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Abstract

We present a simple lattice model which gives account of the low temperature phase equilibria of

patchy particles with tetrahedral symmetry. Using such a model the phase diagram was computed

as a function of the model parameters by means of Monte Carlo simulations. Depending on the

details of the particle interactions a low-density ordered phase with diamond structure can appear

as thermodynamically stable phase.

PACS numbers:
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I. INTRODUCTION

Simple anisotropic models are representative of interactions in a large variety of systems,

such a water[1–3], proteins[4–6] or anisotropic colloids, and both theoretical and simulation

studies of those models have contributed to improve our understanding of the behaviour of

such systems. For example, for proteins it has been recently shown that the metastable fluid-

fluid phase separation experimentally measured for several proteins can be quantitatively

reproduced by simple anisotropic models[7].

During the last few years there has been a renewed interest in these simple models, which

is partly motivated by recent advances in colloidal science that allowed the synthesis of

colloids with anisotropic shapes or interactions[8, 9]. Indeed it is now possible to design

colloids with a quite accurate control on the location of the patches on their surface[10].

Theoretical and simulation studies on simple anisotropic models revealed that they can

exhibit a complex phase behaviour[11–17].

The use of lattice models has proven to be very fruitful [18–28] in the analysis of the

phase diagram of simple models with complex phase behaviour, with the advantage that

simulations can be performed for larger system sizes with higher accuracy. For example, it

has been shown that it is possible to design associating lattice models that reproduce some

of the behaviour of water, including the density and diffusion anomalies[22, 27, 28]. Another

interesting example is provided by a lattice model with two repulsive ranges, which predicts

the existence of a body-centred-cubic (BCC) solid that exhibits reentrant melting, i.e. the

BCC solid can melt either upon compression and upon expansion in a region of the phase

diagram[24]. These two examples illustrate that simple lattice models are able to capture

the complex behaviour of simple models.

In this work, we will compute the phase diagram of a lattice model that mimics the

behaviour of patchy particles consisting on a spherical repulsive core with four interaction

sites or patches in its surface with tetrahedral symmetry. The behaviour of tetrahedral

particles has already been studied in the past using off-lattice models with the main objective

of finding the appropriate conditions at which a solid with diamond structure could be

obtained[29–33]. The interest in obtaining a colloidal crystal with diamond structure arises

from its predicted optical band gap that makes it an ideal material for many applications

in photonics[34–36].
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The studies performed so far have shown that the phase diagram of tetrahedral particles

exhibits multiple stable solid phases, that can include the diamond structure, a BCC solid,

which is obtained by interpenetrating two diamond sublattices, and, at high pressures, a

face-centred-cubic (FCC) structure. Both in the diamond and BCC solids the number

of bonds is maximized, i.e. the four patches on a particle point directly at four nearest

neighbours. As a consequence both solid structures have a similar potential energy. It has

also been found that the stability of the diamond solid is very sensitive to the range of the

potential[31–33], the stability of the diamond decreasing with respect to the BCC solid when

the range of the potential increases and even disappearing from the phase diagram for long

ranged models[33]. The stability of the diamond crystal for short ranged models has been

attributed to the higher vibrational entropy of the diamond crystal as compared to that of

the BCC solid[32, 33].

We will check how much of the complex behaviour of the tetrahedral models in the

continuum can be captured by a lattice model. The use of a lattice model will allow us to

explore in detail the phase diagram as a function of the parameters of the model. The results

obtained for the lattice model will be compared to those obtained by Romano et al.[31, 32]

and Noya et al.[33] using two different off-lattice models.

This paper is organized as follows: In the following section, we introduce our lattice

model. In section III we describe the procedures to compute the phase diagram of the

system, paying attention to the limits of both low and high temperature, and high density.

In section IV the different phase diagrams are presented, and their topology is analyzed as

a function of the parameters of the model. Finally in section V we discuss the analogies

and differences between the results for lattice and off-lattice models and present the main

conclusions of the work.

II. THE MODEL

The model proposed in this work will be denominated as the lattice patchy model (LPM)

in reference to the off-lattice models that we try to mimic. It combines features of the so-

called lattice hard sphere (LHS) models[20] with the orientationally dependent interactions of

the three-dimensional associating lattice gas (ALG) model proposed by Girardi et al.[22, 28]

The model is defined on a simple cubic lattice with side length L = 8n, where n is a
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positive integer. The sites on the lattice can be either occupied by one particle or empty. A

hard-core interaction between particles excludes the simultaneous occupation of two sites i

and j located at distances shorter than rij < σ = 2
√

3d0, where d0 is the distance between

two nearest neighbours (NN) sites on the reference cubic lattice.

