µ2.

With this coordinate system the Fisher metric is much simpler and the matrix is diagonal,

resulting in

g(µ, v) =
1

v

[

1 0
0 1/(2v)

]

This can be derived either by applying the change of coordinates formula, or Eq. 2 directly, with

the parameters θ1, θ2 replaced by µ, v.

2.7 Finite dimensional manifolds N in (H2, d2)

Alternatively, if we use H2 instead of R as a set where N is contained, N can still be described
locally by a chart : if p ∈ N , there exists a pair (S, ψ) with S open neighbourhood of p in N
for the topology induced by d2 and ψ : S → Θ homeomorphism of S with the topology induced
by d2 onto an open subset Θ of Rm with the usual topology.

By considering the inverse map j of ψ,

j : Θ −→ S

θ 7−→ p(·, θ)

we can express S as
j(Θ) = {p(·, θ) , θ ∈ Θ} = S.
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We will work only with the single coordinate chart (S, ψ). From the fact that (S, ψ) is a
chart, it follows that

{∂j(·, θ)
∂θ1

, · · · , ∂j(·, θ)
∂θm

}

is a set of linearly independent vectors in L2(λ). In such a context, let us see what the vectors
of Lp(·,θ)S are. We can consider a curve in S around p(·, θ) to be of the form γ : h7→p(·, θ(h)),
where h 7→ θ(h) is a curve in Θ around θ. Then, according to the chain rule, we compute the
following Fréchet derivative:

Dγ(0) = Dp(·, θ(h))|h=0 =
m
∑

k=1

∂p(·, θ)
∂θk

θ̇k(0) =
m
∑

k=1

∂p(·, θ)
∂θk

θ̇k(0) .

We obtain that a basis for the tangent vector space at p(·, θ) to the space S is given by :

Lp(·,θ)S = span{∂p(·, θ)
∂θ1

, · · · , ∂p(·, θ)
∂θm

} . (5)

As j is the inverse of a chart, these vectors are actually linearly independent, and they indeed
form a basis of the tangent vector space. One has to be careful, because if this were not true,
the dimension of the above spanned space could drop.

The inner product of any two basis elements is defined, according to the L2 inner product

〈∂p(·, θ)
∂θi

,
∂p(·, θ)
∂θj

〉 =
∫

∂p(x, θ)

∂θi

∂p(x, θ)

∂θj
dλ(x) = hij(θ) . (6)

This is different from the Fisher information metric. The matrix h(θ) = (hij(θ)) is called the
direct L2 metric.

Next, we introduce the orthogonal projection between any linear subspace V of L2(λ) con-
taining the finite dimensional tangent vector space (5) and the tangent vector space (5) itself.

Πθ : L2(λ) ⊇ V −→ span{∂p(·, θ)
∂θ1

, · · · , ∂p(·, θ)
∂θm

}

Πθ[v] =
m
∑

i=1

[
m
∑

j=1

hij(θ) 〈v, ∂p(·, θ)
∂θj

〉] ∂p(·, θ)
∂θi

.

(7)

Example 2.3 (The Gaussian family and the direct L2 metric in canonical parame-
ters). We may consider the L2 metric for the Gaussian family of densities introduced earlier.

The L2 metric is

h(θ) =
1

8

√
2√

−θ2π





1 θ1
−θ2

θ1
−θ2

3
4

1
(−θ2)

+ θ1
2

θ2
2





and, as expected, it is different from the Fisher metric seen earlier.

Example 2.4 (The Gaussian family and the direct L2 metric in expectation param-
eters). We may consider the L2 metric for the Gaussian family in the coordinates µ, v. The

L2 metric is

h(µ, v) =
1

8v
√
vπ

[

1 0
0 3

4v

]

and, as expected, it is different from the µ, v Fisher metric seen earlier, although it is still a

diagonal matrix.
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3 Exponential families and Mixture families

Earlier research in [7], [8], [5] and [6] illustrated in detail how the Hellinger distance and the
related Fisher information metric are ideal tools when using the projection onto exponential
families of densities. This idea was first sketched by Hanzon in [15]. The above references
illustrate this by applying the above framework to the infinite dimensional stochastic PDE
describing the optimal solution of the nonlinear filtering problem. This generates an approx-
imate filter that is locally the closest filter in Fisher metric to the optimal one. The use of
exponential families allows the correction step in the filtering algorithm to become exact, so
that only the prediction step is approximated. Furthermore, and independently from the fil-
tering application, exponential families and the Fisher metric are known to interact well. For
example, the Fisher metric is obtained by double differentiation of the normalizing exponent
in the exponential family and has a straightforward link with the expectation parameters. See
for example [4].

The study of the projection filter for exponential families has been carried out in details int
he above references, especially [11], [7] and [8].

