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Abstract

Cone-Beam Computerized Tomography (CBCT) and Positron Emission To-
mography (PET) are two complementary medical imaging modalities providing
respectively anatomic and metabolic information of a patient. In the context
of public health, one must address the problem of dose reduction of the poten-
tially harmful quantities related to each exam protocol : X-rays for CBCT and
radiotracer for PET. Two demonstrators based on a technological breakthrough
(acquisition devices work in photon-counting mode) have been developed and we
investigate in this paper the two related tomographic reconstruction problems. We
formulate separately the CBCT and the PET problems in two general frameworks
that encompass the physics of the acquisition devices and the specific discretiza-
tion of the object to reconstruct. These objects may be observed from a limited
number of angles of views and we take into account the specificity of the Poisson
noise. We propose various fast numerical schemes based on proximal methods to
compute the solution of each problem. In particular, we show that primal-dual
approaches are well suited in the PET case when considering non differentiable
regularizations such as Total Variation. Experiments on numerical simulations
and real data are in favor of the proposed algorithms when compared with the
well-established methods.
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1 Introduction

Cone Beam Computerized Tomography (CBCT) and Positron Emission Tomography
(PET) scans are medical imaging devices that provide respectively anatomical and
metabolic complementary information about the patient.

From the point of view of modelization they are key-examples of ill-posed inverse
problems. Indeed the observations in both cases are obtained by a given number of
projections of the original data corrupted by noise. The projection operator is generally
highly ill-conditionned and non invertible. The noise takes into account additive dark
noise (gaussian noise), from the electronic of the measurement device, and Poisson noise
from the counting process to get the measurement.

Moreover on the one hand CBCT scans use the intrinsic physical property of bi-
ological tissues, since they absorb X rays. One would like to lower the dose delivery
necessary to get an image, and this could be done by improving the detection efficiency
of the scanner. On the other hand a PET scan is based on the principle of injection
of active radiotracer to the patient and one would like also to reduce this dose. Re-
mark furthermore that the informations provided by a CBCT scan are needed in the
reconstruction of data from a PET scan (see explanations below).

This is why the CCPM in Marseille, France, developed recently a new prototype
of small animal scanner ClearPET/XPAD. It is designed to record images for both
modalities simultaneously. Moreover it includes the use of a new generation of detectors
which are not affected by dark noise, and thus lead to model the measurements with
pure Poisson noise.

Taking into account this new setting, the goal of this work is to apply reconstruc-
tion algorithms both in CBCT and TEP cases for pure Poisson noise. With this model
building numerical algorithms to reconstruct the data can be anyway challenging. Re-
cent developments in the field of convex optimization allow to use proximal methods,
and in particular primal-dual algorithms [11], which solve in a very accurate way these
inverse problems in tomography. To our knowledge some of them were never applied to
tomography. We will test their robustness when increasing the noise and lowering the
number of projections used to reconstruct.

The contributions of the papers are the following:

• We propose a complete analysis of both a new TEP and a new CBCT scanner.
Due to their new technology (use of hybrid pixels, as detailed in section 2), this
lead us to some new functionals to minimize.

• By making use of recent developments in convex optimization, we can minimize
the functional we propose without the need to smooth them (as far as we know,
this is new in the case of the TEP functional involving a logarithm term).

• We present extensive numerical results, so that the reader can judge of the effi-
ciency of the proposed methods.

• Since we have prototypes of the new scanners, we can test the modeling and
the algorithms introduced in the paper on real datas (and not just on synthetic
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examples). Our analysis of the scanners really starts from the modeling of the
physics of the acquisition device, and ends at the testing on real datas.

The outline of this paper is the following. In Section 2 we describe the physics and
explain the mathematical modeling in both cases. In Section 3 we review quickly the
state of the art in inverse problems related to tomography. From Section 4 to Section 6
we explain recent developments about proximal, and especially primal-dual algorithms
in the convex optimization community. We detail the algorithms we are going to use.
In section 7, we present numerical results on simulations and real datas.

2 Physics of CBCT and PET imaging

2.1 Cone-Beam Computerized Tomography

2.1.1 Introduction

Computerized Tomography (CT) is a medical imaging modality that provides anatomi-
cal information on contrast images. A CT-scan basically consists in a X-ray source and
a X-ray camera with the imaged object placed in between. For a given position of the
source and the detector relative to the object, an image is acquired and it consists in a
projection along the line-of-sight defined by the source-detector direction. A full set of
acquisitions is then obtained by stacking successive images taken for different positions
during the rotation of the block source-detector around the object. The data thus ac-
quired, that are the input of the tomographic reconstruction, express the value of the
projection as a function of the projection angle, and it is called a sinogram.

The function to reconstruct in the case of the CT-scan is the absorption coefficient,
denoted by µ, of the different tissues that constitute the object. This coefficient is
energy-dependent and its values are tabulated (see figure 1 which gives some examples).
For instance, the main organs of the human body are made of a mixture of tissues, and
each organ is characterized by a single coefficient µ.

Recent scanners make use of cone beam tomography rather than fan beam tomog-
raphy. Indeed a Cone Beam CT scan has a cone shaped beam which images the whole
body at each shot and rotates around the subject (see figure 2).

We will describe in the following the general model of acquisition of a CT-scan.

2.1.2 The PIXSCAN II demonstrator

The PIXSCAN II is a small animal Cone-Beam Computerized Tomography (CBCT)
demonstrator based on the prototype X-ray hybrid pixel camera XPAD3 developed at
CPPM [43, 9]. Hybrid pixel detectors were developed originally for particle tracking in
high energy physics experiments. They are actually very promising X-ray detectors for
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Figure 1: Several mass attenuation coefficients curves as a function of energy. Notice
that the absorption coefficient is decreasing with the energy excepted for Iodine and
Barium, that are characterized by a strong discontinuity due to their intrinsic K-edge
energy.
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Figure 2: Sketch of a classical Cone-Beam Computerized Tomography (CBCT) Scan.
The X-ray source delivers a cone-beam and rotates around the patient lying on a bed.
The X-ray detectors are located on a ring all around the patient.
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material science and micro-computed tomography [16]. They are based on the silicon
hybrid pixel tracker developed for the Atlas collaboration at CERN. The use of hybrid
pixels is expected to help to improve the contrast for soft tissues and to reduce both the
scan duration and the dose absorbed by the animal.

Hybrid pixel detectors are used to count X-ray photons above a given energy thresh-
old. The XPAD3 camera is composed by 130 µm2 pixels with a readout every micro-
second without dead time. The readout is independent between pixels. There is no
charge amplification in the readout process, so that the XPAD3 camera is not subject
to dark noise like usual charge integration detectors. Notice that dark noise that usually
affects any CCD-like integration charge detector is classically modeled by an additive
gaussian noise.

Thus, hybrid pixel detectors allow acquisition of low statistics data with a pure Pois-
son noise due to unavoidable photon noise. We therefore expect that photon counting
CBCT will permit to lower drastically the exposition dose.

Let us now quickly describe the PIXSCAN II microCT system, displayed on Figure
3. It is basically composed of three blocks which are :

1. The first block contains a Oxford Instruments X-ray source which has a W
target and a 13 to 40 µm focal spot size, and it can be operated up to 90 kV and
2 mA. A filter wheel is placed in front of the point of emission in order to modify
the spectrum of the source according to the filter used. This source delivers a
cone-beam characterized by a 33 degrees apex angle.

2. The second block consists in a rotating platform placed between the X-ray
block and the detector block. The animal that is imaged stands on the platform
(fixed to an animal holder), while the platform rotates step by step (typically 360
deg., 1deg/step). Three additional motors allow for translation in the three main
directions.

3. The third block supports the X-ray hybrid pixels XPAD3/Si camera. The de-
tectors implement a 500 µm thick silicon sensors and it is made of 8 barrettes of
7 chips each, assembled in a tile geometry. Each chip contains 9600 hybrid pixels
(80×120) so that the full detector contains a half million 130x130 µm2 pixels. The
full camera size is 125x75 mm

2.

2.1.3 General and monochromatic acquisition models

Let us modelize the reconstruction of images from CBCT scan.

The probability p that a photon at a given energy E is not absorbed by the material
along a line-of-sight (los) L is expressed thanks to the Beer-Lambert law by :

p = exp

(

−
∫

L

µ(l, E)dl

)

. (1)
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Figure 3: Picture of the PIXSCAN II scanner with the three distinct blocks. From left
to right : the XPAD3 detector block, the imaged object block, and the source block.

This probability only depends on the µ coefficient that reflects anatomical properties
of the human body.

In the general case, let us define an object by its absorption coefficient µ = µ(r;E),
where r stands for a position vector in R

3, and yL by the measurement of a CT-scanner.

The measurement is made counting all the photons that have not been absorbed by
the imaged object, thus by integrating all the µ coefficients along the los L and for all
energies E according to the Beer-Lambert law in equation 1 :

yL =

∫ ∞

0

zL(E) exp

(

−
∫

L

µ(l, E)dl

)

dE (2)

where zL(E) = I(E) · S(E) with :

• S(E) : the detector efficiency at energy E.