The total potential energy of the system can be calculated as:

U =
∑

i<j

[VLHS(rij) + Vp(rij, Si, Sj)] (1)

where VLHS(rij)/kBT = ∞ if rij < σ and zero otherwise, with kB being the Boltzmann

constant and T the temperature. Vp represents the patch interaction, which is similar to

that proposed in the ALG model[22, 28]. In brief, each particle has four bonding arms (or

four patches) distributed in a tetrahedral arrangement. The patch interaction is considered

to occur only between particles separated by a distance rij = σ. For σ = 2
√

3d0, there

are eight sites in the lattice at a distance σ from a central occupied site that are located

at positions [±2,±2,±2]d0 with respect to the central site. Two possible configurations,

Si = ±1, are possible for the bonding arms, in which the four patches are pointing at

directions {(111)(11̄1̄)(1̄11̄)(1̄1̄1)} or {(1̄1̄1̄), (111̄)(11̄1)(1̄11)}. This patch interaction can

be expressed mathematically as:

Vp(rij, Si, Sj) =







ǫ0 − (ǫ + ǫ0)τ
ij
i τ ji

j ; for rij = σ

0 ; for rij 6= σ
; (2)

where τ ij
i is equal to one if there is a patch of particle i pointing to particle j and zero

otherwise. In this work, we took ǫ > 0, i.e. the interaction between two particles, each one

with a patch pointing to the other particle, is always attractive. The parameter ǫ0 (|ǫ0| < ǫ)

accounts for the interaction between two particles when one or both of them do not have a

patch pointing to the other particle.

All throughout this paper reduced units are used. Energies will be given in units of ǫ and

distances are given in units of d0.

A. Justification of the model

The phase diagram of the ALG model on a BCC lattice has already been computed[28].

It has been found that it stabilizes a low density and a high density solid which are the
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lattice analogues of the diamond and BCC solids found for the off-lattice models that we

try to mimic[31–33]. However, at high temperatures, transitions between the low density

and high density ordered structures and between the fluid and high density solid become

continuous, something that does not happen for the off-lattice tetrahedral models[28]. This

can be avoided by including a hard-core in the interactions using the LHS model. The

LHS model on a simple cubic lattice forms a BCC structure at close packing when the

exclusion parameter σ is a multiple of
√

3d0. The LHS models with σ∗ = σ/d0 =
√

3 and

σ∗ = 2
√

3 are known to exhibit a discontinuous solid-fluid transition (order-disorder)[20].

The BCC structure formed can contain a number of defects if their densities are less than the

corresponding close packing densities, which are ρ0d
3
0 = 1/4 for σ∗ =

√
3, and ρ0d

3
0 = 1/32

for σ∗ = 2
√

3. The density of solid phase at the transition increases considerably when

increasing the value of σ, being ηs ≃ 0.52 for σ∗ =
√

3, and ηs ≃ 0.94 for σ∗ = 2
√

3 (see

Ref. 20). Here and throughout the paper the densities are expressed as packing fractions

η = ρ/ρ0, where ρ = N/V is the density (V = L3 is the volume of the system, i.e., the

number of sites in the underlying lattice) and ρ0 is the density at close packing.

For the model potential described above, we expect that at high temperature the system

will behave as the corresponding LHS model, whereas at low temperature the patch interac-

tions will influence the phase behaviour. The known phase behaviour of the ALG and LHS

models makes advisable, therefore, to consider in addition to the anisotropic interactions of

the ALG model some excluded volume effects in order to attain a lattice model with phase

behaviour resembling that of the off-lattice tetrahedral patchy models. Moreover the choice

of σ∗ = 2
√

3, was found to be required (instead of σ∗ =
√

3) to assure that the density

of the BCC phase stays well above that of the low density solid at any temperature. If

either the ALG model[27] or σ∗ =
√

3 version of our model are used, then one finds that the

transition between the low density and the high density solids becomes continuous at some

temperature range.

