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Well-posedness results for the 3D

Zakharov-Kuznetsov equation

Francis Ribaud∗ Stéphane Vento†

Abstract. We prove the local well-posedness of the three-dimensional
Zakharov-Kuznetsov equation ∂tu+∆∂xu+u∂xu = 0 in the Sobolev spaces
Hs(R3), s > 1, as well as in the Besov space B1,1

2 (R3). The proof is based
on a sharp maximal function estimate in time-weighted spaces.

Keywords: KdV-like equations, Cauchy problem
AMS Classification: 35Q53, 35B65, 35Q60

1 Introduction and main results

In this paper we consider the local Cauchy problem for the three-dimensional
Zakharov-Kuznetsov (ZK) equation

{
ut +∆ux + uux = 0,
u(0) = u0,

(1.1)

where u = u(t, x, y, z), u0 = u0(x, y, z), t ∈ R and (x, y, z) ∈ R
3.

This equation was introduced by Zakharov and Kuznetsov in [11] to
describe the propagation of ionic-acoustic waves in magnetized plasma. The
formal derivation of (ZK) from the Euler-Poisson system with magnetic
field can be found in [9].

Clearly, the Zakharov-Kuznetsov equation can be considered as a multi-
dimensional generalization of the well-known one-dimensional Korteweg-de
Vries equation

{
ut + uxxx + uux = 0,
u(0) = u0.

(1.2)
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We stress out the attention of the reader that contrary to some other
generalizations of the Korteweg-de Vries equation (like the Kadomtsev-
Petviasvili equations) the (ZK) equation is not completely integrable and
possesses only two invariant quantities by the flow. These two invariant
quantities are the L2(R3) norm

N(t) =

∫

R3

u2(t, x, y, z) dxdydz ,

and the Hamiltonian

H(t) =
1

2

∫

R3

(
(∇u(t, x, y, z))2 − u(t, x, y, z)2

3

)
dxdydz .

Hence, it is a natural issue to study the Cauchy problem for the (ZK)
equation in the Sobolev space H1(R3) since any local well-posedness result
in this space would provide global well-posedness 1.

Another difference with usual generalization of the KdV equation is that
the resonant function associated to the (ZK) equation seems too complex
to develop a Bourgain approach, see [7]. Indeed, this function is defined in
the hyperplane ξ̄1 + ξ̄2 + ξ̄3 = 0 by

h(ξ̄1, ξ̄2, ξ̄3) = ξ1|ξ̄1|2 + ξ2|ξ̄2|2 + ξ3|ξ̄3|2, ξ̄j = (ξj , ηj , µj) ∈ R
3,

and its zero set is not so easy to understand. This make again a sharp differ-
ence with the Kadomtsev-Petviasvili equations where the use of the resonant
function allows to derive local well-posedness (for the KP-II equation, see
[1]) or local ill-posedness (for the KP-I equation, see[10]). This explains why
we follow the approach of Kenig, Ponce and Vega introduced in [6] for the
study of the generalized KdV equation rather than a Bourgain approach.

In the the two-dimensional case, Faminskii [2] proved the local and global
well-posedness of (ZK) for initial data in H1(R2). This result was recently
improved by Linares and Pastor who obtained in [7] the local well-posedness
in Hs(R2), s > 3/4. The main tool to derive those results is the following
L2
xL

∞
yT linear estimate [2],

∀s > 3/4, ‖U(t)ϕ‖L2
xL

∞
yT

≤ C‖ϕ‖Hs(R2) ,

where U(t)ϕ denotes the free operator associated to the linear part of the
(ZK) equation. Note also that in [8], Linares, Pastor and Saut recently

1Note that global existence occurs provided the local existence time only depends on
the norm of the initial data in a suitable way. This is usually the case when solving the
equation by a standard fixed point procedure.
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obtained local well-posedness results in some spaces which contains the one-
dimensional solitary-waves of (ZK) as well as perturbations.

In the three-dimensional case, as far as we know, the only available result
concerning the local well-posedness of (ZK) in the usual Sobolev spaces
goes back to Linares and Saut who proved in [9] the local well posedness in
Hs(R3), s > 9/8. In this paper we prove the following result,

Theorem 1.1. For any s > 1 and u0 ∈ Hs(R3), there exist T > 0 and a
unique solution u of (1.1) in

Xs
T ∩ Cb([0, T ],H

s(R3)).

Moreover, the flow-map u0 7→ u is Lipschitz on every bounded set of Hs(R3).

To derive our result, the main issue is to prove the local in time linear
estimate

∀T < 1, ∀s > 1, ‖U(t)ϕ‖L2
xL

∞
yzT

≤ C‖ϕ‖Hs(R3), (1.3)

where U(t)ϕ denotes the free linear operator associated to the (ZK) equa-
tion. Moreover, having a short look on the proof of Theorem 1.1, we note
that any improvement of the linear estimate (1.3) will immediately give the
corresponding improvement for Theorem 1.1. Unfortunately we prove in
Section 3 that the L2

xL
∞
yzT linear estimate (1.3) fails when s < 1. Hence,

this seems to indicate that the case s = 1 could be critical for the well-
posedness of the (ZK) equation.