• I(E) : the number of photons emitted by the source at energy E along the los L.

In this paper, we will exclusively focus on a monochromatic model, i.e. we assume
that the X-ray source delivers a monochromatic beam at a given energy E0, which implies
the following equations:

zL(E) = zL(E0) · δ(E − E0) (3)

The acquisition model is then simplified:
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yL = zL(E0) exp

(

−
∫

L

µ(l, E0)dl

)

(4)

2.1.4 Discretization of the problem

Let us consider the discrete framework that is relative to the real-world aspects : objects
to reconstruct are discretized into voxels and CT cameras are pixellized.

First, if a CT camera contains N pixels (indexed by n = 1, . . . N), a tomographic set
of measurements y is obtained with Θ angles of projection (indexed by θ = 1, . . .Θ) so
that y ∈ R

J1 is indexed by j = 1, . . . , J1 with J1 = NΘ.
Secondly, the continuous object µ to reconstruct is discretized according to a decom-

position on a finite dimension basis {bi}i∈I1 such that µ ≈
∑

i∈I1
µibi. The choice of

{bi}i∈I1 is critical and may be done by minimizing the approximation error or by offering
an adapted representation to the objects to reconstruct (see [26] for more results).

However, for numerical reasons, the family function of voxels is most of the time
chosen by the users.

The object to reconstruct is then a vector µ ∈ R
I1 indexed by i = 1, . . . , I1.

Equation (4) then becomes :

yj = zj(E0) exp

(

−
I1
∑

i=1

aijµi(E0)

)

(5)

where zj(E0) represents the number of photons emitted by the source into the solid
angle defined by the pixel j seen from the source point. In the following, we will write
zj(E0) = zj for simplicity. In this problem, (ai,j)I1×J1 , (zj)I1 , (yj)J1 and the unknown
vector (µi)I1 are nonnegative constants. More precisely, aij = 0 when the ray j does not
intersect the voxel i, and 0 < aij ≤ 1 when the ray j intersect the voxel i, depending
the definition of the linear operator A = (aij)I1×J1 ∈ M(RI1 ,RJ1), called the system
matrix. This operator A is a numerical implementation of the operators of projection
that fully describes the geometry of the acquisition system. The coefficient ai,j of A
typically characterizes the probability that any event occurring on a photon in pixel i
will be detected on pixel j.

2.1.5 Incorporating noise

We model the measurements as independently distributed Poisson random variables and
we can assume the general model of measurements :

yj ∼ P
(

zj exp
(

− [Aµ]j

)

+ ri

)

(6)

where P(λ) describes a Poisson distribution with λ parameter.
Additive classical detector read-out noise can be accounted for in several ways. Since

new generation photon-counting detectors are not affected by dark noise classically mod-
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eled by additive Gaussian noise, there is no additive classical detector read-out noise and
we have ∀i ri = 0:

yj ∼ P
(

zj exp
(

− [Aµ]j

))

. (7)

We recall that the Poisson likelihood reads:

P (Y = y|X = x) =
xye−x

y!
. (8)

From Bayes rule, we then obtain that

P (µ|y) = P (y|µ)P (µ)

P (y)
(9)

so that by keeping the µ-dependent part, we obtain that the negative log-likelihood
writes for our photon-counting detectors:

LCT (µ) = −
J1
∑

j=1

{yj log
(

zj exp
(

− [Aµ]j

))

−
(

zj exp
(

− [Aµ]j

))

} (10)

Since we want to minimize this negative log likelihood we can work with

LCT (µ) =

J1
∑

j=1

{yj [Aµ]j + zj exp
(

− [Aµ]j

)

} (11)

This problem is ill-posed, and we add a regularization term J(µ) (described later)
to the data fidelity term LCT . Thus we consider the following problem:

µ̂ = argmin
µ≥0

LCT (µ) + λJ(µ). (12)

In this problem, λ is a regularization parameter that makes the balance between the data-
fidelity term and J(µ) which is a cost function that introduces some apriori information
on the object to reconstruct.

2.2 Positron Emission Tomography

2.2.1 Introduction

Unlike the CBCT, Positron Emission Tomography (PET) is a medical imaging modality
that provides a measurement of the metabolic activity of an organ. The exam consists in
injecting to the patient and further during the exam a radiotracer attached to a molecule,
for instance an analog of glucose like the [18]-FDG, that will be absorbed preferentially
by some organs depending on their function.

The measurements made in PET modality are the results of a radioactive decay that
emits a positron. This positron will annihilate with an electron after a very short time
of flight in the human body (the mean free path is around 1mm). During the positron-
electron annihilation, two gamma rays of 511keV are emitted in opposite directions, and
several rings of detectors around the patient are detecting these gamma rays.
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2.2.2 The ClearPET/XPAD demonstrator

The ClearPET/XPAD small animal PET/CT scanner design is based on the combina-
tion of the ClearPET scanner [36], built at EPFL, Lausanne within the Crystal Clear Col-
laboration with the PIXSCAN microCT prototype, built at CPPM, Marseille (see Fig-
ure 4). The ClearPET main characteristics are its detectors constituted of LSO/LuYAP
phoswich crystal matrices read-out by multi-anode photomultiplier tubes and its partial
ring geometry, which allows for inserting an X-ray tube and the hybrid pixel camera
which together constitute a micro-CT scanner [38, 47]. Both modalities can therefore
share the same field of view.

Figure 4: Left: sketch of the ClearPET/XPAD. One can see the partial ring detectors
(in green) dedicated to the PET scan, and the X-ray source and the XPAD3 camera
for the CT scan that form a line and fill the gap in the partial ring of PET detectors.
Right: picture of the ClearPET/XPAD.

The positron tomograph is a modified version of the ClearPET camera built in Lau-
sanne. Indeed the new prototype is built with a new partial ring geometry and it uses
an upgrade of the data acquisition software. A 150mm lead shielding has been added
in order to protect the PET modules against scattered X-rays. The PET partial ring
geometry consists of 3 rings of 7 detector modules as shown. This geometry suppresses
axial gaps between rings and allows acquisition of a complete set of 3D sinograms while
optimizing the sensitivity. This configuration has a 55 mm axial field of view and 112
mm transverse field of view. The combined PET/CT system inserts modification of
both scans to use a better arrangement of the detectors and to allow for the integration
of the micro-CT elements on the same rotating gantry. It has been used to demonstrate
the feasibility of simultaneous bi-modal acquisitions [33, 42].
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2.2.3 Acquisition model

Let us define the concentration of activity v = v(r) that we want to reconstruct, i.e.
the concentration of radioactive decay. We also define wL as a measurement acquired
by the sensors of the PET-scan along a line of sight L, i.e. the number of gamma rays
detected.

The absorption coefficient µ at 511keV of the material that are lying along the los
is taken into account to model the possible absorption of photons emitted at an energy
of 511keV. For the PET reconstruction problem, we will consider that µ is known. We
obtain the following acquisition model in a continuous framework :

wL =

∫

L

v(l) exp (−µ(l, E511))dl, (13)

2.2.4 Discretization of the problem

The discretization of the PET acquisition can be deduced from Equation (13) by as-
suming that the concentration activity is discretized into a number of voxels equal to
I2, so that the vector to reconstruct is v ∈ R

I2 . In the same way as for the CT-scan,
we assume that J2 measurements, indexed by j = 1, . . . , J2, are acquired by Θ cameras
uniformly located in angles around the imaged object, and each composed of N pixels
so that J2 = NΘ. We finally obtain :

wj =

I2
∑

i=1

cijvi exp (−cijµi(E511)), (14)

where the matrix C = (cij)I2×J2 ∈ M(RI2 ,RJ2) incorporates the parallel-beam geometry
of the acquisition, similarly to the system matrix A described for the CT-scan problem.
Depending on the numerical implementation of the projection and backprojection, the
coefficient cij may typically describe the length of intersection between the voxel i and
the los joining the source of the gamma emission to the pixel j. If we define the final
system matrix B for the PET-scan problem that incorporates the µ(E511) correction by
∀i, j, bij = cij exp (−cijµij(E511)), we deduce the final discrete acquisition framework :

wj =

I2
∑

i=1

bijvi, (15)

2.2.5 Incorporating noise

As the PET-scan measurements are a counting process, we model the data acquisition
of PET-Scan in a similar way as the CBCT problem by incorporating a pure Poisson
noise :

wj ∼ P([Bv]j), (16)
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where v ∈ R
I2 denotes the radioactive concentration vector to reconstruct, w ∈ R

J2 the
vector of measurements and B the system matrix which describes the full properties of
the PET-Scan (J2 < I2).

The negative log-likelihood that we want to minimize then reads :

LPET (v) =

J2
∑

j=1

{

[Bv]j − wj logǫ([Bv]j)
}

(17)

with the notation: logǫ(x) = log(x+ ǫ). Since this problem is also ill-posed, we add
a regularization term J to the data fidelity term L and we finally consider the following
PET-reconstruction problem :

v̂ = argmin
v≥0

LPET (v) + λJ(v) (18)

3 State of the art

The two problems we address are actually different, but algorithms to solve them come
from the same seminal family.