III. COMPUTATION OF THE PHASE DIAGRAM

In this section we present the procedures used in the computation of the phase diagram,

and the corresponding results. The phase diagram was computed using several simulation

techniques that include Grand Canonical Monte Carlo, Grand Canonical Wang-Landau,
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and Gibbs-Duhem-like integration (GDI). The essential features of the methodology can be

found elsewhere [24, 25, 37, 38] and thus only a brief description is given here.

Given the relative complexity of the phase diagram, we first pay attention to the tran-

sitions occurring in the limits of close packing, and of high and low temperature, and the

order-disorder transitions occurring at high density. Later we will focus on the global com-

putation of equilibria between the fluid, low density solid, and high density solid phases at

intermediate temperatures.

A. The system at close packing

At close packing conditions, the model considered in this work becomes equivalent to the

ALG model at full occupancy. In the limit of T → ∞ the interactions are dominated by

the repulsive core and the orientation of the patches is random (between the two possible

discrete orientations), whereas at T = 0 the system is orientationally ordered, with each

particle forming bonds (patch-patch interaction) with four of its eight neighbour particles

located at a distance σ. The average potential energy per particle in these two limit cases

is given by:

U/N =







−2ǫ + 2ǫ0 ; η = 1, T = 0

−ǫ + 3ǫ0 ; η = 1, T = ∞.
(3)

Between these two limits the system exhibits an order-disorder transition at a finite tem-

perature T ∗

c = kBTc/ǫ that depends on the value of ǫ∗0 = ǫ0/ǫ.

The order-disorder transition at close packing can be computed by realizing that it is

possible to map the system at full occupancy to the antiferromagnetic Ising model (AFIM)

on the BCC lattice. The procedure is similar to that reported for a two dimensional model of

self-assembled rigid rods[39]. The energy of the system at full occupancy can be calculated as

a sum of the energies of N four-particle plaquettes, with N being in this context equivalent

to the maximum number of particles (N = Nmax).

In Fig. 1, we show how the four-particle plaquettes can be defined. The plaquette

depicted in the figure is associated to the site labelled as 0. All the plaquettes required to

give account of the potential energy of the system can be built by translation of the origin

of the plaquette (label 0) to each site of the BCC lattice. According to the definition of the

orientation variables Si, a particle on the plaquette has a patch oriented to one of its NNs.

6
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FIG. 1: Construction of four site plaquettes of the system. The coordinates of the labelled points

in terms of the underlying lattice are r0 = (0, 0, 0), r1 = (2, 2, 2), r2 = (0, 0, 4) and r3 = (−2, 2, 2).

On the right hand side, a projection of the plaquette (as seen from the front) is shown. Thick lines

on the left panel (lines on the right panel) connect pairs of interacting sites.

If Si = 1 the patch on site i points to the site i + 1 (anticlockwise), whereas if Si = −1 the

patch points to the site i − 1 (clockwise).

It is then straightforward to compute the energy of the plaquette as a function of the

values of Si for the current model at η = 1, and the corresponding values for the AFIM

on the BCC lattice with NN interactions, and coupling constant J [40]. The results for

representative configurations are gathered in table I.

TABLE I: Potential energy of four-site plaquettes in the LPM, and antiferromagnetic Ising model

(AFIM) for representative plaquette configurations. The plus and minus signs correspond to ori-

entations Si = +1 and Si = −1, respectively, for each of the four sites on a plaquette.

Plaquette ++++ + + +− + + −− + − +−

LPM 4ǫ0 3ǫ0 − ǫ 3ǫ0 − ǫ 2ǫ0 − 2ǫ

AFIM 4J 0 0 −4J

The values of the potential energy in both models for a given plaquette configuration are

related by:

uAFIM
plaq =

4J

ǫ + ǫ0

uLPM
plaq + 4J

ǫ − 3ǫ0

ǫ + ǫ0

. (4)

7
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Therefore the Helmholtz energies of the two systems are related by:

AAFIM(N, TI) = 4NJ
ǫ − 3ǫ0

ǫ + ǫ0

+ ALPM(N, T ); (5)

with:

T =
ǫ + ǫ0

4J
TI (6)

Using the standard reduced temperatures for the AFIM and LPM as T
∗(AFIM)
c =

kBT
(AFIM)
c /J , and T ∗

c = kBTc/ǫ, respectively, the critical temperatures of both models

are related by:

T ∗

c =

(

1 + ǫ∗0
4

)

T ∗(AFIM)
c . (7)

Precise values of T
∗(AFIM)
c on the BCC lattice can be found in the literature[40].

