

ANALYSIS OF THE URINARY GLUCOSE-[N, N]-UREIDE CONTENT IN THE STUDY OF THE LACTOSE-[N, N]-UREIDE METABOLISM IN HEALTHY HUMANS

Vicky de Preter, Els Houben, Karen Windey, Anja Luypaerts, Kristin Verbeke

▶ To cite this version:

Vicky de Preter, Els Houben, Karen Windey, Anja Luypaerts, Kristin Verbeke. ANALYSIS OF THE URINARY GLUCOSE-[N, N]-UREIDE CONTENT IN THE STUDY OF THE LACTOSE-[N, N]-UREIDE METABOLISM IN HEALTHY HUMANS. European Journal of Clinical Nutrition, 2011, 10.1038/ejcn.2011.63. hal-00640221

HAL Id: hal-00640221 https://hal.science/hal-00640221

Submitted on 11 Nov 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	ANALYSIS OF THE URINARY GLUCOSE-[¹⁵ N, ¹⁵ N]-UREIDE CONTENT IN THE STUDY OF THE LACTOSE-					
2	[¹⁵ N, ¹⁵ N]-UREIDE METABOLISM IN HEALTHY HUMANS					
3						
4	GC-MS ANALYSIS OF GLUCOSE-[¹⁵ N, ¹⁵ N]-UREIDE					
5						
6						
7	VICKY DE PRETER, PhD, ELS HOUBEN, MSc, KAREN WINDEY, MSc, ANJA LUYPAERTS, MSc, AND					
8	KRISTIN VERBEKE, PhD					
9	Department of Gastrointestinal Research and Leuven Food Science and Nutrition Research Centre					
10	(LFoRCe), University Hospital Gasthuisberg, K.U. Leuven, Herestaat 49, B-3000 Leuven, Belgium					
11						
12						
13						
14	Abbreviations: GC-MS: gas chromatography – mass spectrometry; OCTT: orocaecal transit time; TLC:					
15	thin layer chromatography					
16						
17 18	Corresponding author: Kristin Verbeke, Ph.D.					
19	Department of Gastrointestinal Research					
20	University Hospital Leuven					
21	Herestraat 49 - 3000 Leuven - Belgium					
22	Tel +32 16 34 43 97					
23	Fax +32 16 34 43 99					
24	Email Kristin.Verbeke@uz.kuleuven.ac.be					
25						

1 Abstract

Background/Objectives: Lactose-[¹⁵N, ¹⁵N]-ureide is used to study the fate of the colonic ureanitrogen metabolism. During the passage through the gastrointestinal tract, lactose ureide is hydrolysed to glucose ureide, which is absorbed to a limited extent from the small intestine and is excreted urinarily. In the present study, a procedure has been developed to quantify the urinary excretion of glucose-[¹⁵N, ¹⁵N]-ureide. In addition, urine and faecal samples obtained during a dietary intervention study with the prebiotic lactulose were retrospectively analysed.

Subjects/Methods: The glucose ureide and lactose ureide content was measured by GC-MS in nineteen healthy volunteers. After consumption of a standard test meal containing 75 mg lactose-[¹⁵N, ¹⁵N]-ureide, 6 healthy volunteers performed a fractionated 24h urine collection to investigate the urinary excretion of glucose-[¹⁵N, ¹⁵N]-ureide. In 13 volunteers, the effect of lactulose administration on the urinary excretion of glucose-[¹⁵N, ¹⁵N]-ureide was analysed.

Results: The urinary excretion of glucose-[¹⁵N, ¹⁵N]-ureide reached its maximum level in the 3-6h urine collection and decreased in the 6-9h urine. The label was still detectable in the 9-24h urine collection. The cumulative excretion of ¹⁵N-labelled glucose ureide after 24h amounted 12.91 %. No significant differences in glucose-[¹⁵N, ¹⁵N]-ureide excretion were found in either of the urine fractions after administration of lactulose compared to baseline. In none of the urine samples lactose-[¹⁵N, ¹⁵N]-ureide was detected.