Concerning the ”critical case” s = 1, we have unfortunately not been
able to prove the local well-posedness in the natural energy space H1(R3).
Nonetheless, working with initial data in the Besov space B1,1

2 (R3), we have
the following

Theorem 1.2. For any u0 ∈ B1,1
2 (R3), there exist T > 0 and a unique

solution u of (1.1) in

XT ∩ Cb([0, T ], B
1,1
2 (R3)).

Moreover, the flow-map u0 7→ u is Lipschitz on every bounded set of B1,1
2 (R3).

This result clearly improves Theorem 1.1 in view of the well-known em-
beddings

∀s > 1, Hs(R3) →֒ B1,1
2 (R3) →֒ H1(R3).
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To get Theorem 1.2, our main ingredient is to prove the unusual weighted-
in-time linear estimate for phase localized functions

∀α ≥ 3/8, ‖tα∆kU(t)ϕ‖L2
xL

∞
yzT

. 2k‖∆kϕ‖L2 .

This estimate, combined with the standard Kato smoothing estimate (3.2),
allows us to perform a fixed point argument on the Duhamel formulation of
(ZK).

This paper is organized as follows. In Section 2 we introduce our no-
tations and define the resolution spaces. Section 3 is devoted to estimates
related to the linear part of the equation. Finally we prove the key bilinear
estimates in Section 4.

2 Notation

For A,B > 0, A . B means that there exists c > 0 such that A ≤ cB.
When c is a small constant we use A ≪ B. We write A ∼ B to denote the
statement that A . B . A. For u = u(t, x, y, z) ∈ S ′(R4), we denote by û
(or Fu) its Fourier transform in space. The Fourier variables corresponding
to a vector x̄ = (x, y, z) will be denoted by ξ̄ = (ξ, η, µ). We consider the
usual Lebesgue spaces Lp, 1 ≤ p ≤ ∞ and given a Banach space X and
a measurable function u : R → X, we define ‖u‖LpX = ‖‖u(t)‖X‖Lp . For
T > 0, we also set Lp

T = Lp([0, T ]). Let us define the Japanese bracket
〈x̄〉 = (1 + |x̄|2)1/2 so that the standard non-homogeneous Sobolev spaces
are endowed with the norm ‖f‖Hs = ‖〈∇〉sf‖L2 .

We use a Littlewood-Paley analysis. Let p ∈ C∞
0 (Rd) be such that

p ≥ 0, supp p ⊂ B(0, 2), p ≡ 1 on B(0, 1). We define next pk(ξ̄) = p(ξ̄/2k)
for k ≥ 0. We set δ(ξ̄) = p(ξ̄/2) − p(ξ̄) and δk(ξ̄) = δ(ξ̄/2k) for any k ∈ Z,
and define the operators Pk (k ≥ 0) and ∆k (k ∈ Z) by F(Pku) = pkû and
F(∆k) = δkû. When d = 3, we introduce the operators P x

k , P
y
k , P

z
k , and

∆x
k, ∆

y
k, ∆

z
k defined by





P x
k u(x, y, z) = F−1(pk(ξ)û(ξ, η, µ)),
P y
k u(x, y, z) = F−1(pk(η)û(ξ, η, µ)),
P z
k u(x, y, z) = F−1(pk(µ)û(ξ, η, µ))

and 



∆x
ku(x, y, z) = F−1(δk(ξ)û(ξ, η, µ)),

∆y
ku(x, y, z) = F−1(δk(η)û(ξ, η, µ)),

∆z
ku(x, y, z) = F−1(δk(µ)û(ξ, η, µ))

4



Furthermore we define more general projections P.k =
∑

j:2j.2k Pj , ∆
x
≫j =∑

j:2j≫2k ∆
x
j etc. For future considerations, note that for u ∈ S ′(R3) and

p ∈ [1,∞] we have

‖∆ku‖Lp . ‖∆x
kP

y
.kP

z
.ku‖Lp + ‖P x

.k∆
y
kP

z
.ku‖Lp + ‖P x

.kP
y
.k∆

z
ku‖Lp . (2.1)

With these notations, it is well known that an equivalent norm onHs(Rd)
is given by

‖u‖Hs ∼ ‖P0u‖L2 +


∑

k≥0

22sk‖∆ku‖2L2




1/2

.

For s ∈ R, the Besov space Bs,1
2 (Rd) denotes the completion of S(Rd) with

respect to the norm

‖u‖Bs,1
2

= ‖P0u‖L2 +
∑

k≥0

2sk‖∆ku‖L2 .

3 Linear estimates

Consider the linear ZK equation

ut +∆ux = 0, t ∈ R, x ∈ R
3. (3.1)

Let ω(ξ̄) = ξ(ξ2 + η2+µ2) and U(t) = F−1eitω(ξ̄)F , be the associated linear
operator.

First we prove a standard ”Kato smoothing” estimate for the free evo-
lution of (3.1).

Proposition 3.1. For any ϕ ∈ L2(R3), it holds that

‖∇U(t)ϕ‖L∞
x L2

yzt
. ‖ϕ‖L2 . (3.2)

Proof. The proof is modeled on the corresponding result for the KdV equa-
tion [4] (see also [5] and [2] for the two-dimensional case). We perform the
change of variables θ = h(ξ) = ω(ξ̄) and obtain

U(t)ϕ(x̄) =

∫

R3

ei(x̄ξ̄+tω(ξ̄)ϕ̂(ξ̄)dξ̄

= F−1
θηµ

(
eixh(θ)(h−1)′(θ)ϕ̂(h(θ), η, µ)

)
(t, y, z).
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Therefore, applying Plancherel theorem and returning to the ξ-variable yield

‖U(t)ϕ(x)‖L2
yzt

= ‖(h−1)′(θ)ϕ̂(h(θ), η, µ)‖L2
θηµ

= ‖|h′(ξ)|−1/2ϕ̂(ξ, η, µ)‖L2
ξηµ

∼ ‖∇−1ϕ‖L2 .