B. The limit of high temperature

At high temperature, kBT >> ǫ, the phase behaviour of the system is basically controlled

by the hard-core interactions. The LHS model has already been studied in Ref. 20. However,

in order to check our programs and to get a more accurate value of the equilibrium conditions

we have carried out a series of Grand-Canonical Wang-Landau simulations[25, 37] of the LHS

model with σ∗ = 2
√

3.

We have considered the following system sizes: L = 12, 16, 20, 24, 32, 36, and 40. For

each system size estimates of the order-disorder transition have been obtained by computing

the value of βµ(L) that maximizes the density fluctuations, µ being the chemical potential,

and β ≡ (kBT )−1. Let us designate as βµt(L) such value. At those conditions we computed

the average packing fraction ηm(L) and the average fluctuation of the same quantity δη(L) =

[< η2 > − < η >2]
1/2

. The results are presented in table II.

The finite-size results for βµt(L), ηm(L), and δη(L) for systems of L ≥ 24 are well

represented by linear functions of the inverse of the volume;

yt(L) = yt + aL−3. (8)

Using Eq. (8) we get the following estimates for the transition at the thermodynamic limit:

βµt = 2.8539(1), ηm = 0.74326(1), δη = 0.19873(1). The packing fractions of each phase

in coexistence can also be obtained: ηf = ηm − δη = 0.5445(1), ηs = ηm + δη = 0.9420(1).
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TABLE II: Estimates of the fluid-solid transition for the lattice hard sphere model with σ∗ = 2
√

3

for different system sizes

L Nmax βµt(L) ηm(L) δη(L)

40 2000 2.849560(15) 0.743096(3) 0.198738(4)

36 1458 2.847931(11) 0.743025(3) 0.198740(2)

32 1024 2.845391(11) 0.742931(2) 0.198746(3)

28 784 2.841230(18) 0.742765(3) 0.198758(3)

24 432 2.833723(20) 0.742455(4) 0.198788(3)

20 250 2.819105(27) 0.741881(5) 0.198812(4)

16 128 2.786989(42) 0.740899(7) 0.198612(5)

12 54 2.704225(55) 0.739716(6) 0.196946(7)

These results agree with those reported by Panagiotopoulos [20], which expressed in our

units are βµt = 2.86(2), ηf = 0.545(2); ηs = 0.942(2). Note that the chemical potential

definition used in this work differs from that given in Ref. [20]. In our case in the limit of

very low density: βµ ≃ ln(N/L3) = ln(ρd3
0).

In the limit of high temperature: β = 0, the canonical partition function of the LPM can

be related to the canonical partition function of the LHS model as:

QLPM(β = 0, N, V ) = 2NQLHS(N, V ). (9)

where N ≤ V/32. The factor 2N appears due to the two possible orientations that a particle

can exhibit in the patchy model. Therefore the chemical potential of the two models at the

fluid-solid transition are related by:

βµLPM
t = βµLHS

t − ln 2 ≃ 2.1608 ± 0.0001. (10)

C. Order-disorder transition of the high density solid

Given the features of the model, and the limits at close-packing and high temperature,

one expects that the BCC phase will undergo a transition between an orientationally ordered

BCC solid (o-BCC phase) and a disordered BCC solid (d-BCC phase) . This transition is

expected to be continuous, and like that at η = 1, to belong to the three-dimensional Ising

universality class.
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In order to compute the critical line, ηc(T ) or µc(T ), using the standard simulation

procedures[41, 42] it is very useful to find the appropriate order parameters. Firstly we can

consider an order parameter to check whether the particles in the system exhibit a true BCC

structure. This can be achieved by considering that the close packing BCC structure has

a degeneracy g = 32. Accordingly, it is possible to define 32 sub-lattices so that each one

contains L3/32 sites and represents one of the 32 possible degenerate configurations of the

system.

The lattice points are defined by three integers (kx, ky, kz) with 0 ≤ kα < L. Given a

reference site k0 = (k0x, k0y, k0z), the points belonging to the same sublattice are given by:

(kx, ky, kx) =







k0 + (4l, 4m, 4n) ; Sites A : t = +1

k0 + (4l + 2, 4m + 2, 4n + 2) ; Sites B : t = −1
(11)

where l, m, and n are integers. The reference points k0 are chosen to be those that fulfill

0 ≤ kx ≤ 1, 0 ≤ ky ≤ 3, 0 ≤ kz ≤ 3. The points on the sublattice are classified in two types

according to the parameter t.