However, besides exponential families, there is another general framework that is powerful
in modeling probability densities, and this is the mixture family. Mixture distributions are
ubiquitous in statistics and may account for important stylized features such as skewness,
multi-modality and fat tails.

We define a mixture family as follows. Suppose we are given m+1 fixed squared integrable
probability densities in H2, say q = [q1, q2, . . . , qm+1]

T . Suppose we define the following space
of probability densities:

SM(q) = {θ1q1+ θ2q2+ · · ·+ θmqm+(1− θ1−· · ·− θm)qm+1, θi ≥ 0 for all i, θ1+ · · ·+ θm < 1}

For convenience, define the transformation

θ̂(θ) := [θ1, θ2, . . . , θm, 1− θ1 − θ2 − . . .− θm]
T

for all θ. We will often write θ̂ instead of θ̂(θ) for brevity. With this definition,

SM(q) = {θ̂(θ)T q, θi ≥ 0 for all i, θ1 + · · ·+ θm < 1}

While for exponential families the Hellinger distance and the related Fisher metric are ideal,
given also the expression (4), for mixture families it is less than ideal. For example, the calcula-
tion of the Fisher information matrix g(θ) becomes cumbersome, and the related projection is
quite convoluted. Instead, if we consider the L2 distance and the related structure, the metric
h(θ) and the related projection become very simple. Indeed, one can immediately check from
the definition of h that for the mixture family we have

∂p(·, θ)
∂θi

= qi − qm+1

and
hij(θ) =

∫

(qi(x)− qm(x))(qj(x)− qm(x))dλ(x) =: hij

i.e., the L2 metric (and matrix) does not depend on the specific point θ of the manifold. The
same holds for the tangent space at p(·, θ), which is given by

Lp(·,θ)S = span{q1 − qm+1, q2 − qm+1, · · · , qm − qm+1}
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Also the L2 projection becomes particularly simple:

Πθ : L2(λ) ⊇ V −→ span{q1 − qm+1, q2 − qm+1, · · · , qm − qm+1}

Πθ[v] =
m
∑

i=1

[
m
∑

j=1

hij 〈v, qj − qm+1〉] (qi − qm+1) .
(8)

It is therefore worthwhile to try and apply the L2 metric and the related structure to the
projection of the infinite dimensional filter onto the mixture family above.

4 The nonlinear filtering problem

In order to present the key geometric ideas without being overwhelmed by technicalities on
stochastic PDEs, we consider the filtering problem with continuous time state and discrete
time observations.

In this model, the state process is a continuous time stochastic differential equation

dXt = ft(Xt) dt+ σt(Xt) dWt ,

but only discrete–time observations are available

Zn = h(Xtn) + Vn ,

at times 0 = t0 < t1 < · · · < tn < · · · regularly sampled, where {Vn , n ≥ 0} is a Gaussian white
noise sequence independent of {Xt , t ≥ 0}.

The nonlinear filtering problem consists in finding the conditional density pn(x) of the state
Xtn given the observations up to time tn, i.e. such that P [Xtn ∈ dx | Zn] = pn(x) dx, where
Zn := σ(Z0, · · · , Zn). We define also the prediction conditional density p−n (x) dx = P [Xtn ∈
dx | Zn−1]. The sequence {pn , n ≥ 0} satisfies a recurrent equation, and the transition from
pn−1 to pn is decomposed in two steps, as explained for example in [19].

There is first a prediction step: Between time tn−1 and tn, we solve the Fokker–Planck
equation

∂pnt
∂t

= L∗
t p

n
t , pntn−1

= pn−1 .

The solution at final time tn defines the prediction conditional density p−n = pntn .
We have then a second step, the correction step:
At time tn, the newly arrived observation Zn is combined with the prediction conditional

density p−n via the Bayes rule
pn(x) = cn Ψn(x) p

−
n (x) , (9)

where cn is a normalizing constant, and Ψn(x) denotes the likelihood function for the estimation
of Xtn based on the observation Zn only, i.e.

Ψn(x) := exp
{

− 1
2
|Zn − h(x)|2

}

. (10)

5 The mixture projection filter (MPF)

We now introduce the mixture projection filter.
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We will now work on the prediction step first, in order to derive the projected version of the
Fokker Planck equation, living in the manifold SM . We adopt the following technique. Take a
curve in the mixture family SM ,

t 7→ p(·, θ(t))
and notice that the left hand side of the Fokker Planck equation for this density would read