We will use in a crucial way the following maximal estimate for the free
evolution when acting on phase localized functions.

Proposition 3.2. Let 0 < T < 1 and α ≥ 3/8.

1. For all ϕ ∈ S(R3) and k ≥ 0, we have

‖tα∆kU(t)ϕ‖L2
xL

∞
yzT

. 2k‖∆kϕ‖L2 . (3.3)

2. For any ϕ ∈ S(R3), it holds that

‖P0U(t)ϕ‖L2
xL

∞
yzT

. ‖P0ϕ‖L2 . (3.4)

Before proving Proposition 3.2, we first show some estimates related to
the oscillatory integrals:

I0(t, x̄) =

∫

R3

ei(x̄ξ̄+tω(ξ̄))p0(ξ̄)dξ̄,

and for k ≥ 1,

Ik(t, x̄) =

∫

R3

ei(x̄ξ̄+tω(ξ̄))ψ1(ξ)ψ2(η)ψ3(µ)dξ̄

where (ψ1, ψ2, ψ3) = (δk, pk, pk), (pk, δk, pk) or (pk, pk, δk).

Lemma 3.1.

‖I0‖L1
xL

∞
yzT

. 1.

Proof. Since |I0| . 1, it is clear that ‖I0‖L1
xL

∞
yzT

. 1 if we are in the region

|x| . 1. Thus we may assume that |x| ≫ 1. Define the phase function ϕ1

by ϕ1(ξ) = tω(ξ̄) + xξ so that ϕ′
1(ξ) = t(3ξ2 + η2 + µ2) + x. On the support

of p0, we have |ϕ′
1| & |x|. Thus, two integrations by parts yield the estimate

∣∣∣∣
∫

R

eφ1(ξ)p0(ξ̄)dξ

∣∣∣∣ .
∫

R

∣∣∣∣
p0ξξ
ϕ′′
1

∣∣∣∣+
∣∣∣∣
p0ξϕ

′′2
1

ϕ′3
1

∣∣∣∣+
∣∣∣∣
p0ϕ

′′′
1

ϕ′3
1

∣∣∣∣+
∣∣∣∣
p0ϕ

′′2
1

ϕ′4
1

∣∣∣∣ . |x|−2.

It follows that |I0| . |x|−2, which implies that ‖I0‖L1
xL

∞
yzT

. 1 as required.
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Lemma 3.2. For any α ≥ 3/8 and k ≥ 0, it holds that

‖t2αIk‖L1
xL

∞
yzT

. 22k.

Proof. We split Ik into

Ik =

∫

R3

ei(x̄ξ̄+tω(ξ̄))ψ1(ξ)(1− p0(ξ))ψ2(η)ψ3(µ)dξ̄

+

∫

R3

ei(x̄ξ̄+tω(ξ̄))p0(ξ)ψ2(η)ψ3(µ)dξ̄

:= I1k + I2k . (3.5)

• Estimate for I1k .
Since we have |ξ| & 1, a rough estimate for I1k yields |I1k | . 23k, which
gives the desired bound in the region where |x| ≤ 2−k. Therefore we
may assume |x| ≥ 2−k. If we have either |x| ≪ t22k or |x| ≫ t22k,
then using that |ω′| ∼ 22k we infer |ϕ′

1| & max(|x|, t22k) where ϕ1 is
the phase function

ϕ1(ξ) = tω(ξ̄) + xξ. (3.6)

Integrating by parts twice with respect to ξ we deduce
∣∣∣∣
∫

R

eiϕ1ψ1(1− p0)

∣∣∣∣ . max(|x|, t22k)−2.

It follows that |I1k | . 22k max(|x|, t22k)−2 and next

t1/2|I1k | . |x|−3/22k,

which is acceptable since we integrate in the region |x| ≥ 2−k. Now
we consider the case |x| ∼ t22k. Using that

∫

R2

eitξ(η
2+µ2)+iyη+izµdηdµ =

π

t|ξ|e
−i y

2
+z2

4tξ ei
π
2
sgn(ξ),

we may rewrite I1k as

I1k =

∫

R2

ψ̌2(y − u)ψ̌3(z − v)

(∫

R

πi

tξ
eiϕ2(ξ)ψ1(ξ)(1 − p0(ξ))dξ

)
dudv

(3.7)

where we set ϕ2(ξ) = tξ3+xξ− u2+v2

4tξ . Since |ϕ′′′
2 | ≥ 6t on the support

of 1− p0, Van der Corput’s lemma implies that
∣∣∣∣
∫

R

πi

tξ
eiϕ2(ξ)ψ1(ξ)(1 − p0(ξ))dξ

∣∣∣∣ . t−4/3.
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It follows that |I1k | . t−4/3 and

t2α|I1k | . t2α−4/3 . |x|2α−4/32−2k(2α−4/3).