Some reconstruction algorithms start by applying a variance-stabilizing transform
such that the Anscombe’s transform [3] or the Haar-Fisz transform [24] to go closer to
the hypothesis of gaussian noise [19] and [25]. Since for small values of the parameter in
the Poisson noise, these transforms do not yield exactly gaussian noise, in the following,
we will keep the hypothesis of Poisson noise and we will deal directly with the data
fidelity terms (11) and (17) derived from the physic of the problem.

In both of the problems of CBCT and PET a Radon transform is involved. Thus a
set of method deals with the use of filtered back projection (FBP) to recover the un-
known datas [22].
The idea of filtered backprojection is to use the Fourier slice theorem and the defini-
tion of the dual Radon transform (the so called ”backprojection”) to get an inversion
formula. This amounts in 2 dimensions to filter the Radon transform of the data by
a ramp filter and to backproject the data (see [28] for more details and mathematical
proofs). The ramp filter has the property to filter out low frequencies and to emphasize
high frequencies, which let recover well sharp edges but in the same time accentue the
high frequencies of the noise.
To deal with this issue, this is a classical method to use filters with some cut off frequency.
In [37], the authors focus in the setting of PET on this specific point. They propose to
solve it by minimization of a least square functional, penalized with a quadratic term
related to the cut off frequency of the filter. This amounts in their case to solve a linear
system. Their algorithm yields low pass filtered solutions.
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Another set of methods is based on the Expectation-Maximization algorithm [17],
the so called EM or ML-EM algorithm (see [49] for PET and [35] for both CT and
PET). This iterative algorithm seeks the maximum of the log likelihood function. Its
main drawback is its numerical cost. Furthermore, since the problem is anyway ill posed,
the estimation is known to be unstable even if the algorithm garantees that it will al-
ways satisfy positivity constraints. One often prefers to stop iterations before reaching
convergence in order to get an acceptable result. To improve and stabilize convergence,
works focus on acceleration procedures and on penalizing the data fidelity terms with
an additional term.
Following the approach of De Pierro [44], Fessler and all [21] develop an algorithm for
the PET problem using quadratic surrogates functions to compute the minimum of the
-log likelihood penalized by a quadratic constraint. Iterations are accelerated by using
Ordered Subsets algorithms [30], or the so called block iterative-incremental gradient
methods. Unfortunately these algorithms may cycle and one needs to build relaxed ver-
sions or use surrogates functions to insure convergence [1].
Among regularizations Huber regularization [31] is sometimes preferred [18] since it is
differentiable. Popular is also the median root prior, which leads generally to modified
EM iterations [2] but, written as a penalization term added to the data fidelity term, is
non convex.
Total variation (TV) as a regularization has the main advantage to preserve well edges
but leads to a convex non differentiable penalization term, which is challenging from
the point of view of algorithms and convergence proofs. It has been used in the context
of the CT problem changing the non quadratic log likelihood into a quadratic one [50].
This approximation is actually plausible as soon as the approximation of the Poisson’s
noise by gaussian noise is feasible. Making use of quadratic surrogates functions together
with TV penalization or also ℓ1 regularization (ℓ1), the authors in [27] develop algorithms
which are actually very close to proximal algorithms developed in convex optimization.
They take ε > 0 in the data fidelity term (17) in order to make it differentiable.

During the last decade the community of convex optimization improved significantly
the performances of algorithms for optimization of the sum of eventually non differen-
tiable functions [13], [14], [40], [11].

The proximal operator [32] is one of the key tool in these works to derive convergent
algorithms in the case where one of the function is differentiable. The forward-backward
splitting algorithm [14] focus on the minimization of the sum of a convex differentiable
function f ◦ A + g with f satisfying a L-Lipschitz continuous gradient, A a linear op-
erator and a convex eventually non smooth function g. This algorithm was used in the
context of image deconvolution under a Poisson noise when a Anscombe’s transform is
applied in [19]. In [23] the authors study the Alternative Direction Method of Multipliers
(ADMM) described in the setting of Poisson noise, a method which doesn’t require any
differentiability of f or g.
The algorithm PPXA which deals with the sum of possibly more than 2 functions (the
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functions may even be non differentiable) was applied in the setting of dynamical PET
[46], [45]. Mathematical proofs insure convergence but each iteration requires several
steps.
FISTA is an acceleration procedure for non constraint algorithms [5], and in the special
case of the TV functional and ℓ1, additional constraints such as the positivity of the
solution can be addressed [4].
The choice of the parameter λ in the regularization term was studied in [6] for data
fidelity terms issued from a Poisson noise.
In [13] an algorithm which belongs to primal-dual methods is described since primal and
dual variables are successively computed in the algorithm. Then recently in [7] the au-
thors developed an algorithm using also a primal dual scheme to miminize a data fidelity
term based on Poisson noisy data penalized with TV. They apply it to denoising and
deblurring problems in images. A new algorithm [11] was presented in order to minimize
the sum of two convex functions without additional assumptions on their regularity but
some others on the Legendre-Frechel transform of one of the function. It turns out that
this setting fits perfectly with the goal of minimizing the -log likelihood penalized by
non differentiable regularizations either in the case of the PET problem or in the one
of the CT. In all these works theoretical convergence to the unique solution as well as
numerical performances are adressed.

In the following we will present several algorithms to minimize the -log likelihood pe-
nalized by the TV and l1 norm. We will compare their performance with well established
algorithms.

4 Numerical algorithms

Let X and Y be two finite-dimensional real vector spaces embedded with an inner
product 〈., .〉 and the associated norm ‖.‖ =

√

〈., .〉.

4.1 Discrete setting

We take here the same notations as in [10]. The image is a two dimensional vector of
size N ×N .

We denote by X the Euclidean space IRN×N , and Y = X ×X. The space X will be
endowed with the inner product 〈u, v〉 =∑

1≤i,j≤N ui,jvi,j and the norm ‖u‖ =
√

〈u, u〉.
We introduce a discrete version of the gradient operator. If u ∈ X, the gradient ∇u

is a vector in Y given by: (∇u)i,j = ((∇u)1i,j, (∇u)2i,j). with

(∇u)1i,j =

{

ui+1,j − ui,j if i < N
0 if i = N

(19)

and

(∇u)2i,j =

{

ui,j+1 − ui,j if j < N
0 if j = N

(20)
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We also introduce a discrete version of the divergence operator. We define it by
analogy with the continuous setting by div = −∇∗ where ∇∗ is the adjoint of ∇: that
is, for every p ∈ Y and u ∈ X, (−divp, u)X = (p,∇u)Y . It is easy to check that:

(div(p))i,j =







p1i,j − p1i−1,j if 1 < i < N
p1i,j if i=1
−p1i−1,j if i=N

+







p2i,j − p2i,j−1 if 1 < j < N
p2i,j if j=1
−p2i,j−1 if j=N

(21)

We can define a discrete version of the Laplacian operator by setting ∆u = div(∇u)
if u ∈ X.

4.2 Regularization choice

In this paper, we will consider the following regularization operators:

• The discrete total variation of u is then defined by:

JTV (u) =
∑

1≤i,j≤N

|(∇u)i,j| (22)

• A regularized version of the total variation:

Jreg
TV (u) = 〈

√

α2 + |∇u|2, 1〉 =
∑

1≤i,j≤N

√

α2 + |(∇u)i,j|2 (23)

• A sparsity-inducing norm on a frame expansion (wavelets, curvelets, . . . ):

Jl1,ϕ(u) =
∑

λ∈Λ

|〈u, ϕλ〉| = ‖Rϕ(u)‖l1 (24)

where {ϕλ}λ∈Λ is a tight frame, i.e. a family of elements of X such that

∀u ∈ X, u =
∑

λ∈Λ

〈u, ϕλ〉ϕλ & ‖u‖2 =
∑

1≤i,j≤N

|ui,j|2 =
∑

λ∈Λ

|〈u, ϕλ〉|2. (25)

and Rϕ is the frame analysis operator: u ∈ X 7→ Rϕ(u) = {〈u, ϕλ〉}λ∈Λ ∈ l2(R).
Frames are a generalization of orthornormal bases that include unions of several
orthonormal bases and other redondant systems.

Sparsity-inducing norms on frames such as wavelet frames or curvelets allow to
recover efficiently images that have sharp edges and thus are widely used in image
processing.
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4.3 Forward-backward splitting and FISTA

4.3.1 Proximal operator

We will use some mathematical concepts coming from convex analysis and refer the
reader to [48] for a complete introduction to this subject.

Let F be a convex proper function. We recall that the subgradient of F , which is
denoted by ∂F , is defined by

∂F (x) = {p ∈ X such that F (y) ≥ F (x) + 〈p, y − x〉 ∀y} (26)

One can show (see [12] for more details, or [32] for a complete proof) that for any
h > 0 the following problem always has a unique solution :

min
y

hF (y) +
1

2
‖x− y‖2 (27)

This solution is given by:

y = (I + h∂F )−1(x) = proxFh (x) (28)

The mapping (I + h∂F )−1 is called the proximity operator.
We refer to [14] for examples of proximal operator computations.