19 **Conclusions:** In conclusion, the results obtained in the present study indicated that the percentage 20 dose glucose-[¹⁵N, ¹⁵N]-ureide recovered in urine is rather constant and not influenced by the 21 presence of lactulose.

22

23 Key words: lactose-[¹⁵N, ¹⁵N]-ureide, ammonia metabolism, stable isotopes, GC-MS

24

1 INTRODUCTION

Lactose ureide labelled with ¹³C on the urea moiety has been proposed as a substrate for the determination of orocaecal transit time (OCTT) by Heine *et al.* (Heine et al., 1995). Its application is based on the observation that the bond between the urea and sugar moiety in lactose ureide is completely resistant to human digestive processes, yet it is hydrolysed by the intestinal microbiota upon arrival in the colon. The labelled urea generated in this way is rapidly hydrolysed to ¹³CO₂ and NH₃.

8 On the basis of the same principle, its ¹⁵N-labelled analogue has been applied as a vehicle to 9 introduce a known amount of urea-nitrogen into the colon. The labelled NH₃ can either be used by the colonic microbiota for their own metabolism which is followed by faecal ¹⁵N-excretion or it can 10 11 be absorbed through the colonic wall and after conversion in the liver to labelled urea, be excreted in 12 the urine (Jackson et al., 1999) (Figure 1). In this way, lactose-[¹⁵N,¹⁵N]-ureide can be used to 13 evaluate the fate of the colonic urea-nitrogen metabolism. Using the same molecule, Jackson et al. demonstrated that bacterially derived amino acids from [¹⁵N,¹⁵N]-urea are available for colonic 14 15 absorption and thus for the host (Jackson et al., 2004). We have proposed this molecule as a 16 biomarker to evaluate the influence of pre- and/or probiotic administration on the colonic ammonia 17 metabolism. It has been shown that bacterial activity and/or growth is stimulated upon 18 administration of pre- and/or probiotics which is reflected in a shift from urinary to faecal ¹⁵N-19 excretion (De Preter et al., 2004; Geboes et al., 2005).

Several methods have previously been applied to measure the ¹⁵N-enrichement and total nitrogen content in urine and faeces, however, they do not all allow discrimination between the different chemical forms of the marker. Ruemmele *et al.* showed that during the passage through the gastrointestinal tract, lactose ureide is converted by β-galactosidase, located in the brush border of the small bowel, to galactose and glucose ureide, and that glucose ureide is absorbed to a limited extent from the small intestine and is excreted urinarily without being further metabolised (Ruemmele *et al.*, 1997). The analytical methodology used by Jackson *et al.* (1999) did not allow to 1 differentiate between ¹⁵N originating from urea or glucose-[¹⁵N,¹⁵N]-ureide, leading to their 2 conclusion that a limited amount of labelled [¹⁵N,¹⁵N]-urea (5 %) can be absorbed unchanged from the colon. Morrison *et al.* have qualitatively identified glucose-[¹³C]-ureide in urine after 3 administration of ¹³C-labelled lactose ureide using thin layer chromatography (TLC). They estimated 4 5 the ¹³C-recovery in urine at approximately 15% of administered dose (Morrison et al., 2003). As a consequence, it is likely that ¹⁵N-labelled glucose ureide will be excreted in urine after administration 6 of ¹⁵N-labelled lactose ureide and it might be necessary to correct urinary ¹⁵N-data for the presence 7 of glucose-[¹⁵N, ¹⁵N]-ureide. 8

9 Therefore, an analytical procedure using gas chromatography – mass spectrometry (GC-MS) 10 technology has been developed to quantify in a prospective study the urinary excretion of glucose-11 [¹⁵N, ¹⁵N]-ureide after oral administration of lactose-[¹⁵N, ¹⁵N]-ureide. In addition, urine and faecal 12 samples obtained during a dietary intervention study with the prebiotic lactulose were 13 retrospectively analysed.