Hence we obtain for α > 1/6 and |x| ≥ 2−k that

‖t2αI1k‖L1
xL

∞
yzT

. 22k(2α−1/3)2−2k(2α−4/3) ∼ 22k.

• Estimate for I2k .
We treat now the low frequencies term I2k . The case |x| . 1 is easily
handled since we have the rough estimate |I2k | . 22k. Thus we only
need to consider the region where |x| ≫ 1. In the domain |x| ≪ t22k

or |x| ≫ t22k, we have |ϕ′
1| & max(|x|, t22k) where ϕ1 is defined in

(3.6), and thus ∣∣∣∣
∫

R

eiϕ1p0

∣∣∣∣ . |x|−2.

It follows that |I2k | . 22k|x|−2 and

‖I2k‖L1
xL

∞
yzT

. 22k.

Now we consider the most delicate case |x| ∼ t22k and rewrite I2k as in
(3.7) where ψ1(1− p0) is replaced with p0. Let us split p0 as

p0 = p−2k +
0∑

j=−2k

δj .

The part p−2k is straightforward since |I2k | . 1 and we get from |x| ∼
t22k . 22k that ‖I2k‖L1

xL
∞
yzT

. 22k. Thus we reduce to estimate

I2k,j =

∫

R2

ψ̌2(y − u)ψ̌3(z − v)

(∫

R

πi

tξ
eiϕ2(ξ)δj(ξ)dξ

)
dudv

for j = −2k, . . . , 0. First consider the case |x| ≪ t−12−2j(u2 + v2)

or |x| ≫ t−12−2j(u2 + v2). Since ϕ′
2(ξ) = 3tξ2 + x + u2+v2

4tξ2
, we have

|ϕ′
2| & max(|x|, t−12−2j(u2 + v2)) and an application of the Van der

Corput’s lemma yields

|I2k,j| .
∫

R2

|ψ̌2(y − u)ψ̌3(z − v)|t−1|x|−3/4(t−12−2j(u2 + v2))−1/42−jdudv

. |x|−3/4t−3/42−j/2

∫

R

|ψ̌2(y − u)|
|u|1/2 du.
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On the other hand, the change of variables v = 2ku leads to
∫

R

|ψ̌2(y − u)|
|u|1/2 du = 2k

∫

R

|ψ̌(2ky − 2ku)|
|u|1/2 du

= 2k/2
∫

R

|ψ̌(2ky − v)|
|v|1/2 dv

. 2k/2
∫

|v|≤1

dv

|v|1/2 + 2k/2
∫

|v|≥1
|ψ̌(2ky − v)|dv

. 2k/2.

Consequently, it is deduced that t3/4|I2k,j| . |x|−3/42−j/22k/2 and

‖t3/4I2k‖L1
xL

∞
yzT

.

0∑

j=−2k

2−j/22k/2
∫

|x|.22k

dx

|x|3/4 . 22k.

Finally assume that |x| ∼ t−12−2j(u2+v2) so that |ϕ′′
2 | & t22k−j . Then

we get from Van der Corput’s lemma that

|I2k,j| . (t22k−j)−1/2t−12−j ∼ t−3/22−k2−j/2.

Hence, we obtain

t2α|I2k | . t2α−3/22−k
0∑

j=−2k

2j/2 . |x|2α−3/22−2k(2α−3/2),

which is acceptable as soon as α > 1/4. This concludes the proof of
Lemma 3.2.

We are now in a position to prove Proposition 3.2.

Proof of Proposition 3.2. Let k ≥ 0 and Uk(t) = ∆kU(t). The proof will
follow from a slight modification of the usual AA∗ argument. Let us define
the operator Ak : L1

TL
2
x̄ → L2 by

Akg =

∫ T

0
tαUk(−t)g(t)dt.

We easily check that A∗
kh(t) = tαUk(t)h for h ∈ L2(R3) and moreover,

A∗
kAkg(t) =

∫ T

0
(tt′)αUk(t− t′)g(t′)dt′.
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The previous integrand can be estimated by

|(tt′)αUk(t− t′)g(t′, x̄)| .
∣∣|t− t′|2αUk(t− t′)g(t′, x̄)

∣∣+
∣∣|t+ t′|2αUk(t− t′)g(t′, x̄)

∣∣
:= I + II.

Using the Young inequality, the first term is bounded by

I .
∣∣(|t− t′|2αIk(t− t′) ∗x̄ g(t′)

)
(x̄)

∣∣

.
(
(|t− t′|2α‖Ik(t− t′)‖L∞

yz
) ∗x ‖g(t′)‖L1

yz

)
(x).

Integrating this into t′ ∈ [0, T ] and taking the L2
xL

∞
yzT norm, this leads to

∥∥∥∥
∫ T

0

∣∣|t− t′|2αUk(t− t′)g(t′, x̄)
∣∣dt′

∥∥∥∥
L2
xL

∞
yzT

.
∥∥∥‖t2αIk‖L∞

yzT
∗x ‖g(t)‖L1

yzT

∥∥∥
L2
x

. ‖t2αIk‖L1
xL

∞
yzT

‖g‖L2
xL

1
yzT
.

(3.8)

To estimate II, we introduce ǧ(t, x̄) = g(t,−x̄) and notice that

Uk(t− t′)g(t′, x̄) = Uk(t+ t′)ǧ(t′,−x̄).