4.3.2 Forward-backward splitting

Assume one wants to solve :

min
x

F (x) +G(x) (29)

where F is a convex C1,1 function, with ∇F L Lipschitz, and G a simple convex function
(simple means that the proximity operator of G is easy to compute).

The Forward-Backward algorithm [14, 15] reads in this case:

{

x0 ∈ X
xk+1 = (I + h∂G)−1(xk − h∇F (xk))

(30)

This algorithm is known to converge provided h ≤ 1/L. In terms of objective functions,
the convergence speed is of order 1/k.

4.3.3 Acceleration

It has been shown by Nesterov in [39, 40, 41] , and by Beck and Teboule in [5], that
the previous algorithm could be modified so that a convergence speed of order 1/k2 is
obtained.
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The algorithm proposed by Beck and Teboule in [5] is the following:


















x0 ∈ X ; y1 = x0; t1 = 1;
xk = (I + h∂G)−1(yk − h∇F (yk))

tk+1 =
1+
√

1+4t2
k

2

yk+1 = xk +
tk−1

tk+1
(xk − xk−1)

(31)

This algorithm converges provided h ≤ 1/L.

4.3.4 Projected gradient algorithm

An interesting particular case for problem (29) arises when G is the indicator function
of some closed convex set C, i.e.:

G(x) =

{

0 if x ∈ C
+∞ otherwise

(32)

Then Algorithm (30) is nothing but the classical projected gradient method, and
Algorithm (31) an accelerated projected gradient method. In particular, (30) now reads:

{

x0 ∈ X
xk+1 = PC(xk − h∇F (xk))

(33)

with PC is the orthogonal projection operator onto C.
(31) then reads:



















x0 ∈ X y1 = x0 t1 = 1
xk = PC(yk − h∇F (yk))

tk+1 =
1+
√

1+4t2
k

2

yk+1 = xk +
tk−1

tk+1
(xk − xk−1)

(34)

This algorithm converges provided h ≤ 1/L.

4.3.5 FISTA and constrained total variation

Beck and Teboule have shown in [4] that FISTA could be used to solve the constrained
total variation problem.

The considered problem is the following:

min
u∈C

JTV (u) +
1

2λ
‖f − u‖2 (35)

with C a closed non empty convex set.
In [4], it is shown that the dual problem is a constrained smooth minimization prob-

lem. It can be solved with the previous projection algorithm with the FISTA accelera-
tion.

Notice that when C = X (i.e. non constraint), then derivation of the dual problem
was first done in [10], and the acceleration using Nesterov ideas in [52].

More precisely, the result shown in [4] is the following:
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Proposition 1 Let us set:

h(v) = −‖HC(f − λdivv)‖2 + ‖f − λdivv‖2 (36)

where HC(u) = u − PC(u) and PC(u) is the orthogonal projection of u onto C. Let us
define:

ṽ = argmin
‖v‖≤1

h(v) (37)

Then the solution of problem (35) is given by:

u = PC(f − λdivṽ) (38)

Hence it suffices to compute the minimizer of (37) to get the solution of Problem (35).
The minimization Problem (37) is the constrained minimization of a smooth function,
and this can be done with the FISTA algorithm (31).

Indeed, it is proven in [4] that h given by (36) satisfies:

Lemma 1 The function h defined by (36) is continuously differentiable, and its gradient
is given by

∇h(v) = −2λ∇(PC(f − λdivv)) (39)

4.3.6 FISTA and constrained regularization

We show here how the results of Beck and Teboule in [4] can be adapted to some general
L1 regularization. We consider the following problem (notice that whenK is the gradient
operator, then Problem (40) is the constrained total variation regularization Problem
(35)):

min
u∈C

‖Ku‖1 +
1

2λ
‖f − u‖2 (40)

with C a closed non empty convex set. K is a continuous linear operator from X to Y
(two finite-dimensional real vector spaces).

Proposition 2 Let us set:

hK(v) = −‖HC(f + λK∗v)‖2 + ‖f + λK∗v‖2 (41)

where HC(u) = u − PC(u) and PC(u) is the orthogonal projection of u onto C. Let us
define:

ṽ = argmin
‖v‖≤1

hK(v) (42)

Then the solution of problem (40) is given by:

u = PC(f + λK∗ṽ) (43)
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Proof : We are interested in finding the minimizer of the following problem:

min
u∈C

2λ‖Ku‖1 + ‖f − u‖2 (44)

We start with the remark that the following equality holds:

‖Ku‖1 = max
|v|≤1

〈Ku, v〉 = max
|v|≤1

〈u,−K∗v〉 (45)

Hence Problem (44) can be written

min
u∈C

2λ‖Ku‖1 + ‖f − u‖2 = min
u∈C

max
|v|≤1

(

2λ〈u,−K∗v〉+ ‖f − u‖2
)

(46)

We can swap here the min and the max (see e.g. [20]), and thus :

min
u∈C

2λ‖Ku‖1 + ‖f − u‖2 = max
|v|≤1

min
u∈C

(

2λ〈u,−K∗v〉+ ‖f − u‖2
)

(47)

We have:

2λ〈u,−K∗v〉+ ‖f − u‖2 = ‖u− (f + λK∗v)‖2 − λ2‖K∗v‖2 − 2λ〈f,K∗v〉
= ‖u− (f + λK∗v)‖2 − ‖f + λK∗v‖2 + ‖f‖2

Hence Problem (44) can be written:

max
|v|≤1

(

min
u∈C

(

‖u− (f + λK∗v)‖2
)

− ‖f + λK∗v‖2
)

(48)

The solution of the minimization with respect to u ∈ C is simply given by u =
PC(f + λK∗v) where PC is the orthogonal projection onto C.

Hence Problem (44) can be written:

max
|v|≤1

(

‖PC(f + λK∗v)− (f + λK∗v)‖2 − ‖f + λK∗v‖2
)

(49)

And therefore Problem (44) amounts to solving

max
|v|≤1

(−hK(v)) (50)

with u = PC(f + λK∗v).

�

Hence it suffices to compute the minimizer of (42) to get the solution of Problem (40).
The minimization Problem (42) is the constrained minimization of a smooth function,
and this can be done with the FISTA algorithm (31).

Indeed, one can show that the function hK given by (41) satisfies:

Lemma 2 The function hK defined by (41) is continuously differentiable, and its gra-
dient is given by

∇hK(v) = −2λK(PC(f + λK∗v)) (51)
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Proof : Let us consider the function s(x) = ‖HC(x)‖2 = ‖PC(x)− x‖2. It is standard
(see e.g [32]) that s′(x) = 2(x− PC(x)).

Now let s̃(v) = s(f + λK∗v). We have ∇s̃(v) = λK(s′(f + λK∗v)) = 2λK(f +
λK∗v − PC(f + λK∗v)).

Let r(v) = ‖f + λK∗v‖2. Then ∇r(v) = 2λK(f + λK∗v).
But hK(v) = s̃(v)− r(v). And we get the result.

�

4.4 Chambolle Pock Algorithm

4.4.1 Introduction

Recently, A. Chambolle and T. Pock [11] have introduced an algorithm that will be
useful to solve our minimization problem. The framework is the following.

As before, X and Y are two finite-dimensional real vector spaces embedded with
an inner product 〈., .〉 and the associated norm ‖.‖ =

√

〈., .〉. We also introduce a
continuous linear operator K : X → Y with respect to the induced norm

‖K‖ = max {‖Kx‖ | x ∈ X and ‖x‖ ≤ 1} (52)

Let F : X → [0,+∞) and G : X → [0,+∞) be two proper, convex, lower semi
continuous (l.s.c.) functions.

We define the Legendre-Fenchel conjugate of F by :

F ∗(y) = max
x∈X

(〈x, y〉 − F (x)) (53)

The general minimization problem considered is the following saddle-point problem:

min
x∈X

max
y∈Y

(〈Kx, y〉+G(x)− F ∗(y)) (54)

This saddle point problem is a primal-dual formulation for the nonlinear primal
problem :

min
x∈X

(F (Kx) +G(x)) (55)

or of the corresponding dual problem

max
y∈Y

(−G∗(−K∗y) + F ∗(y)) (56)

4.4.2 Algorithm

The algorithm proposed by A. Chambolle and T. Pock is the following:

• Initialization: Choose τ, σ > 0, (x0, y0) ∈ X × Y ), and set x̄0 = x0.
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• Iterations (n ≥ 0): Update xn, yn, x̄n as follows:







yn+1 = (I + σ∂F ∗)−1(yn + σKx̄n)
xn+1 = (I + τ∂G)−1(xn − τK∗yn+1)
x̄n+1 = 2xn+1 − xn

(57)

The following theorem is proved in [11]:

Theorem 1 Let L = ‖K‖, and assume Problem (54) has a saddle point. Choose
τσL2 < 1, and let (xn, x̄n, yn) be defined by (57). Then there exists a saddle point
(x∗, y∗) such that xn → x∗ and yn → y∗.