For a given configuration of the system, we define a BCC order parameter, q, as:

q =
Nmax

SL

N
, (12)

where Nmax
SL is the number of particles in the most populated sublattice and N is the total

number of particles in the system. BCC phases are easily identified using q. For instance at

the LHS limit the parameter q of the BCC phase at the transition is q ≃ 0.9987. This high

value of q indicates that in the BCC solid most of the occupied positions are on the same

sublattice, so that it is feasible to locate the order-disorder transition of the BCC lattice by

considering a second order parameter, m, that takes into account exclusively the orientation

of the particles staying at sites of the predominant sublattice. The parameter m is defined

as:

m =

∑

i tiSi

Nmax
SL

(13)

where the sum is carried out only over the sites of the predominant sublattice, and Si = 0

for empty sites on the sublattice. Values of |m| close to one indicate that the particles in

the BCC lattice are orientationally ordered (o-BCC), whereas values close to zero indicate

that the BCC lattice is orientationally disordered (d-BCC).

In order to compute the critical line corresponding to the orientationally order-disorder

transition of the BCC structure, we performed for different values of βµ a series of Grand

10
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Canonical Monte Carlo simulations around the expected critical temperature Tc(βµ), for

several system sizes. The pseudo-critical temperatures for each system size Tc(L, βµ) can

be estimated by following the behaviour of the fourth order Binder cumulant of the order

parameter[42]: g4 =< m4 > / < m2 >2, as Tc(L, βµ) is defined as the temperature at which

g4 reaches the universal value expected for the three dimensional Ising universality class for

cubic boxes with periodic boundary conditions: gc
4 ≃ 1.604 [43]. The results for different

system sizes at a given value of βµ can then be used to estimate the critical properties at

the thermodynamic limit: Tc(βµ) and ηc(βµ); by fitting the simulation results using[41, 42]:

Tc(L, βµ) = Tc(βµ) + aL−(1+ω)/ν . (14)

ηc(L, βµ) = ηc(βµ) + aL−1/ν . (15)

The values of the critical exponents, ν and ω, were taken from Ref. [43]. In table III

some points of the order disorder transition are given for different values of the non-patch

interaction ǫ0.

TABLE III: Estimates of the order-disorder transition for the BCC lattice

ǫ∗0 = 0

βµ 0.5 1.0 1.5 2.0 2.5 3.0

T ∗

c 1.4541(7) 1.5048(6) 1.5370(4) 1.5567(5) 1.5687(4) 1.5766(4)

ηc 0.9260(2) 0.9548(1) 0.9723(1) 0.9830(1) 0.9896(1) 0.9937(1)

ǫ∗0 = 0.2

βµ 1.5 2.0 2.5 3.0 3.5

T ∗

c 1.7638(8) 1.8192(7) 1.8523(5) 1.8736(8) 1.8860(5)

ηc 0.9356(2) 0.9610(1) 0.9762(1) 0.9854(1) 0.9911(1)

ǫ∗0 = 0.8

βµ 3.0 3.5 4.0 4.5 5.0

T ∗

c 2.6504(4) 2.7367(11) 2.7852(10) 2.8141(9) 2.8320(7)

ηc 0.9374(1) 0.9637(1) 0.9782(2) 0.9867(1) 0.9919(1)

The critical lines given in Table III can be fitted to equations of the form:

Tc(η) = T0 + a1(1 − η) + a2(1 − η)2. (16)
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TABLE IV: Fits of the critical lines for the order-disorder transition of the BCC solid. In the last

column we include estimates computed from Eq. (7) in conjunction with data for the Ising model

in a BCC lattice taken from Ref. [40]. The second column, labelled as T ∗

c (η = 1), refers to the

value of T ∗

c in the limit of η → 1. This coincides with the T0 parameter, but its value is given

separately to indicate the statistical error in this limit.