We infer that

II .
(
(|t+ t′|2α)‖Ik(t+ t′)‖L∞

yz
) ∗x ‖ǧ(t′)‖L1

yz

)
(x)

and we get

∥∥∥∥
∫ T

0

∣∣|t+ t′|2αUk(t− t′)g(t′, x̄)dt′
∥∥∥∥
L2
xL

∞
yzT

.
∥∥∥‖t2αIk‖L∞

yzT
∗x ‖ǧ‖L1

yzT

∥∥∥
L2
x

. ‖t2αIk‖L1
xL

∞
yzT

‖g‖L2
xL

∞
yzT
. (3.9)

Combining estimates (3.8)-(3.9) and Lemma 3.2 we deduce

‖A∗
kAkg‖L2

xL
∞
yzT

. ‖t2αIk‖L1
xL

∞
yzT

‖g‖L2
xL

yzT . 22k‖g‖L2
xL

∞
yzT
.

The usual algebraic lemma (see Lemma 2.1 in [3]) applies and yields the
first estimate in Proposition 3.2. The second one is obtained by following
the same lines and using Lemma 3.1.

In order to get the desired bounds for data in Hs(R3), s > 1, we will use
the following estimate.

10



Proposition 3.3. For 0 < T < 1, s > 1 and any ϕ ∈ S(R3), it holds that

‖U(t)ϕ‖L2
xL

∞
yzT

. ‖ϕ‖Hs . (3.10)

This proposition is a direct consequence of Lemma 3.1 together with the
following result.

Lemma 3.3. For any ε > 0 and k ≥ 0, it holds that

‖Ik‖L1
xL

∞
yzT

. 2(2+ε)k.

Proof. Setting

Ii,j,k(t, x̄) =

∫

R3

ei(x̄ξ̄+tω(ξ̄))δi(ξ)δj(η)δk(µ)dξ̄,

we see that from the estimate

‖∆nu‖L1
xL

∞
yzT

.
∑

i,j,k:2i,2j ,2k.2n

‖∆x
i ∆

y
j∆

z
ku‖L1

xL
∞
yzT
,

it suffices to show that

‖Ii,j,k‖L1
xL

∞
yzT

. (1 +M)22M (3.11)

for all i, j, k ∈ Z and with M = max(i, j, k) ≥ 0. From the straightforward
bound |Ii,j,k| . 2i+j+k, we see that we may assume |x| ≥ 2−m where m =
min(i, j, k). In the region |x| ≪ t22M or |x| ≫ t22M , the phase function
ϕ1 defined in (3.6) satisfies |ϕ′

1| & max(|x|, t22M ) and integrations by parts
lead to ∣∣∣∣

∫

R

eiϕ1δi

∣∣∣∣ . 2−i|x|−2.

Therefore we get |Ii,j,k| . 2j+k−i|x|−2 and then ‖Ii,j,k‖L1
xL

∞
yzT

. 2j+k−i+m .

22M . Finally consider the case |x| ∼ t22M . Rewriting Ii,k,j as

Ii,j,k =

∫

R2

δ̌j(y − u)δ̌k(z − v)

(∫

R

πi

tξ
eiϕ2(ξ)δi(ξ)dξ

)
dudv,

we immediately obtain |Ii,j,k| . t−1 . 22M |x|−1 and thus ‖Ii,j,k‖L1
xL

∞
yzT

.

M22M , as desired.

Up to the end point s = 1, we show next that estimate (3.10) is sharp.
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Proposition 3.4. Suppose that for any ϕ ∈ Hs(R3) we have

‖tαU(t)ϕ‖L2
xL

∞
yzT

. ‖ϕ‖Hs , (3.12)

for some α ≥ 0. Then it must be the case that s ≥ 1.

Proof. Let us define the smooth functions ϕk through their Fourier trans-
forms by

ϕ̂(ξ̄) = δ−2k(ξ)δk(η)δk(µ)

for k ≥ 0. Then it is easy to see that

‖ϕk‖Hs ∼ 2ks. (3.13)

On the other hand, for ε > 0 small enough, we set t = ε and y = z = ε2−k

so that |yη + zµ + tω(ξ̄)| . ε. Choosing |x| ≪ 22k, we obtain the lower
bound

|U(t)ϕk(x̄)| =
∣∣∣∣
∫

R3

ei(x̄ξ̄+tω(ξ̄))ϕk(ξ̄)dξ̄

∣∣∣∣

=
∣∣∣
∫

R3

[ei(yη+zµ+tω(ξ̄)) − 1]eixξδ−2k(ξ)δk(η)δk(µ)dξ̄

+

∫

R3

eixξδ−2k(ξ)δk(η)δk(µ)dξ̄
∣∣∣

& 1.

It follows that ‖tαU(t)ϕk‖L2
xL

∞
yzT

& 2k where the implicit constant does not

depend on k. Therefore, (3.12) and (3.13) imply

2k . 2ks.

From this, we get for large k that s ≥ 1.

In the sequel of this section we prove retarded linear estimates which
will be used later to perform the fixed point argument.