∂p(·, θ(t))
∂t

=
m
∑

i=1

∂p(·, θ(t))
∂θi

d

dt
θi(t) =

m
∑

i=1

(qi − qm+1)
d

dt
θi(t)

and project the right hand side of the Fokker Planck equation as

Πθ[L∗
tp(·, θ)] =

m
∑

i=1

[
m
∑

j=1

hij 〈L∗
tp(·, θ), qj − qm+1〉] (qi − qm+1) =

=
m
∑

i=1

[
m
∑

j=1

hij 〈p(·, θ),Lt(qj − qm+1)〉] (qi − qm+1)

where we used integration by parts in the last step. Now equating the two sides we obtain

m
∑

i=1

(qi − qm+1)
d

dt
θi(t) =

m
∑

i=1

[
m
∑

j=1

hij 〈p(·, θ),Lt(qj − qm+1)〉] (qi − qm+1)

which yields the ordinary differential equation for the parameters θ of the projected density:

d

dt
θi(t) =

m
∑

j=1

hij 〈p(·, θ),Lt(qj − qm+1)〉

Now, by taking into account the structure of p(·, θ) and the fact that such densities are linear
in θ, we see that the above equation is a linear differential equation:

d

dt
θi(t) =

m
∑

j=1

hij
[

m
∑

k=1

θk〈qk,Lt(qj − qm+1)〉+ (1− θ1 − · · · − θm)〈qm+1,Lt(qj − qm+1)〉
]

.

If we define, for two vector functions f and g, the matrix 〈f, g〉 and the vector Ltf as

(〈f, g〉)i,j := 〈fi, gj〉, (Ltf)i := Lt(fi)

then we can write the above ODE in compact form as

d

dt
θ(t) = h−1〈Lt(q1:m − 1mqm+1), q〉 θ̂(θ(t))

where q
1:m

is the vector with the first m components of q, and 1m is a m-dimensional (column)
vector of ones.

In [7] and [8] it is shown that, by carefully choosing the exponential family, the Fisher metric
exponential projection filter makes the correction step exact. In the mixture framework under
the L2 metric we are using now, this is harder to achieve unless we are willing to redefine the
manifold at every correction step. Let us therefore focus on the correction step first. Suppose
we are in [tn−1, tn) and we obtained a prediction for the density up to t−n , whose parameter
we call θ−n . At tn a new observation Zn arrives and we update the density. Substituting the
prediction p(·, θ−n ) into formula (9), we observe that the resulting density leaves the original
mixture family SM(q). The updated density at tn is

cnΨn(x)p(x, θ
−
n ) = cnΨn(x) θ̂

T
q
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and is outside SM(q). However, we may keep the update step exact by re-defining the basis
functions q as follows.

Suppose that we change basis functions at every discrete date observation step. The first
basis function vector is q0, then at update time t1 we will select a new vector of basis functions
q1, and so on. At every point in time we keep the vector m+1 dimensional. Suppose the basis
functions in [tn−1, tn) are q

n−1. We run the prediction step up to t−n , getting θ
−
n . At time tn, we

define the new basis functions as

qni (x) := ci,nΨn(x)q
n−1
i (x) for all i = 1, . . . , m+ 1

and where ci,n is the normalizing constant for the density on the right hand side. Every qni is
a normalized densities and we can define a mixture of such densities as the new space. In this
case, the correction step amounts to set, at tn:

Correction Step:

At tn : θn = θntn , and the new manifold is SM(qn)

We may now focus on the prediction step.
Before doing so, it is important to notice that the L2 metric changes as well when we change

the manifold, so that it is safe to index as follows:

hnij =
∫

(qni (x)− qnm(x))(q
n
j (x)− qnm(x))dλ(x)

Prediction step Between time tn−1 and tn, we solve the ODE’s

d

dt
θn(t) = (hn−1)−1〈Lt(q

n−1
1:m

− 1mq
n−1
m+1), q

n−1〉 θ̂(θn(t)), θntn−1
:= θn−1 .

The solution at final time tn defines the prediction parameters θ−n = θntn .

6 Conclusion and Further Research

We introduced a projection method for the space of probability distributions based on the
differential geometric approach to statistics. This method makes use of a direct L2 metric as
opposed to the usual Hellinger distance and the related Fisher Information metric. We applied
this apparatus to the nonlinear filtering problem. Past projection filters concentrated on the
Fisher metric and the exponential families that made the filter correction step exact. Instead,
in this work we introduce the mixture projection filter, namely the projection filter based on
the direct L2 metric and based on a manifold given by a mixture of pre-assigned densities. We
derived the filter equations and showed how an update on the manifold functions can make the
correction step exact. The prediction step is a simple linear ordinary differential equation.

We finally remarked that the exponential projection filter had a clear relationship with the
assumed density filters, as documented in [8]. The mixture projection filter introduced here has
a clear relationship with earlier Galerkin-based approaches that needs to be explored further.
In future work we will also implement the mixture projection filter equations numerically and
will investigate the choice of the specific mixture family.
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