ǫ∗0 T ∗

c (η = 1) T0 a1 a2 T ∗

c (η = 1)[Ref[40]]

0.00 1.5885(16) 1.5885 -1.8903 0.9975 1.5885

0.20 1.906(3) 1.9062 -2.2805 1.0902 1.9063

0.80 2.860(6) 2.8599 -3.4653 1.8942 2.8594

The parameters of the fits to Eq. 16 obtained for different values of ǫ∗0 are given in Table

IV. The value of the critical temperature at close packing (extrapolated using Eq. (16)

for η = 1) can be used to check the consistency of the data by comparing with the result

obtained from the mapping to the AFIM in a BCC lattice, for which T
∗(AFIM)
c ≃ 6.3542[40],

using Eq. (7). Note that on a BCC lattice the order-disorder transition is coincident for the

ferromagnetic Ising model and the AFIM. As shown in Table IV the agreement between the

results from both routes is excellent.

D. The limit of low temperature

The most stable phase at some given thermodynamic conditions corresponds to that that

minimizes the Grand Potential Φ:

Φ = U − µN − TS, (17)

with S being the entropy. At T = 0 the Grand Potential reduces to[28]:

Φ = U − µN, (18)

which can be divided by Nmax at both sides to obtain:

φ = U/Nmax − µη (19)

The plausible phases at zero temperature are a diluted gas, an ordered diamond phase,

and the ordered BCC phase. It is straightforward to compute the Grand Potential for each
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FIG. 2: Stable phases as function of µ and ǫ0, at zero temperature. o-BCC means ordered BCC

solid.

one of these phases at zero temperature: φg(µ) = 0, φD(µ) = −ǫ − µ/2, and φBCC =

−2ǫ + 2ǫ0 − µ. Phase transitions can then be simply calculated by equating the Grand

Potential of these phases, from which the chemical potential at coexistence can be obtained.

In Figure 2, the stability regions for the three considered phases at very low temperatures

are shown as a function of the parameter ǫ0/ǫ that controls the non-patch interactions in the

model. The diamond phase becomes the thermodynamically stable phase at intermediate

values of the chemical potential (or pressure) for ǫ0 > 0.

E. Phase transitions at intermediate temperatures

The discontinuous transitions between the gas (fluid), the diamond and the BCC solid at

finite temperatures have been calculated by a GDI. The variable of integration was chosen

by numerical convenience in each region of the phase diagram. At low temperatures, we

apply the differential equations given by:

dµ =

(

µ

T
− ∆U

T∆N

)

dT, (20)

and

dT =

(

µ

T
− ∆U

T∆N

)

−1

dµ, (21)

whereas in the integrations from the high temperature limit we used:

d(βµ) =
∆U

∆N
dβ. (22)
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where ∆ indicates the difference of the value of a given property in the two phases at

equilibrium.

The integration of the above differential equations was carried out using the fourth-order

Runge-Kutta method. We have checked the consistency of the results by performing GDI

from both the low and high temperature limits. The calculations shown in the figures were

performed using systems of size L = 40 (Nmax = 2000). The system size dependence was

checked by conducting calculations also for L = 24, and L = 32. No significant differences

were found between the results for different system sizes.

In order to avoid the possible effects that the continuous order-disorder transition in the

BCC solid might have on the gas-BCC coexistence curve, small values of the integration

step δ(β) were considered in the GD integration from β = 0. For all the cases considered,

a good coalescence of different curves at triple points was obtained, which is a signature of

the accuracy of the GDI results.

The GDI results were also checked by comparing the coexistence points with those ob-

tained from Grand Canonical Wang Landau simulations at some selected temperatures[24,

25].

IV. PHASE DIAGRAMS

Using the techniques described in previous sections we have computed the phase diagram

of the model for several values of ǫ∗0. The topology of the phase diagrams can be classified

in four types. We will describe them in order of growing complexity.

A. Attractive non-patch interaction −1 < ǫ∗0 < 0

In Figure 3 the T − η projection of the phase diagram for ǫ∗0 = 0.00 is shown. This

diagram is representative of the model in the range −1 < ǫ∗0 < 0, i.e., for attractive non-

patch interactions. At all temperatures there is a phase transition between a translationally

disordered phase (labelled as fluid), and a high density phase with translational order. In

the high density phase, particles are basically ordered in a BCC structure (most of the

particles occupy sites of the predominant BCC sublattice). At densities below η = 1, some

defects are present in the system, mostly vacant sites on the BCC sublattice, but also some
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displaced particles. Paying attention to the orientational degrees of freedom, the BCC solid

undergoes a phase transition at intermediate temperatures. At low temperature the particles

are oriented in such a way that the patch-patch orientation is favored. The bond framework

defined by the patch-patch interaction can be interpreted in terms of two diamond structures

[28]. The orientational transition between the low and high temperature BCC phase is found

to be continuous, defining a critical line starting at η = 1 and ending when it meets the

BCC branch of the fluid-BCC transition.