14

15

16

- 17

18

19

20

21

22

23

1 MATERIALS AND METHODS

2 GC-MS analysis

3 Substrates

Lactose-[¹⁵N, ¹⁵N]-ureide, glucose-[¹⁵N, ¹⁵N]-ureide and the corresponding unlabelled substrates were 4 5 synthesized according to the method of Schoorl (Schoorl MN 1903) as modified by Hofmann (Hofmann E 1931) with [¹⁵N, ¹⁵N] urea obtained from Euriso-top (Saint-Aubain Cédex, France). Sugar 6 7 ureides are the condensation products of a reducing sugar and urea in mild aqueous acid. Their 8 synthesis is simple and avoids the use of toxic chemicals, making them safe for use in clinical practice. Absence of [¹⁵N, ¹⁵N]-urea, lactose or glucose-[¹⁵N, ¹⁵N]-ureide in the synthesis of lactose-[¹⁵N, ¹⁵N]-9 ureide, and absence of [¹⁵N, ¹⁵N]-urea or glucose in the synthesis of glucose-[¹⁵N, ¹⁵N]-ureide was 10 11 confirmed using TLC (Morrison et al., 2001).

12

13 Chemicals

Meso-inositol and n-heptane were supplied by Vel (Leuven, Belgium), whereas acetone was obtained
 from Chem-Lab NV (Zedelgem, Belgium). NH₂OH.HCl was purchased from Sigma-Aldrich (St. Louis,
 USA), pyridine and BSTFA-TMCS (99:1) were obtained from Pierce (Rockford, USA).

17

18 Sample preparation

19 The glucose ureide and lactose ureide content was measured by gas chromatography-mass 20 spectrometry (type time-of-flight (TOF)) technology. Therefore, 40 µl internal standard (meso-inositol 21 (100mg/100ml)) was added to 960 µl of a standard solution (= final concentration range of glucose 22 ureide and lactose ureide between 0 and 30 mg/l). This solution was diluted with 3 ml aceton, mixed 23 for 1 min and centrifuged at 3000 rpm for 20 min to deproteinized the samples. One ml aliquots 24 were evaporated to dryness and 100 µl oxime reagent (NH₂OH.HCl in pyridine, 25 mg/l) was added to 25 the sample, mixed for 1 min and heated for 30 min at 80°C. The reaction was stopped at -20°C (10 26 min) and the samples were evaporated under a stream of nitrogen. Derivatisation was accomplished

1 by adding 50 µl of BSTFA+TMCS (99:1) to the dried samples, thoroughly mixed and heated at 80°C. 2 After 35 min, samples were cooled down to room temperature. After adding 250 µl pyrogeen-free 3 H_2O , samples were extracted with 300 µl n-heptane and 0.5 µl of this solution was analysed on a GC-4 MS (Interscience, Louvain-la-Neuve, Belgium). The analytical column was a 30 m x 0.25 mm i.d., 0.25 5 μm AT5-MS (Alltech Associates, Deerfield, USA). Helium GC grade was used as a carrier gas with a 6 constant flow of 1.3 ml/min. The oven temperature was programmed to increase from 200°C (1 min), 7 with 5°C/min to 270°C (isothermal for 15 min). Mass spectrometric detection was performed in full 8 scan mode from m/z 35 to m/z 600 at 10 scans/sec. Xcalibur-software was used for the 9 automatisation of the GC-TOF-MS and for data acquisition. The results for glucose-ureide and lactose 10 ureide were expressed as percentage of the administered dose recovered in the different urine 11 fractions.

12

13 Study design

14 Subjects

Nineteen healthy volunteers (10 men and 9 women; mean age 22) were included in the study. None of the subjects had a history of gastrointestinal or metabolic disease or previous surgery (apart from appendectomy). The subjects were free of antibiotics or any other medical treatment influencing gut transit or intestinal flora for at least 3 months before the start of the study. The Ethics Committee of the University of Leuven approved the study and all subjects gave informed consent.