Proposition 3.5. Let f ∈ S(R4). Then we have

∥∥∥∥∇
∫ t

0
U(t− t′)f(t′)dt′

∥∥∥∥
L∞
T L2

x̄

. ‖f‖L1
xL

2
yzT
. (3.14)

12



Proof. The dual estimate of (3.2) reads

∥∥∥∥
∫ ∞

−∞
U(−t′)∇f(t′)dt′

∥∥∥∥
L2

. ‖f‖L1
xL

2
yzT
. (3.15)

Noticing that U(t) is a unitary group on L2(R3) we obtain for any fixed t,

∥∥∥∥
∫ ∞

−∞
U(t− t′)∇f(t′)dt′

∥∥∥∥
L2
x̄

. ‖f‖L1
xL

2
yzT
. (3.16)

To conclude we substitute in (3.16) f(t′) by χ[0,t](t
′)f(t′) and then take the

supremum in time in the left-hand side of the resulting inequality.

Proposition 3.6. Let f ∈ S(R4). Then we have

∥∥∥∥∇2

∫ t

0
U(t− t′)f(t′)dt′

∥∥∥∥
L∞
x L2

yzT

. ‖f‖L1
xL

2
yzT
. (3.17)

Proof. We first observe that for any g : R → R,

∫ t

0
g(t′)dt′ =

1

2

∫

R

g(t′) sgn(t− t′)dt′ +
1

2

∫

R

g(t′) sgn(t′)dt′,

where sgn(·) denotes the sign function. Consequently we have

∇2R(t, x̄) = ∇2

∫ t

0
U(t− t′)f(t′)dt′

=
1

2
∇2

∫

R

U(t− t′)f(t′) sgn(t− t′)dt′ +
1

2
∇2

∫

R

U(t− t′)f(t′) sgn(t′)dt′

=
1

2
∇2R1(t, x̄) +

1

2
∇2R2(t, x̄). (3.18)

Taking the inverse space-time Fourier transform, it is clear that

R1 = F−1
τ ξ̄

(
ŝgn(τ − ω(ξ̄))f̂(τ, ξ̄)

)
.

Hence we get by Plancherel theorem

‖∇2R1‖L2
yzt

=
∥∥∥F−1

ξ

(
|ξ̄|2ŝgn(τ − ω(ξ̄))f̂(τ, ξ̄)

)∥∥∥
L2
ηµτ

= ‖K(τ, x, η, µ) ∗x Fyzt(f(x))(η, µ, τ)‖L2
ηµτ

(3.19)
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where K is the inverse Fourier transform (in ξ) of the tempered distribution
defined as the principal value of |ξ̄|2/(τ − ω(ξ̄)). It follows that

K(τ, x, η, µ) =

∫

R

eixξ
|ξ̄|2

τ − ω(ξ̄)
dξ

=

∫

R

eix(η
2+µ2)1/2ξ (η2 + µ2)3/2(ξ2 + 1)

τ − (η2 + µ2)3/2ξ(ξ2 + 1)
dξ

=

∫

R

eiyξ
ξ2 + 1

c− ξ(ξ2 + 1)
dξ

with y = (η2 + µ2)1/2x and c = τ/(η2 + µ2)3/2. Next, a partial fraction
expansion leads to

ξ2 + 1

c− ξ(ξ2 + 1)
= − α2 + 1

(3α2 + 1)(ξ − α)
− α

3α2 + 1

2αξ + α2 − 1

ξ2 + αξ + α2 + 1

where α is the unique real root of c−X(X2 + 1). Therefore, we get

|K(τ, x, η, µ)| . α2 + 1

3α2 + 1

∣∣∣∣
∫

R

eiyξ

ξ − α
dξ

∣∣∣∣+
2α2

3α2 + 1

∣∣∣∣
∫

R

eiyξ
ξ

ξ2 + αξ + α2 + 1
dξ

∣∣∣∣

+
|α(α2 − 1)|
3α2 + 1

∣∣∣∣
∫

R

eiyξ

ξ2 + αξ + α2 + 1
dξ

∣∣∣∣
= K1 +K2 +K3.

The first term K1 is bounded by an integral witch is the Fourier transform
of a function that behaves near the singular points like the kernel of the
Hilbert transform 1/ξ (or its translates) whose Fourier transform is sgn(x).
It follows that K1 is bounded uniformly in α and y. In the same way,
K2 ∈ L∞ since

K2 .

∣∣∣∣∣

∫

R

eiyξ
ξ

(
ξ + α

2

)2
+ 3α2

4 + 1
dξ

∣∣∣∣∣ .
1

3α2 + 4

∣∣∣∣∣∣∣

∫

R

eiyξ
ξ

(
ξ√

3α2+4

)2
+ 1

dξ

∣∣∣∣∣∣∣

.

∣∣∣∣
∫

R

eizξ
ξ

ξ2 + 1
dξ

∣∣∣∣

where z = y
√
3α2 + 4. Concerning K3, it is easily estimated by

K3 .
|α(α2 − 1)|
3α3 + 1

∫

R

dξ

ξ2 + 3α2

4 + 1

.
|α(α2 − 1)|

√
3α2 + 4

(3α2 + 1)(3α2 + 4)
. 1.
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We deduce that K ∈ L∞(R4). Hence, (3.19) combining with the Young
inequality yields

‖∇2R1‖L∞
x L2

yzt
. ‖K‖L∞‖Fyzt(f(x))‖L1

xL
2
ηµτ

. ‖f‖L1
xL

2
yzt
. (3.20)

To treat the contribution of R2, we use the smoothing bound (3.2) and its
dual estimate (3.15) to get

‖∇2R2‖L∞
x L2

yzt
.