A low density phase with diamond structure is not stable in any region of the phase

diagram for attractive non-patch interaction. The absence of an energy penalty associated

to the interpenetration of the two diamond sublattices to obtain a BCC structure favours

the stability of BCC over the diamond structure due to the higher density of the former.

In the particular case of ǫ∗0 = 0 the diamond and BCC solids are degenerate at µ/ǫ = −2

and zero temperature (see Fig.2). However at any finite temperature the diamond is never

stable, so that at finite temperature the phase diagram for ǫ∗0 = 0 is representative of the

behaviour for ǫ∗0 < 0.

B. Slightly repulsive non-bonding interaction 0 ≤ ǫ∗0 < 0.71

As it can be seen in Figure 2 for ǫ0 ≥ 0 the diamond phase becomes stable in a certain

range of chemical potentials at T = 0. At finite temperatures this translates into a certain

range of temperatures at which the diamond phase is thermodynamically stable. As one

increases further the temperature, the low entropy of this phase makes it unstable with

respect to the fluid-BCC equilibrium. In Figure 4 we show a typical phase diagram of this

region. The stability of the diamond phase ends at a triple point in which fluid, diamond and

ordered BCC phases coexist. As for the case ǫ0 < 0 the BCC phase exhibits an orientational

order-disorder transition, which is shifted to higher temperatures, with a dependence for

fixed packing fraction that can be approximately described by Tc(η) ∝ (1 + ǫ∗0).

An interesting result is that a small non-patch repulsion (i.e., a small positive value of

ǫ∗0) is enough to get a considerable temperature range of stability of the diamond phase. For

instance, the triple point corresponding to the largest temperature with diamond stability

appears at T ∗

TP ≃ 0.293 for ǫ∗0 = 0.01, whereas for ǫ∗0 = 0.001, T ∗

TP ≃ 0.225.
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C. Medium repulsive non-bonding interaction 0.710 ≤ ǫ∗0 < 0.90

As the value of ǫ0 increases from ǫ∗0 = 0.71, some qualitative changes happen in the phase

diagram. In addition to the aforementioned increase of the stability region of the diamond

phase, and the displacement of the order-disorder transition of the high density solid to

higher temperatures, the density of the fluid branch of the high temperature fluid-BCC

equilibrium increases with ǫ0. As a direct consequence this fluid density can reach values

similar to or greater than the density range of the stability of the diamond phase (η ≃
0.5) when approaching the temperature region where diamond phase is thermodynamically

stable. As a result, one can find for ǫ∗0 ≥ 0.71 a stable fluid denser than the diamond phase.

This is illustrated in the phase diagram represented in Figure 5. It can be seen that there

is a certain temperature range where the diamond phase can melt either by increasing or

reducing the chemical potential (or the pressure). In other words, for the present model, the

low density solid phase can melt under isothermal compression. This is usually known as

reentrant melting and it occurs in real associating liquids (like water)[44]. For the off-lattice

tetrahedral models that we try to mimic, reentrant melting have also been observed when

the range of the interactions is below a given value[32]. Reentrant melting have also been

observed for other lattice models[24, 25].

D. Largely repulsive non-bonding interaction ǫ∗0 > 0.90

If the value of ǫ0 is further increased, then one finds that the features of the phase diagram

described for medium repulsive non-bonding interaction remain qualitatively unchanged in

both the low and high temperature regions, however the GDI results indicate that further

phases can appear. When integrating the fluid-BCC coexistence lines it is found that at

intermediate temperatures the gas phase eventually undergoes a phase transition to a new

phase of lower energy, with an intermediate density between those of the gas phase and the

high density solid. We have found it difficult to characterize this phase, since no reproducible

results are found when dealing with different system sizes. This inconsistency might be due

to incomensurability effects between the system sizes used in the simulation and the required

dimensions to get the new phase stabilized. From the physical point of view the presence of

additional phases could be interpreted as follows: in the region of low temperature the phase
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FIG. 3: Phase diagram for ǫ∗0 = 0. o-BCC means ordered BCC solid and d-BCC disordered BCC

solid.
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FIG. 4: Phase diagram for ǫ∗0 = 0.20. Labelling of regions as in previous figures.

behaviour is basically controlled by the attractive patch-patch interactions, whereas at the

high temperature limit the hard core interactions are responsible for the phase transitions.