20

21 Prospective study to quantify the glucose-[¹⁵N, ¹⁵N]-ureide excretion

Six healthy volunteers (3f / 3m) were included and performed one test. On the day of the test, they provided a basal urine sample after which they received a standard pancake test meal (8.4 g proteins, 11.2 g fat and 26.7 g carbohydrates (243.5 kcal)) containing 75 mg lactose-[¹⁵N, ¹⁵N]-ureide. After intake of the test meal, a fractionated 24h urine collection was performed (0-3h, 3-6h 6-9h and 9-24h) to investigate the urinary excretion of glucose-[¹⁵N, ¹⁵N]-ureide in the different urine fractions. 1 Influence of lactulose on the glucose-[¹⁵N, ¹⁵N]-ureide excretion

In a retrospective study, urine and faecal samples obtained from 13 healthy volunteers (6f / 7m) who participated in a study to investigate the effects of the prebiotic lactulose, were analysed. These volunteers had consumed three times a standard pancake test meal labelled with 75 mg lactose-[¹⁵N, ¹⁵N]-ureide; the first time in baseline conditions, the second time together with 10g lactulose and the third time after a 4-week dietary intervention period with lactulose (2x 10g/d). Each time, the volunteers provided a basal urine sample before consumption of the test meal and collected all urine for 48h (0-24h and 24-48h fractions) and stools for 72h.

9

10 Samples

11 All urine was collected in recipients to which neomycin was added for prevention of bacterial growth. 12 After measurement of the volume, samples were taken and stored at -20 °C until analysis. Upon 13 delivery of the faecal samples, all stools collected on the same day were combined, diluted fivefold 14 with sterile pyrogen-free water and homogenized. The homogenate was ultracentrifuged at 25000g 15 during 120 min (MR22i, Jouan, St-Herblain, France) and the supernatans was subsequently filtered 16 through a 0.2-µm syringe filter (Supor Acrodisc 32, Gelman Sciences, Ann Arbor, USA) in order to 17 discard the ultimate faecal rests and the bacteria. The final filtrate was used for determination. 18 Aliquots were frozen at –20°C.

19 For analysis, 960 μ l of urine or faecal extract were prepared according to the standard solution to 20 determine the excretion of glucose-[¹⁵N, ¹⁵N]-ureide and lactose-[¹⁵N, ¹⁵N]-ureide.

21

22 Statistical analysis

Results were expressed as median and interquartile range (IQR). The statistical analysis was performed with SPSS software (SPSS 16.0 for Windows; SPSS Inc., Chicago, IL, USA). Given the low number of subjects in the treatment groups, non-parametric statistical analysis was used. Statistical

- 1 evaluation of the data was performed by applying the Wilcoxon and Mann-Whitney test. The level
- 2 for statistical significance was set at p<0.05.

- ___

1 RESULTS

2 GC-MS analysis

GC-MS analysis of a derivatisation reaction of glucose ureide showed a peak eluting at 11.02 min which was identified as the internal standard and a peak at 15.37 min, identified as glucose ureide. Similarly, lactose ureide was found to elute from the column at 24.85 min. A calibration curve was constructed using dilutions ranging from 0 – 30 mg/l (r^2 =0.9923). The limit of detection was established at 1.25 mg/l. A good interday and intraday reproducibility was found in the analysis of the urine samples (<10% RSD)

9

10 Prospective study to quantify the glucose-[¹⁵N, ¹⁵N]-ureide excretion

Figure 2 shows the glucose-[¹⁵N, ¹⁵N]-ureide excretion in the different urine fractions. Within the first 11 12 3h of ingestion of the marker, a small fraction of the labelled glucose-ureide (i.e. 0.64 % dose glucose-[¹⁵N, ¹⁵N]-ureide (IQR 0.21 – 0.86)) was already excreted in the urine indicating an early 13 14 absorption from the upper small intestine. Urinary excretion reached its maximum level in the 3-6h urine collection (5.45 % dose glucose-[¹⁵N, ¹⁵N]-ureide (IQR 4.89 – 6.25) and decreased in the 6-9h 15 urine collection to 4.03 % dose glucose-[¹⁵N, ¹⁵N]-ureide (IQR 3.74 - 5.46). The label was still 16 17 detectable in the 9-24h urine collection (3.27 % dose glucose-[¹⁵N, ¹⁵N]-ureide (IQR 1.53 – 3.90). The cumulative excretion of ¹⁵N-labelled glucose ureide after 24h amounted 12.91 % dose glucose-[¹⁵N, 18 ¹⁵N]-ureide (IQR 11.40 – 15.30) and is shown in Figure 3. In none of the samples lactose-[¹⁵N, ¹⁵N]-19 20 ureide was detected.