∥∥∥∥∇
∫

R

U(−t′)f(t′) sgn(t′)dt′
∥∥∥∥
L2

. ‖f‖L1
xL

2
yzt
. (3.21)

Estimates (3.20)-(3.21) together with (3.18) yield the desired bound.

Proposition 3.7. Let T ≤ 1, k ≥ 0 and α ≥ 3/8. Then for any f ∈ S(R4),
∥∥∥∥
∫ t

0
U(t− t′)P0f(t

′)dt′
∥∥∥∥
L2
xL

∞
yzT

. ‖P0f‖L1
xL

2
yzT
, (3.22)

∥∥∥∥tα
∫ t

0
U(t− t′)∆kf(t

′)dt′
∥∥∥∥
L2
xL

∞
yzT

. ‖∆kf‖L1
xL

2
yzT
. (3.23)

Proof. Combining estimates (3.3) and (3.15) we obtain the non-retarded
version of (3.23):

∥∥∥∥tα
∫ T

0
U(t− t′)∆kf(t

′)dt′
∥∥∥∥
L2
xL

∞
yzT

. ‖∆kf‖L1
xL

2
yzT
. (3.24)

We consider the function Hk(t, x̄) =
∣∣∣tα

∫ t
0 U(t− t′)∆kf(t

′)dt′
∣∣∣ that we may

always assume to be continuous on [0, T ] × R
3. From (3.24) it follows that

for all measurable function t : R3 → [0, T ],
∥∥∥∥t(x)α

∫ T

0
U(t(x) − t′)∆kf(t

′, x̄)dt′
∥∥∥∥
L2
xL

∞
yz

. ‖∆kf‖L1
xL

2
yzT
.

Replacing now f(t′, x̄) by f(t′, x̄)χ[0,t(x̄)](t
′) we see that

‖Hk(t(x̄), x̄)‖L2
xL

∞
yz

. ‖∆kf‖L1
xL

2
yzT
. (3.25)

Since the map t 7→ Hk(t, x̄) is continuous on the compact set [0, T ], there
exists α ∈ [0, T ] such that Hk(α, x̄) = supt∈[0,T ]Hk(t, x̄), therefore the map

x̄ 7→ t0(x̄) = inf

{
α ∈ [0, T ] : Hk(α, x̄) = sup

t∈[0,T ]
Hk(t, x̄)

}
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is well-defined and measurable on R
3. Hence, choosing t0 in (3.25) we infer

that
‖Hk(t0(x̄), x̄)‖L2

xL
∞
yz

. ‖∆kf‖L1
xL

2
yzT
,

which yields ∥∥∥∥∥ sup
t∈[0,T ]

Hk(t, x̄)

∥∥∥∥∥
L2
xL

∞
yz

. ‖∆kf‖L1
xL

2
yzT

and ends the proof of (3.23). The proof of (3.22) is similar and therefore
will be omitted.

4 Proofs of Theorems (1.2) and (1.1)

In this section we solve (1.1) in the spaces B1,1
2 (R3) and Hs(R3), s > 1. We

consider the associated integral equation

u(t) = U(t)u0 −
1

2

∫ t

0
U(t− t′)∂x(u

2)(t′)dt′. (4.1)

4.1 Well-posedness in B
1,1
2 (R3)

For u0 ∈ B1,1
2 (R3), we look for a solution in the space

XT = {u ∈ Cb([0, T ], B
1,1
2 ) : ‖u‖XT

<∞}

for some T > 0 and where

‖u‖XT
= N(u) + T (u) +M(u)

with

N(u) = ‖P0u‖L∞
T L2

x̄
+

∑

k≥0

2k‖∆ku‖L∞
T L2

x̄
,

T (u) = ‖P0u‖L∞
x L2

yzT
+
∑

k≥0

22k‖∆ku‖L∞
x L2

yzT
,

M(u) = ‖P0u‖L2
xL

∞
yzT

+
∑

k≥0

‖tα∆ku‖L2
xL

∞
yzT
,

and 3/8 ≤ α < 1/2. First from Propositions 3.1, 3.2 together with the
obvious bound

‖U(t)u0‖L∞
T L2

x̄
. ‖u0‖L2 , (4.2)
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we get the following linear estimate:

‖U(t)u0‖XT
. ‖u0‖B1,1

2

. (4.3)

Now we need to estimate
∥∥∥∥
∫ t

0
U(t− t′)∂x(u

2)(t′)dt′
∥∥∥∥
XT

in terms of the XT -norm of u. Using standard paraproduct rearrangements,
we can rewrite ∆k(u

2) as

∆k(u
2) = ∆k

[
lim
j→∞

Pj(u)
2

]

= ∆k


P0(u)

2 +
∑

j≥0

(Pj+1(u)
2 − Pj(u)

2)




= ∆k


P0(u)

2 +
∑

j&k

∆j+1u(Pj+1u+ Pju)


 .

On the other hand, by similar considerations, we see that P0(u
2) can be

rewritten as

P0(u
2) = P0[P0(u)

2] + P0


∑

j≥0

∆j+1u(Pj+1u+ Pju)


 .