Notice that Algorithm (54) can be used even when both F and G are non smooth.
One should also be aware that similar approaches had been previously proposed in [13, 8].

5 Application to CBCT

5.1 Functional

We recall that the data term is the following :

LCT (µ) = 〈y, Aµ〉+ 〈z exp(−Aµ), u〉 (58)

y is the data, A the operator, µ the unknown, u the vector whose coordinates are all
1, and z is the number of photons.

Notice that we have to take into account the fact/constraint that µ ≥ 0.
The considered minimization problem then reads:

min
µ≥0

λJ(µ) + LCT (µ) (59)

where J is some regularization operator.

5.2 Solving Problem (59) in the case of Jreg
TV

In this case, Problem (59) can be solved with the accelerated projected gradient algo-
rithm (34) with F (µ) = λJ(µ) + LCT (µ), and C = {µ ≥ 0}.

It can easily be computed that:

∇Jreg
TV (µ) = −div

(

∇µ
√

α2 + |∇µ|2

)

(60)

and

∇LCT (µ) = A∗ (y − z exp(−Aµ)) (61)

We denote by TVreg this algorithm.
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5.3 Solving Problem (59) in the case of Jl1,ϕ

In this case, Problem (59) can be solved with the FISTA algorithm (31) with F = LCT

in (29), and G(µ) = λJl1,ϕ(µ) + χC(µ) We recall that Jl1,ϕ(µ) =
∑

λ |〈µ, ϕλ〉|, and that
χC is the indicator function of C, i.e. χC(µ) = 0 if µ ∈ C and +∞ otherwise. The
proximal point proxλJl1,ϕ+χC (µ) is computed with the fast algorithm of Section 4.3.6.

We denote by FBwav this algorithm.

5.4 Solving Problem (59) in the case of JTV

In this case, Problem (59) can be solved with the FISTA algorithm (31) with F = LCT

in (29), and G(µ) = λJTV (µ)+χC(µ). The proximal point proxJTV +χC (µ) is computed
with the algorithm of [4] (see Section 4.3.5).

We denote by FB-TV this algorithm.

6 Application to TEP

6.1 Functional

We recall that the data term is the following :

LTEP (v) = 〈Bv − w logǫ(Bv), u〉 (62)

with the notation:
logǫ(x) = log(x+ ǫ) (63)

w is the data, B the operator, v the unknown and u the vector whose coordinates
are all 1.

Notice that we have to take into account the fact/constraint that v ≥ 0.
The considered minimization problem then reads:

min
v≥0

λJ(v) + LTEP (v) (64)

6.2 Solving Problem (64) in the case of Jreg
TV

In this case, Problem (59) can be solved with the projected gradient algorithm (33) with
F (v) = λJ(v) + LTEP (v), and C = {v ≥ 0}.

It can be easily computed that:

∇LTEP (v) = B∗

(

1− w

Bv + ǫ

)

(65)

We denote by TVreg this algorithm.
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6.3 Solving Problem (64) with Forward-Backward splitting al-
gorithm (30)

6.3.1 Solving Problem (64) in the case of Jl1,ϕ

In this case, Problem (64) can be solved with the classical Forward-Backward splitting
algorithm (30) with F = LTEP in (29), and G(v) = λJl1,ϕ(v) + χC(v) We recall that
Jl1,ϕ(v) =

∑

λ |〈v, ϕλ〉|, and that χC is the indicator function of C, i.e. χC(v) = 0 if
v ∈ C and +∞ otherwise. The proximal point proxλJl1,ϕ+χC (v) is computed with the
fast algorithm of Section 4.3.6.

We denote by FBwav this algorithm.

6.3.2 Solving Problem (64) in the case of JTV

In this case, Problem (64) can be solved with the classical Forward-Backward splitting
algorithm (30) with F = LTEP in (29), and G(v) = λJTV (v) + χC(v). The proximal
point proxλJTV +χC (v) is computed with the algorithm of [4] (see Section 4.3.5).

6.4 Solving Problem (64) with Chambolle-Pock algorithm (57)

In this case, Problem (64) can be solved with Chambolle-Pock algorithm (57) and even
with ǫ = 0

6.4.1 First approach

We have to work a little to adapt the framework to our case. Problem (64) can be
rewritten into:

min
v

F (Bv) +G(v) (66)

with C = {v ≥ 0}, F (x) = 〈x−w logǫ(x), u〉+χC(x), and G(x) = λJ(x)+χC(x). (recall
that u = (1, .., 1)).

Then Chambolle-Pock algorithm becomes in this case:







yn+1 = (I + σ∂F ∗)−1(yn + σBx̄n)
xn+1 = (I + τ∂G)−1(xn − τB∗yn+1)
x̄n+1 = 2xn+1 − xn

(67)

(I + σ∂F ∗)−1 is given by (69) (see Lemma 3 here-after).
In the case when wavelet regularization is considered, i.e. J = Jl1,ϕ, then (I+τ∂G)−1

is computed with the fast algorithm of Section 4.3.6.
We denote by CPwav this algorithm.
In the case of total variation regularization, i.e. J = JTV , then (I + τ∂G)−1 is

computed with the algorithm of [4] (see Section 4.3.5).
We denote by CP-TV-BT this algorithm.
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Lemma 3 Let

F (x) = 〈x− w log(x), u〉+ χC(x) =

(

∑

i

xi − wi log(xi) + χIR+(xi)

)

(68)

Let y = (I + σ∂F ∗)−1 (x). Then:

yi =











1

2

(

xi + 1−
√

(xi − 1)2 + 4σwi

)

if wi > 0

1 if wi = 0 and xi ≥ 1
xi if wi = 0 and xi ≤ 1

(69)

Proof :
Let us set the function on IR:

fi(xi) = xi − wi log(xi) + χIR+(xi) (70)

fi is a convex lower semi continuous function on IR (since wi ≥ 0). Hence F (x) =
∑

i fi(xi) is a convex lower semi continous on IRN .
We have:

x̃ = (I + σ̃∂F )−1 (X)

= argmin
x

‖x−X‖2
2σ̃

+ F (x)

= argmin
x

‖x−X‖2
2σ̃

+ 〈x− w logǫ(x), u〉+ χC(x)

= argmin
x

∑

i

(

1

2σ̃
(xi −Xi)

2 + fi(xi) + χIR+(xi)

)

with the obvious notations x = (xi) andX = (Xi). Solving the previous minimization
problem with respect to x amounts to solving each problem with respect to xi (since it
is separable). We are thus led to consider the minimization problem:

argmin
xi

(

1

2σ̃
(xi −Xi)

2 + fi(xi) + χIR+(xi)

)

(71)

We now split the proof into two cases.

• First case : wi > 0

If x > 0, we have :

f ′
i(x) = 1− wi

x
(72)

The solution of Problem (71) is thus given by:

x̃i =
1

2

(

Xi − σ̃ +
√

(Xi − σ̃)2 + 4wiσ̃
)

(73)
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• Second case : wi = 0

Problem (71) then becomes:

argmin
xi

(

1

2σ̃
(xi −Xi)

2 + xi + χIR+(xi)

)

(74)

The solution of Problem (71) is thus given by:

x̃i = max(Xi − σ̃, 0) (75)

We deduce that if x̃ = (I + σ̃∂F )−1 (X), then x̃i is given by:

x̃i =

{

1

2

(

Xi − σ̃ +
√

(Xi − σ̃)2 + 4wiσ̃
)

if wi > 0

max(Xi − σ̃, 0) if wi = 0
(76)

We use the identity:

(I + σ∂F ∗)−1 (x) = x− σ

(

I +
1

σ
∂F

)−1
(x

σ

)

(77)

And if y =
(

I + 1

σ
∂F
)−1 (x

σ

)

then yi is given by:

yi =

{

1

2σ

(

xi − 1 +
√

(xi − 1)2 + 4σwi

)

if wi > 0

max(xi−1

σ
, 0) if wi = 0

(78)

Thus we deduce the result.

�

6.5 Second approach

It is possible to avoid the inner loop of the previous approach by writing Problem (64) in
another way. This is more elegant, but since it involves considering a higher dimensional
operator, this will be less efficient in term of computation speed (as we will see in the
numerical section of the paper).

Problem (64) can be rewritten into:

min
v

F (Kv) +G(Bv) + χC(v) (79)

with K = ∇ for JTV and K = Rϕ for Jl1,ϕ and C = {v ≥ 0}, F (p) = λ‖p‖L1 , G(x) =
〈x− w log(x), u〉+ χC(x) for both Jl1,ϕ or JTV .