At intermediate temperatures, and for high values of ǫ0, the interaction energy between pair

of particles separated by a distance 2
√

3d0 are still relevant, but the role of entropy makes

that this interaction becomes on average repulsive. Under this view one can guess that

the system could find thermodynamic stability by looking for configurations with distances

between neighbour particles slightly above 2
√

3d0. The search of the structure of such

possible phases, besides being a difficult task, is out of the scope of the present work.
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FIG. 5: Phase diagram for ǫ∗0 = 0.80. Labelling of regions as in previous figures, D means diamond

phase, and F fluid phase.

V. CONCLUSIONS

The phase diagram of a lattice patchy model that combines a repulsive core plus four

attractive sites in a tetrahedral arrangement has been calculated by computer simulation.

This model was chosen to mimic the behaviour of off-lattice models of tetrahedral particles.

The use of a lattice model has allowed us to explore a wide range of parameters of the

model. Keeping the patch-patch interactions attractive (ǫ = 1), non-patch interactions

varied from attractive (ǫ0 = −1.0) to highly repulsive (ǫ0 = 1.0). It was found that for

attractive non-patch interactions only a high density solid is obtained with BCC structure

that is orientationally ordered at low temperatures and orientationally disordered at high

temperatures. When the repulsion is increased, reentrant behaviour is found in the fluid-low

density solid coexistence line. A low density solid with diamond structure only becomes

stable for repulsive non-patch interactions. Interestingly a quite small repulsion is enough

to stabilize the diamond solid on a quite large region of the phase diagram. This suggests

that adding an isotropic repulsion beyond the hard core of the colloidal particles could be

used in experiments to stabilize the diamond structure.

When comparing the lattice patchy model with the models of tetrahedral particles in

the continuum that have been studied by Romano et al.[31, 32] and by Noya et al.[33],

both would correspond to non-interacting or slightly attractive non-patch interactions if
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one looks at the model potential. Both consist of a repulsive core plus four attractive

sites and neither of them include non-patch interactions that disfavour the formation of

a BCC structure. However, at finite temperatures, it has been found that the diamond

structure can be stabilized over the BCC solid for short ranged models due to the higher

vibrational entropy of the diamond structure. The interactions between the two diamond

sublattices in the BCC reduce its vibrational entropy and this effect is more pronounced

for short ranged models, for which the distance between the two sublattices decreases. The

simple lattice model described here neglects the vibrational entropy. However, the lower

vibrational entropy of the BCC solid can be mimicked by introducing a repulsion energy

between the two sublattices, which in our model implies a positive value of ǫ0. Obviously this

is an oversimplification because entropic effects become larger with temperature, something

that can not be picked up with an energy penalty term. Following this recipe, long range

off-lattice models are mapped by the lattice model with attractive non-patch interactions

whereas short range models in the continuous can be related to positive values of ǫ0, the

value of ǫ0 increasing with decreasing the range of the potential. It can be seen that with

this mapping the phase diagram of the lattice model bears some resemblance with the low

temperature region of off-lattice models. For attractive non-patch interaction the diamond

is absent in the phase diagram, similarly to long range patchy models in the continuum[33].

For low repulsive non-patch interactions the diamond is stabilized, mimicking the behaviour

of patchy models when the range is decreased[31, 33]. Finally, the reentrant melting of the

diamond structure that it is observed for very short ranged models in the continuum also

appears for lattice models with medium repulsive non-patch interactions[32].

Obviously the underlying lattice imposes constraints and there are other features of the

phase diagram that cannot be reproduced, which in this case correspond mainly to the high

temperature and high density limits and are of less interest. As an example, the lattice model

considered in this work cannot form the FCC structure found at high pressures[32, 33] due

to the constraints imposed by the lattice.

In summary, it has been shown that lattice models are able to reproduce much of the

behaviour of continuous patchy particles. The advantage of lattice models is that due to its

simplicity it is possible to explore the model parameter space more quickly and simulations

can be performed for larger system sizes.
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