Hence, without loss of generality, we can restrict us to consider only terms
of the form:

A = P0[P0(u)
2], B = ∆k


∑

j&k

∆juPju


 , C = P0


∑

j≥0

∆juPju




for k ≥ 0, since the estimates for the other terms would be similar.
By virtue of (3.14)-(3.17)-(3.22) and (3.23), we infer that

∥∥∥∥
∫ t

0
U(t− t′)∂x(u

2)(t′)dt′
∥∥∥∥
XT

. ‖P0(u)
2‖L1

xL
2
yzT

+
∑

k≥0

2k


∑

j&k

‖∆juPju‖L1
xL

2
yzT


+

∑

j≥0

‖∆juPju‖L1
xL

2
yzT
. (4.4)
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The first term in the right hand side is bounded by

‖P0(u)
2‖L1

xL
2
yzT

. ‖P0u‖L2‖P0u‖L2
xL

∞
yzT

. T 1/2‖P0u‖L∞
T L2

x̄
M(u)

. T 1/2‖u‖2XT
. (4.5)

To evaluate the contribution of B, note that

‖∆juPju‖L1
xL

2
yzT

= ‖(t−α∆ju)(t
αPju)‖L1

xL
2
yzT

. ‖t−α∆ju‖L2‖tαPju‖L2
xL

∞
yzT

. T µ‖∆ju‖L∞
T L2

x̄
‖tαPju‖L2

xL
∞
yzT

(4.6)

where µ = 1/2 − α > 0. Therefore, since

‖tαPju‖L2
xL

∞
yzT

. ‖P0u‖L2
xL

∞
yzT

+

j∑

k=0

‖tα∆ku‖L2
xL

∞
yzT

.M(u), (4.7)

we deduce from the discrete Young inequality that

∑

k≥0

2k


∑

j&k

‖∆juPju‖L1
xL

2
yzT


 . T µM(u)

∑

k≥0


∑

j&k

2k−j(2j‖∆ju‖L2
xL

∞
yzT

)




. T µ‖u‖XT

∑

k≥0

2k‖∆ku‖L2
xL

∞
yzT

. T µ‖u‖2XT
. (4.8)

Using again estimates (4.6)-(4.7), we easily get that the last term in the
r.h.s. of (4.4) can be estimated by

∑

j≥0

‖∆juPju‖L1
xL

2
yzT

. T µM(u)
∑

j≥0

‖∆ju‖L∞
T L2

x̄
. T µ‖u‖2XT

. (4.9)

Hence, gathering (4.3)-(4.4)-(4.5)-(4.8) and (4.9), we infer that

‖Gu‖XT
. ‖u0‖B1,1

2

+ T µ‖u‖2XT
,

and in the same way,

‖Gu − Gv‖XT
. (‖u‖XT

+ ‖v‖XT
)‖u− v‖XT

.

Hence for T > 0 small enough, G is a strict contraction in some ball of XT .
Theorem 1.2 follows then from standard arguments.
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4.2 Well-posedness in H
s(R3), s > 1

Let u0 ∈ Hs(R3) with s > 1. For T > 0, we introduce the space

Xs
T = {u ∈ Cb([0, T ],H

s) : ‖u‖Xs
T
<∞}

where
‖u‖Xs

T
= N(u) + T (u) +M(u)

with

N(u) = ‖P0u‖L∞
T L2

x̄
+


∑

k≥0

4sk‖∆ku‖2L∞
T L2

x̄




1/2

,

T (u) = ‖P0u‖L∞
x L2

yzT
+


∑

k≥0

4(s+1)k‖∆ku‖2L∞
x L2

yzT




1/2

,

M(u) = ‖P0u‖L2
xL

∞
yzT

+


∑

k≥0

4(s−1−ε)k‖∆ku‖2L2
xL

∞
yzT




1/2

,

for some ε > 0 small enough. From Proposition 3.1 together with (3.10) and
(4.2),

‖U(t)u0‖Xs
T
. ‖u0‖Hs .

Following the arguments given in Subsection 4.1, it is not too hard to see
that

∥∥∥∥
∫ t

0
U(t− t′)∂x(u

2)(t′)dt′
∥∥∥∥
Xs

T

. ‖P0(u)
2‖L1

xL
2
yzT

+


∑

k≥0

4sk


∑

j&k

‖∆juPju‖L1
xL

2
yzT




2


1/2

+
∑

j≥0

‖∆juPju‖L1
xL

2
yzT
.

The estimates for these terms follow the same lines than the B1,1
2 case, except

that we use the Young inequality for ℓ1 ⋆ ℓ2, as well as the bound

‖Pju‖L2
xL

∞
yzT

. ‖P0u‖L2
xL

∞
yzT

+

j∑

k=0

‖∆ku‖L2
xL

∞
yzT

.M(u) +


∑

k≥0

4(1−s+ε)k




1/2

M(u)

.M(u),
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as soon as 0 < ε < s− 1. This leads to

‖Gu‖Xs
T
. ‖u0‖Hs + T µ‖u‖2Xs

T
,

and
‖Gu − Gv‖Xs

T
. (‖u‖Xs

T
+ ‖v‖XT

)‖u− v‖Xs
T
.

This proves the existence and uniqueness of a local solution u in Xs
T with

T = T (‖u0‖Hs) small enough.
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