The associated saddle point problem is:

min
v

max
y,z

(〈Kv, y〉+ 〈Bv, z〉 − F ∗(y)−G∗(z) + χC(v)) (80)
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The 3 optimality conditions are:







0 ∈ K∗y + A∗z + ∂χC(v)
0 ∈ Kv − ∂F ∗(y)
0 ∈ Bv − ∂G∗(z)

(81)

Chambolle-Pock algorithm thus becomes in this case (gradient descent in v, gradient
ascent in y and z):















vk+1 = (I + α∂χC)
−1 (vk − αK∗yk+1 − αB∗zk+1)

yk+1 = (I + β∂F ∗)−1 (yk + βKv̄k)

zk+1 = (I + γ∂G∗)−1 (zk + γBv̄k)
v̄k+1 = 2vk+1 − vk

(82)

There are 3 proximity operators to compute.
It is straightforward to check that

(I + α∂χC)
−1 (v) = PC(v) (83)

with PC the orthogonal projection onto C.
It is easy to see that

(I + β∂F ∗)−1 (y) = PC(y) (84)

with PC the orthogonal projection onto C = {y / ‖y‖∞ ≤ 1}.
As for (I + γ∂G∗)−1, its value is given by Lemma 3 (see formula (69)).
We denote by CP-TV this algorithm.

7 Results

7.1 Experimental setup

In this section, we present the results of our numerical experiments. We analyze the
performances of the different algorithms we have presented so far, as well as three state-
of-the-art algorithms. In the case of the TEP problem, we also ran experiments using
the very similar spiral [27] algorithm.

The experiments are made on simulated observations for both PET and CT. The
simulations were done using the open-source Matlab toolbox Image Reconstruction Tool-
box (irt)1 for several levels of noise. The true objects that we seek to reconstruct are
displayed in Figure 5 (these are 128x128 images for Zubal’s phantom, 256x256 images
otherwise). The three phantoms used here are standard tomography phantoms. Zubal’s
phantom displays tissues of different absorption and is used here to study the global
performances of the algorithms. For this phantom, the performances are evaluated in
terms of the standard Signal-To-Noise Ratio (snr), the Structural Similarity ssim [51]
(see Eq. (85) and (86)), as well as the computation time. The contrast and resolution

1http://www.eecs.umich.edu/ fessler/irt/irt
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phantoms are used to study the precision of the algorithms in terms of contrast or res-
olution i.e. to evaluate which is the lowest contrast and the smallest object size that
can be resolved. As is well-known, global measures such as the snr are not accurate
enough to evaluate fine contrast or resolution. Therefore, we also compute the better
suited Contrast-to-Noise Ratio (cnr) [29] defined in Eq. (87).

When comparing a reconstructed image I to the true object T , the snr, ssim and
cnr are defined as:

SNR(I, T ) =10 log10

(

mean(I2)

mean(|I − T |2)

)

, (85)

SSIM(I, T ) =meanw

(

(2mean(Iw)mean(Tw) + a)(2cov(Iw, Tw) + b)

mean(Iw)2 +mean(T 2
w + a)(var(Iw) + var(Tw) + b)

)

, (86)

CNR(I) =
|mean(Iin)−mean(Iout)|
√

var(Iin) + var(Iout)
. (87)

For the ssim, w is a window sliding through the image and a and b are constants. For
the cnr, the subscript in refers to the inside of the test tubes and out to the outside
of the test tubes within the phantom. This measure is straightforward in the case of
the resolution phantom since all test tubes have the same intensity. In the case of the
contrast phantom, we average the cnr measures for the 6 test tubes since they have
different contrasts.

Figure 5: The images we wish to reconstruct: (from left to right) Zubal’s phantom in
CBCT and in PET; the contrast phantom in CBCT and in TEP; the resolution phantom
(both CBCT and PET).

7.1.1 CT

For the CT problem, the level of noise in the observations is driven by the source power
measured by the photon counts. We started from a standard level (1e5 photons) and
studied how the quality degrades at lower levels (1e4 and 1e3 photons).

We compared three algorithms we proposed, namely

• the gradient descent with a regularized version of the tv-norm (referred to as
TVreg),

• the Forward-Backward algorithm with a l1 penalization in Wavelet space using the
Haar wavelet, 3 levels of decomposition (referred to as FB-Wav),
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• the Forward-Backward algorithm with a tv penalization (referred to as FB-TV ),

to three state-of-the-art algorithms implemented in the irt toolbox:

• the filtered back-projection (referred to as FBP),

• the MLEM algorithm (referred to as MLEM and described in [35]),

• the MLEM algorithm penalized by a Huber function (referred to as MLEM-Huber
or MLEM-H and described in [21]).

7.1.2 TEP

For the TEP problem, the level of noise in the observations is driven by the efficiency of
the detector. We studied several levels of fcount : 5e5, 2e5, 1e5.

In addition to the six algorithms studied in the CT problem, we also ran expriments
in TEP with three versions of the Chambolle-Pock algorithm we described in Section 4:

• Chambolle-Pock’s algorithm computed using the first approach (see 6.4.1), with a
tv penalization computed using FISTA (referred to as CP-TV-BT ),

• Chambolle-Pock’s algorithm computed using the second approach (see 6.5), with
a tv penalization (referred to as CP-TV ),

• Chambolle-Pock’s algorithm computed using the second approach with a Ll1 pe-
nalization in Wavelet space using the Haar wavelet, 3 levels of decomposition
(referred to as CP-Wav),

as well as the spiral [27] algorithm (referred to as SPIRAL).
In the next two subsections we give the results of our experiments.

7.2 CT results

7.2.1 Zubal’s phantom

For this phantom, we show in Fig. 6 the reconstructions obtained when the level of noise
increases from 1e4 to 1e2 photons count. Table 1 synthesizes the results. This table
gives the mean snr, ssim and computation time for a number of realizations nb. repet of
the noise indicated in the last column. If relevant, we also give the number of iterations
nb. iter. and the regularization(s) parameter(s) (λ), which is tuned to yield the best
snr. We indicate in bold the settings yielding the best snr and ssim.

Both snr and ssim indicate that the proximal algorithms yield the best results, and
that they are more robust to noise than the state-of-the-art algorithms. The Filtered-
Back-Projection clearly suffers many artifacts due to the-ill-posedness of the problem.
Plain MLEM is able to recover good quality results at high photon count; however it
is clear that it is also unstable as the noise increases. All other methods are able to
stabilize at higher noise level since they incorporate a regularization.
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Figure 6: CT reconstructions for Zubal’s phantom, two top rows: photon count z=10000,
two bottom rows: photon count z=100.
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Photon
count

Algorithm snr ssim λ nb. iter. time (s) nb. repet.

1e4

TVreg 19.57 0.900 300 300 44 100
FB-Wav 18.63 0.938 75 300 110 100
FB-TV 19.61 0.916 300 300 85 100
FBP 13.40 0.395 - - 0.12 25

MLEM 15.60 0.711 - 120 46 25
MLEM-H 19.61 0.856 2e5 1000 25

1e3

TVreg 15.06 0.808 200 300 36 100
FB-Wav 14.06 0.826 25 300 110 100
FB-TV 15.10 0.845 200 300 85 100
FBP 9.08 0.201 - - 0.09 25

MLEM 11.86 0.462 - 43 14 25
MLEM-H 14.52 0.680 7e5 752 25

1e2

TVreg 11.34 0.625 80 300 32 100
FB-Wav 10.62 0.695 10 300 110 100
FB-TV 11.35 0.690 80 300 78 100
FBP 0.44 0.076 - - 0.07 25

MLEM 7.90 0.200 - 17 5.67 25
MLEM-H 10.78 0.489 3.5e4 605 25

Table 1: CT reconstruction, photon count from z=10000 to z=100.

In terms of snr and ssim, MLEM-Huber yields comparable results to the proximal
algorithms we proposed at high photon counts, however those indicators drop faster as
noise increases for MLEM-Huber. Finally, the visual aspect of the forward-backward
reconstructions is quite different from the MLEM-Huber ones. The flat part in Zubal’s
phantom tend to be reconstructed as flat parts with the forward-backward algorithms
while they seem more “cloudy” with MLEM-Huber. This is precisely the advantage
of using a L1-type regularization (as in the Forward-Backward algorithms) versus a
quadratic one (as in MLEM-Huber). Notice that the blocky aspects in the wavelet-based
Forward-Backward reconstructions is due to the fact that we use the Haar wavelet.

7.2.2 Effects of noise and number of projections on contrast and resolution

We now study how the quality degrades with noise and when the number of angles of
projections decreases for both the resolution and contrast phantom. The noise level
considered are again 1e4, 1e3 and 1e2 photons count, while the number of angle of
projections is 90, 60 and 30. The performances are evaluated in terms of cnr, ssim and
snr. But for each algorithm, the hyperparameters are tuned to yield the best cnr. Since
the algorithms we proposed yields similar results and Filtered-Back-Projection is clearly
not efficient, we summarize in Tables 2 and 3 the numerical results we obtained for the
best proximal algorithm (FB-TV ) we proposed and two state-of-the-art algorithms only.
Images of reconstructions are displayed in Figures 7 and 9. Furthermore, profiles are
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extracted from both phantoms and their reconstructions to assess the precision in terms
of resolution and contrast recovery for each method. These are shown in Fig. 8.