21

22 Influence of lactulose on the glucose-[¹⁵N, ¹⁵N]-ureide excretion

The urinary and faecal excretion of glucose-[¹⁵N, ¹⁵N]-ureide in the three different test situations is represented in Table 1. The individual recovery of glucose-[¹⁵N, ¹⁵N]-ureide over 24h is shown in Figure 4. No statistically significant differences were found in either of the urine fractions. No glucose-[¹⁵N, ¹⁵N]-ureide was found in the 0-24h and 24-48h urine collections in 1 of the volunteers

2 fractions were significantly diluted. In none of the urine samples lactose-[¹⁵ N, ¹⁵ N]-ureid detected. Neither glucose-[¹⁵ N, ¹⁵ N]-ureide nor lactose-[¹⁵ N, ¹⁵ N]-ureide was found in the anal the faecal samples.	1	after short-term administration of lactulose and was probably due to the fact that these urine
3 detected. Neither glucose-[¹⁵ N, ¹⁵ N]-ureide nor lactose-[¹⁵ N, ¹⁵ N]-ureide was found in the analysis 5	2	fractions were significantly diluted. In none of the urine samples lactose-[¹⁵ N, ¹⁵ N]-ureide was
4 the faecal samples. 5	3	detected. Neither glucose-[¹⁵ N, ¹⁵ N]-ureide nor lactose-[¹⁵ N, ¹⁵ N]-ureide was found in the analysis of
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	4	the faecal samples.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	5	
7 8 9 9 10 11 10 11 12 13 14 15 16 17 18 19 20 21 21 22 23 22 23 24 25 26 27	6	
8 9 10 11 11 12 13 14 15 16 16 17 18 19 20 21 21 22 23 24 24 25 25 26 27 27	7	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	8	
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	9	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	10	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	11	
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	12	
14 15 16 17 18 19 20 21 22 23 24 25 26 27	13	
15 16 17 18 19 20 21 22 23 24 25 26 27	14	
16 17 18 19 20 21 22 23 24 25 26 27	15	
17 18 19 20 21 22 23 24 25 26 27	16	
18 19 20 21 22 23 24 25 26 27	17	
19 20 21 22 23 24 25 26 27	18	
20 21 22 23 24 25 26 27	19	
21 22 23 24 25 26 27	20	
22 23 24 25 26 27	21	
23 24 25 26 27	22	
24 25 26 27	23	
25 26 27	24	
	25 26 27	

1 DISCUSSION

The aim of the present study was to develop an analytical procedure using GC-MS analysis to quantify in a prospective study the urinary excretion of glucose-[^{15}N , ^{15}N]-ureide after oral administration of lactose-[^{15}N , ^{15}N]-ureide. The appearance of glucose-[^{15}N , ^{15}N]-ureide in urine is the result of hydrolysis, absorption and urinary filtration of the disaccharide bond in lactose-[^{15}N , ^{15}N]ureide by the brush border enzyme β -galactosidase to release galactose and glucose-[^{15}N , ^{15}N]ureide.