Nb. angles 90 60 30

Photon
count

Algorithm cnr ssim snr cnr ssim snr cnr ssim snr

1e4

TVreg 5.18 0.866 21.86 4.69 0.867 21.04 4.08 0.855 19.54
FB-Wav 4.91 0.911 21.53 4.18 0.911 20.09 3.57 0.884 18.28
FB-TV 6.05 0.944 23.03 5.33 0.914 21.57 4.74 0.912 20.78
FBP 2.23 0.201 8.98 1.84 0.155 8.33 1.35 0.100 6.79

MLEM 2.88 0.425 15.13 2.69 0.393 14.71 2.34 0.353 13.39
MLEM-H 3.33 0.492 17.52 3.23 0.521 17.50 3.00 0.591 17.13

1e3

TVreg 3.17 0.793 17.15 3.00 0.743 16.95 2.78 0.728 15.46
FB-Wav 3.18 0.851 17.68 2.96 0.839 17.01 2.61 0.802 15.39
FB-TV 3.93 0.831 17.65 3.50 0.817 17.42 3.36 0.756 15.25
FBP 0.82 0.046 3.57 0.65 0.033 2.09 0.44 0.017 -0.79

MLEM 1.95 0.274 11.87 1.77 0.253 11.36 1.53 0.218 10.33
MLEM-H 2.27 0.337 13.49 2.11 0.351 13.33 2.04 0.393 13.47

1e2

TVreg 2.17 0.686 13.30 2.10 0.699 13.28 1.80 0.679 12.21
FB-Wav 2.03 0.728 13.83 2.08 0.779 12.93 1.65 0.736 11.48
FB-TV 2.30 0.706 12.90 2.34 0.779 13.90 2.07 0.704 12.30
FBP 0.25 0.005 -5.46 0.21 0.003 -7.32 0.14 0.001 -10.28

MLEM 1.17 0.187 8.77 1.06 0.170 8.13 0.87 0.164 7.36
MLEM-H 1.53 0.282 10.78 1.46 0.294 10.28 1.36 0.334 10.07

Table 2: CT contrast phantom reconstruction results.

For the proximal approaches and the MLEM approaches we also noticed that the
quality of the reconstructions does not degrade much when the number of projections
decays from 90 to 30. On the other hand, the quality does decay with the photon count,
as may be seen in Figure 7 and Figure 9. These figures show the reconstructions for the
two MLEM approaches and the proximal FB-TV approach, for 60 projections as the
photon count decreases from 1e4 to 1e2. The snr, ssim and cnr of each reconstruction
are given below it. These three indicators all show that FB-TV performs the best, then
MLEM-Huber and finally MLEM for a photon count and number of projection fixed.
One may also notice that the indicators degrade faster for MLEM, a little slower for
MLEM-Huber and yet even slower for FB-TV as the photon count decreases.

As we saw for Zubal’s phantom , the visual characteristics of the MLEM-Huber and
FB-TV are quite different, the former yielding a “cloudy” reconstructions, the latter
flat-by-part ones. This visual sensation at low photon count is also verified at higher
counts. To show this in more details, we plot in Figure 8 a profile cut through the test
tubes for both the contrast and resolution reconstructions for both algorithms.

As far as the contrast phantom is concerned, there is a clear advantage to using the
FB-TV algorithm over the MLEM-Huber, since the latter will not reconstruct the two
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Nb. angles 90 60 30

Photon
count

Algorithm cnr ssim snr cnr ssim snr cnr ssim snr

1e4

TVreg 6.11 0.928 21.21 5.50 0.912 20.35 3.00 0.719 15.60
FB-Wav 0.12 0.176 1.20 4.74 0.875 19.15 2.76 0.721 15.19
FB-TV 6.27 0.938 21.38 5.66 0.925 20.54 3.03 0.722 15.67
FBP 3.31 0.349 8.26 2.73 0.300 7.69 1.78 0.219 6.17

MLEM 3.64 0.556 15.27 3.27 0.526 14.60 2.19 0.402 12.04
MLEM-H 5.53 0.852 20.32 4.69 0.818 18.85 2.45 0.623 14.27

1e3

TVreg 3.37 0.811 16.65 2.95 0.753 15.75 1.97 0.516 12.50
FB-Wav 2.96 0.779 15.63 2.64 0.586 14.56 1.89 0.495 12.36
FB-TV 3.41 0.825 16.74 2.98 0.766 15.84 1.97 0.520 12.53
FBP 2.05 0.218 6.91 1.68 0.182 5.92 1.13 0.119 3.84

MLEM 2.36 0.355 12.59 2.07 0.322 11.88 1.48 0.245 10.20
MLEM-H 3.08 0.683 15.79 2.50 0.615 14.26 1.68 0.476 11.85

1e2

TVreg 1.71 0.521 12.22 1.48 0.505 11.56 1.11 0.484 10.49
FB-Wav 1.54 0.437 11.50 1.37 0.490 11.27 0.99 0.459 10.13
FB-TV 1.70 0.526 12.17 1.48 0.508 11.52 1.08 0.490 10.43
FBP 0.75 0.063 0.99 0.62 0.045 -0.50 0.42 0.019 -3.36

MLEM 1.14 0.170 9.38 0.96 0.149 8.94 0.67 0.113 8.11
MLEM-H 1.57 0.451 11.46 1.30 0.418 10.71 0.99 0.364 9.55

Table 3: CT resolution phantom reconstruction results.
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lowest contrasted tubes from 1000 photons count to counts below, while the FB-TV
algorithm reconstructs all contrasts at 1000 photons and only fails at reconstructing the
faintest one at 100 photons.

Figure 7: CT contrast phantom reconstructions for 60 projections. Left to right: MLEM,
MLEM-Huber and FB-TV algorithms. Top to bottom: 1e4 to 1e2 photon count.

As far as the resolution phantom is concerned, the differences are not as clear to the
eye, since one may distinguish objects of the same size for both approaches. However
one may argue that since the FB-TV are flat by parts while the ones obtained with
MLEM-Huber are fuzzier, when feeding such reconstructions to automatic programs
that segment different parts, those will yield better performances when using the FB-
TV reconstructions than the MLEM-Huber ones since they rely on edge detectors.
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Figure 8: Profile of the CBCT contrast (left) and resolution (right) phantom reconstruc-
tion results for 60 angles of projections a noise level of 1e3 photons.

Figure 9: CT resolution phantom reconstructions for 60 projections. Left to right:
MLEM, MLEM-Huber and FB-TV algorithms. Top to bottom: 1e4 to 1e2 photon
count.
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7.3 TEP results

7.3.1 Zubal’s phantom

As in the CT case, for Zubal’s phantom, we study the performances of the different
algorithms in terms of snr and ssim (the hyperparameters are tuned to yield the best
snr). Table 4 synthesizes the results (see Section 7.2.1 for the legend). We show in
Fig. 10 the reconstructions obtained for the levels of noise fcount = 5e5 and 1e5 (note
that for the algorithms we proposed, the figure displays only the most efficient ones:
Chambolle-Pock’s algorithm).

The conclusions here are very similar to the CT case, the algorithm we proposed
yielding constantly better snr and ssim, and being more robust to increasing noise
levels. MLEM-Huber does yield interesting results though not as high quality as the
proximal algorithms. The “cloudy” and “flat-by-part” aspects again differentiate the L1

versus L2 regularizations.

7.3.2 Effects of noise and number of projections on contrast and resolution

As in the CT case, we study how the quality degrades with noise and when the number
of angles of projections decreases for both the resolution and contrast phantom. The
noise level considered are again fcount = 5e5, 2e5 and 1e5, while the number of angle
of projections is 90, 60 and 30. The performances evaluated in terms of snr and ssim

displayed in Tables 5 and 6.
Compared to the CT problem, the PET problem seems to be a much harder problem

to solve. The quality of the reconstructions for all algorithms compared to the CT
ones is much degraded. One notes however that as happens for CT, the Filtered Back-
Projection is fast left behind by the other methods. Again all proximal algorithms
perform similarly, although the tv based algorithms give slightly better results than the
wavelet-based ones. We focus on the Chambolle-Pock algorithm, which deals with the
exact fit-to-data term (ǫ = 0) as opposed to the Forward-Backward ones.

In general, the influence of the noise and number of projections is more pronounced
in PET than in CT and this time, the number of projections has more influence than the
level of noise. Therefore, we rather present images of reconstructions at a given level of
noise (fcount = 2e5) when the number of projections decreases in Figures 11 and 12.

Although MLEM-Huber yields better numerical numerical results for low noise (
fcount = 5e5), at low fcounts (2e5 and 1e5) i.e. when the dose decreases, all three
indicators show that the proximal tv-based algorithm CP-TV-BT performs better than
MLEM-Huber, which itself performs better than a plain MLEM. The plain MLEM also
degrades faster than the regularized algorithms (see Figures 11 and 12). Here however,
one notices that the differences between the indicators is not as marked as for CT.

Concerning the contrast phantom, visual inspection of Figure 11 seems to show that
the lower right tube has more chances to be recovered by the MLEM-Huber while it is
the opposite for the top right tube. Examining the profile in Figure 13, the explanation
is that the CP-TV-BT slightly underestimates the intensity of the flat part, which is a
well known artifact of L1 estimation.
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Photon
count

Algorithm snr ssim λ nb. iter. time (s) nb. repet.