Quantitative evaluation of the urinary glucose-[¹⁵N, ¹⁵N]-ureide excretion in the prospective study 8 9 has indicated that the urinary excretion of ¹⁵N-labelled substrate reaches its maximum excretion 10 level in the 3-6h urine collection, which is assumed to represent the *in vivo* absorption from the small 11 intestine. We determined previously the orocaecal transit time, i.e. the time to reach the colon, of 12 the standard test meal used in the present study and found it to approximate 360 min (Verbeke et 13 al., 2005). Thus, the time for appearance of the label in urine within the first 6 hours, after administration is due to hydrolysis of lactose-[¹⁵N, ¹⁵N]-ureide to glucose-[¹⁵N, ¹⁵N]-ureide and 14 15 galactose by the enzyme β -galactosidase which is located in the brush border of the small intestine, 16 subsequent absorption and distribution in the body, followed by renal excretion. However, also in 17 the 6-9h and 9-24h urine collection, a small amount of ¹⁵N-labelled glucose ureide was recovered, suggesting that a certain percentage of glucose-[¹⁵N, ¹⁵N]-ureide might remain in circulation in the 18 19 body before being excreted. As a consequence, the urinary ¹⁵N content recovered in those urine 20 collections does not all originates from the ¹⁵N-labelled urea formed after bacterial degradation of the test substrate, but a minor fraction of the ¹⁵N can be attributed to ¹⁵N-labelled glucose ureide 21 22 excretion.

23 Since lactose-[¹⁵N, ¹⁵N]-ureide has been proposed as a biomarker to evaluate the influence of pre-24 and/or probiotics on the colonic fate of urea-nitrogen, it was investigated whether the metabolism of 25 lactose-[¹⁵N, ¹⁵N]-ureide was influenced by administration of the pre- and/or probiotics. For this 1 purpose, urine and faecal samples which were already available from a dietary intervention study

2 with lactulose have been re-analysed in the second part of the study (De Preter *et al.*, 2006).

It is unlikely that probiotics would influence the lactose-[¹⁵N, ¹⁵N]-ureide metabolism, but it is well 3 4 known that certain non-digestible carbohydrates may influence transit and digestion in the 5 gastrointestinal tract. Lactulose has previously been shown to significantly delay gastric emptying by 6 increasing viscosity of the gut contents and to accelerate small intestinal transit (Diggory et al., 1985; Holgate et al., 1983; Wutzke et al., 1997). As a consequence, the absorption of glucose-[¹⁵N, ¹⁵N]-7 8 ureide could be decreased due to either the shorter time available for absorption or to a decreased 9 hydrolysis of lactose-[¹⁵N, ¹⁵N]-ureide to glucose-[¹⁵N, ¹⁵N]-ureide. However, in the present study the mean glucose-[¹⁵N, ¹⁵N]-ureide absorption and urinary excretion was not influenced by the presence 10 of lactulose in the test meal, although the individual results of the urinary glucose-[¹⁵N, ¹⁵N]-ureide 11 12 excretion are more variable compared to baseline and long-term lactulose administration. In five 13 individuals, inclusion of lactulose in the test meal resulted in less glucose-[¹⁵N, ¹⁵N]-ureide excretion suggesting that the absorption of glucose-[¹⁵N, ¹⁵N]-ureide was decreased due to the shorter time 14 available for absorption or to a decreased hydrolysis of lactose-[¹⁵N, ¹⁵N]-ureide to glucose-[¹⁵N, ¹⁵N]-15 ureide, whereas in four individuals more glucose-[¹⁵N, ¹⁵N]-ureide was recovered. 16

17 Long-term dietary intake of lactulose on the other hand, is known to cause changes in the metabolic 18 activity and the relative composition of the colonic microbiota. Acidification of colonic luminal 19 environment has probably no effect on the absorption of glucose-[¹⁵N, ¹⁵N]-ureide in the small 20 intestine, but could hypothetically influence the bacterial hydrolytic processes in the colon, resulting 21 in an incomplete hydrolysis of ¹⁵N-labelled glucose ureide. As a consequence, unhydrolysed glucose-22 [¹⁵N, ¹⁵N]-ureide might be detected in the faecal samples. However, analysis of faecal samples has indicated that nor glucose-[¹⁵N, ¹⁵N]-ureide neither lactose-[¹⁵N, ¹⁵N]-ureide appeared in the faeces. 23 24 The results of both studies have indicated that meanly $13.16 \pm 2.19 \%$ of glucose-[¹⁵N, ¹⁵N]-ureide is recovered in urine after administration of ¹⁵N-labelled lactose ureide and remains quite constant 25

26 within the different individuals and even between the different test circumstances. This percentage

dose recovered in urine was in line with the estimated ¹³C-recovery after oral administration of
 lactose-[¹³C]-ureide, as determined by Morrison *et al.* (Morrison *et al.*, 2003).

In Table 2, the original (total) ¹⁵N data and corrected ¹⁵N data are shown. For each volunteer, the 3 original ¹⁵N data was corrected with the actual individual percentage glucose-[¹⁵N, ¹⁵N]-ureide 4 recovered. As was expected, the correction for the presence of glucose-[¹⁵N, ¹⁵N]-ureide did not have 5 6 a significant influence on the previously observed effects. Since it would be very time-consuming and labour intensive to measure in each urine sample the amount of glucose-[¹⁵N, ¹⁵N]-ureide besides the 7 8 ¹⁵N-enrichment and because of the small variability in amounts of retrieved glucose-[¹⁵N, ¹⁵N]-ureide, 9 we suggest not to correct the data for total ¹⁵N excretion for the presence of glucose-[¹⁵N, ¹⁵N]-10 ureide.

In conclusion, the results obtained in the present study have indicated that the percentage dose glucose-[¹⁵N, ¹⁵N]-ureide recovered in urine is rather constant and not influenced by the presence of lactulose.

- 14
- •

15

- 16
- 17
- 18

19

- 20
- -
- 21
- 22

23 Acknowledgements

24 VDP is a postdoctoral fellow of the Fund for Scientific Research – Flanders (F.W.O. Vlaanderen,

25 Belgium).

26 None of the authors had any financial or personal conflict of interest.

27

28

1	Figure Legends
2	
3	
4	Figure 1: Schematic representation of the metabolism of lactose-[¹⁵ N, ¹⁵ N]-ureide
5	
6	Figure 2: Appearance of glucose-[¹⁵ N, ¹⁵ N]-ureide in the different urine collections after oral
7	administration of lactose-[¹⁵ N, ¹⁵ N]-ureide (horizontal bar = median)
8	
9	Figure 3: Cumulative % dose glucose-[¹⁵ N, ¹⁵ N]-ureide recovered in 24h (horizontal bar = median)
10	
11	Figure 4 : Individual urinary excretion pattern of glucose-[¹⁵ N, ¹⁵ N]-ureide over 24h before, during and
12	after lactulose intake
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	

Reference List

- De Preter V, Geboes K, Verbrugghe K, De Vuyst L, Vanhoutte T, Huys G, Swings J, Pot B, and Verbeke K (2004). The in vivo use of the stable isotope-labelled biomarkers lactose-[N-15]ureide and [H-2(4)]tyrosine to assess the effects of pro- and prebiotics on the intestinal flora of healthy human volunteers. *Br.J.Nutr.* 92, 439-446.
- De Preter V, Vanhoutte T, Huys G, Swings J, Rutgeerts P, and Verbeke K (2006). Effect of lactulose and Saccharomyces boulardii administration on the colonic urea-nitrogen metabolism and the bifidobacteria concentration in healthy human subjects. *Aliment.Pharmacol.Ther.* 23, 963-974.
- 3. Diggory RT and Cuschieri A (1985). The effect of dose and osmolality of lactulose on the oralcaecal transit time determined by the hydrogen breath test and the reproducibility of the test in normal subjects. *Ann.Clin.Res.* **17**, 331-333.
- 4. Geboes KP, De Preter V, Luypaerts A, Bammens B, Evenepoel P, Ghoos Y, Rutgeerts P, and Verbeke K (2005). Validation of lactose[N-15,N-15]ureide as a tool to study colonic nitrogen metabolism. *Am.J.Physiol.-Gastroint.Liver Physiol.* **288**, G994-G999.
- 5. Heine WE, Berthold HK, and Klein PD (1995). A novel stable isotope breath test: 13C-labeled glycosyl ureides used as noninvasive markers of intestinal transit time. *Am.J.Gastroenterol.* **90**, 93-98.
- 6. Hofmann E (1931). Ueber den Abbau von glucoseureid durch Bakterien. *Biochem.Zeitschr.* **243**, 416-422.
- Holgate AM and Read NW (1983). Relationship Between Small Bowel Transit-Time and Absorption of A Solid Meal - Influence of Metoclopramide, Magnesium-Sulfate, and Lactulose. Digestive Diseases and Sciences 28, 812-819.
- Jackson AA, Bundy R, Hounslow A, Murphy JL, and Wootton SA (1999). Metabolism of lactose-[13C]ureide and lactose-[15N,15N]ureide in normal adults consuming a diet marginally adequate in protein. *Clin.Sci.(Lond)* 97, 547-555.
- 9. Jackson AA, Gibson NR, Bundy R, Hounslow A, Millward DJ, and Wootton SA (2004). Transfer of (15)N from oral lactose-ureide to lysine in normal adults. *Int.J Food Sci.Nutr.* **55**, 455-462.
- 10. Morrison DJ, Dodson B, Preston T, and Weaver LT (2001). Rapid quality control analysis of (13)C-enriched substrate synthesis by isotope ratio mass spectrometry. *Rapid Commun.Mass Spectrom.* **15**, 1279-1282.
- 11. Morrison DJ, Dodson B, Preston T, and Weaver LT (2003). Gastrointestinal handling of glycosyl [13C]ureides. *Eur.J. Clin.Nutr.* **57**, 1017-1024.
- 12. Ruemmele FM, Heine WE, Keller KM, and Lentze MJ (1997). Metabolism of glycosyl ureides by human intestinal brush border enzymes. *Biochim.Biophys.Acta* **1336**, 275-280.
- 13. Schoorl MN (1903). Les ureides (carbamides) des sucres. Rev. Trav. Chim. 22, 1-

- Verbeke K, De Preter V, Geboes K, Daems T, van den Mooter G, Evenepoel P, and Rutgeerts P (2005). In vivo evaluation of a colonic delivery system using isotope techniques. *Aliment.Pharmacol.Ther.* **21**, 187-194.
- 15. Wutzke KD, Heine WE, Plath C, Leitzmann P, Radke M, Mohr C, Richter I, Gulzow HU, and Hobusch D (1997). Evaluation of oro-coecal transit time: a comparison of the lactose-[13C, 15N]ureide 1. *Eur.J.Clin.Nutr.* **51**, 11-19.

	Col	lection	Baseline	Lactulose (ST)	Lactulose (LT)	p-value	
	Urine	0-24h	12.91	12.36	13.17	NS	
0			(IQR 11.26-14.15)	(IQR 10.35-13.99)	(IQR 11.62-14.80)		
dose GUR re		24-48h	4.70*	ND	4.06*	NS	
%	Faeces	72h	ND	ND	ND	NS	

Table 1: Influence of short-term (ST) and long-term (LT) lactulose administration on the urinary andfaecal excretion of glucose-[¹⁵N, ¹⁵N]-ureide (GUR) (n=13)

* In 1 volunteer, GUR was still present in the 24-48h urine fraction.

		Baseline	ST Lactulose	p-value	LT Lactulose	p-value
	Before	52.62	29.27		43.18	
e/48h	correction	(IQR 39.48-56.06)	(IQR 20.96-34.60)	p=0.002	(IQR 32.83-49.23)	p=0.013
c (%dos	Δfter	37 95	18 40		29.26	
l re	Anter	57.55	10.10	n<0.001	23.20	n-0.013
Cum ¹⁵ N	correction	(IQR 25.25-44.29)	(IQR 5.39-21.42)	p<0.001	(IQR 19.77-34.60)	ρ-0.015

 Table 2: Correction of the urinary ¹⁵N-data (% dose/48h) for the presence of glucose-[¹⁵N, ¹⁵N]-ureide

18

before and after short-term (ST) and long-term (LT) lactulose intervention