5e5

TVreg 15.33 0.902 0.70 200 10 15
FB-Wav 14.77 0.889 0.10 150 89 25
FB-TV 15.37 0.905 0.70 100 62 15
CP-Wav 14.68 0.885 0.10 80 63 25

CP-TV-BT 15.32 0.905 0.70 80 63 15
CP-TV 14.84 0.860 0.70 400 266 15
SPIRAL 15.17 0.905 0.70 100 76 10
FBP 11.59 0.429 - - 0.04 25

MLEM 13.38 0.819 - 17 2 25
MLEM-H 15.22 0.866 0.9/0.25 267 46 25

2e5

TVreg 13.68 0.866 0.50 200 11 100
FBwav 13.11 0.867 0.0875 150 89 50
FB-TV 13.71 0.875 0.50 100 65 100
CPwav 13.46 0.870 0.0875 100 79 50

CP-TV-BT 14.17 0.882 0.50 100 82 100
CP-TV 14.01 0.867 0.50 150 107 100
SPIRAL 13.40 0.872 0.50 100 65 100
FBP 9.03 0.322 - - 0.07 25

MLEM 12.08 0.774 - 12 2 25
MLEM-H 13.97 0.853 0.9./0.25 274 53 25

1e5

TVreg 12.12 0.841 0.40 200 13 10
FBwav 11.55 0.834 0.0625 150 89 50
FB-TV 12.14 0.847 0.40 100 68 10
CPwav 11.65 0.835 0.0625 50 40 50

CP-TV-BT 13.13 0.862 0.40 50 46 10
CP-TV 12.86 0.823 0.40 100 78 10
SPIRAL 11.77 0.841 0.40 100 86 10
FBP 6.66 0.254 - - 0.08 25

MLEM 11.06 0.731 - 10 2 25
MLEM-H 12.92 0.837 0.8/0.25 278 58 25

Table 4: TEP Zubal phantom reconstruction, detector efficiency fcount=500000 to
100000.
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Figure 10: TEP reconstructions, top two rows: detector efficiency fcount=500000, bot-
tom two rows: detector efficiency fcount=100000.
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Nb. angles 90 60 30

fcount Algorithm cnr ssim snr cnr ssim snr cnr ssim snr

5e5
CP-TV-BT 2.64 0.900 16.11 2.55 0.897 15.84 2.72 0.901 15.92
MLEM 1.62 0.405 14.00 1.59 0.418 13.91 1.67 0.428 14.14

MLEM-H 2.67 0.842 17.50 2.42 0.837 17.24 2.59 0.842 17.39

2e5
CP-TV-BT 2.60 0.898 15.92 2.53 0.897 15.80 2.97 0.906 16.33
MLEM 1.29 0.321 12.59 1.31 0.318 12.53 1.29 0.323 12.59

MLEM-H 2.12 0.835 15.60 2.18 0.832 15.46 2.12 0.828 15.55

1e5
CP-TV-BT 1.99 0.875 13.77 1.85 0.877 13.74 1.98 0.877 13.90
MLEM 1.09 0.242 11.35 1.05 0.244 11.33 1.04 0.247 11.51

MLEM-H 2.00 0.816 14.03 1.93 0.820 13.97 1.87 0.816 14.20

Table 5: TEP contrast phantom reconstruction results.

Nb. angles 90 60 30

fcount Algorithm cnr ssim snr cnr ssim snr cnr ssim snr

5e5
CP-TV-BT 1.77 0.463 11.14 1.74 0.427 10.94 1.70 0.419 10.73
MLEM 1.24 0.252 8.70 1.31 0.257 8.85 1.25 0.254 8.73

MLEM-H 1.73 0.443 10.91 1.87 0.461 11.27 1.68 0.447 10.73

2e5
CP-TV-BT 1.30 0.395 9.65 1.34 0.378 9.59 1.34 0.386 9.68
MLEM 0.86 0.194 7.89 0.84 0.196 7.85 0.87 0.197 7.90

MLEM-H 1.29 0.345 9.36 1.27 0.331 9.35 1.30 0.346 9.40

1e5
CP-TV-BT 0.75 0.329 8.11 0.86 0.332 8.34 0.98 0.311 8.52
MLEM 0.62 0.147 7.34 0.65 0.151 7.38 0.65 0.157 7.40

MLEM-H 1.08 0.314 8.75 1.10 0.318 8.84 1.06 0.312 8.75

Table 6: TEP resolution phantom reconstruction results.
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The results obtained with the resolution phantom are similarly not totally conclu-
sive since it is not clear whether one method or the other fails at recovering the finest
resolution objects. However in both cases, it remains clear that CP-TV-BT will lead to
reconstructions that are flat by part, thus making it more likely to yield high quality au-
tomatic segmentations of the different imaged tissues than the MLEM-Huber approach.

7.4 Results on real data

In this section, we present the results obtained on real CBCT acquisitions obtained
with the PIXSCAN II demonstrator developed at CPPM and incorporating the XPAD3
hybrid pixels detectors. As described in Section 2.1.2, we used a wide aperture cone
beam, Tungsten target, X-ray tube (90kV, 60W) whose spectrum was hardened by a
2.5mm Aluminium filter. In this configuration, four complete acquisitions have been
realized where 15000, 10000, 1000 and 600 photons were counted on average per pixel
for flat irradiation conditions (in absence of a mouse) after respective 1.5s, 1s, 100ms
and 50ms exposure times. For each acquisition, 360 projections of the same healthy
mouse were acquired every degree in about 15 minutes per acquisition.

Image reconstruction was then performed using the different algorithms described in
7.4.1. For each of the four acquisitions, we performed the 2D reconstruction of a slice,
chosen to be the medium slice lying in the plane containing the optical axis, which joins
the source point and the detector and is perpendicular to the detector plane. This slice
corresponds to the abdominal region of the mouse where soft tissues and spine bones
are visible. Given the pixel size of 130× 130µm2 and a geometrical zoom factor of two,
a slice of 614× 614 pixels of an average resolution of 65× 65µm2 and of thickness 65µm
was reconstructed.

7.4.1 Experimental setup

The slice reconstruction was performed by the Forward-Backward algorithm with a tv

penalization (referred to as FB-TV ). The results have been compared with a standard
filtered back-projection implemented in the IRT toolbox. In particular, the system
matrix was computed with a strip-integral model incorporating the geometry of the
acquisition obtained as described in [34, 42].

We performed three different experiments for each acquisition: the reconstruction has
been performed with 90, 60 and 36 projections obtained by extracting data respectively
every 4, 6 and 10 degrees from the complete acquisition with 360 projections. These
experiments aim at evaluating the robustness of our algorithms to the reduction of
projection angles, one of the current hot topic in the field of CBCT reconstruction.

7.4.2 Results and discussion

Results obtained with a decimated dataset of 60 projections over the 360 that have been
acquired are displayed on Figures 14 to 17. They respectively correspond to photon
counts of 15000, 10000, 1000 and 600 in flat irradiation conditions. Note that between
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these two extreme experimental conditions, the X-ray dose absorbed by the imaged
mouse is reduced by a factor 25 for a full acquisition of 360 projection angles. For each
experiment, we compare the results obtained with four different values of the param-
eter λ, i.e. λ ∈ {5, 15, 25, 40} with the results of the Filtered Back-Projection (FBP)
reconstructed from the full acquired data (i.e. 360 projections) and from the decimated
acquired data (i.e. 60 projections). The FBP reconstruction from the full data can be
considered as the reference reconstruction for these tests, although it suffers from arti-
facts introduced by the erratic behavior of a very small proportion of pixels that can not
be fully corrected by pre-processing. We can typically notice circular-shaped artifacts
in the mouse body onto the reconstructed slices with FBP at 15000 and 10000 photon
counts, and several rays of light are visible onto the reconstructed slices for number of an-
gles lower than 360 whatever the photon count. Moreover, the Filtered Back-Projection
is known to produce negative values without any physical meaning. For this reason, it
does not appear relevant to use a snr or a ssim criteria using the FBP reconstruction
with full data as a reference.

The very good quality of results obtained for usual flat irradiation (10000 photon per
pixels) highlights the robustness of the FB-TV algorithm with respect to the number of
projection angles. With a strong enough regularization weight, the reconstruction from
only 60 projection angles is not subject to any initial artifacts induced by some dead or
failing pixels : ringing artifacts are eliminated as well as spurious rays of light. Moreover,
the essential structures of the image are preserved, which allows to identify the main
biological features : pawns (outside the main body), spine bone (bright part at the
center of the body), a very tiny part of a rib bone (small bright part around the bottom
of the body), some air or gas areas (black holes at the top and top-left of the body),
and the cylindrical plastic support of the mouse (on the top-left of the images, outside
the body). The Total Variation prior seems well adapted to the presented images, but
these first results on real data have to be completed by additional tests onto images from
other anatomical parts that can be significantly more complex and less adapted to the
TV prior.

An optimal choice of the regularization parameter is obviously highly subjective on
real data. A value of 25 or 40 for the λ parameter strongly regularizes the images
whatever the photon count whereas a value of 5 or 15 will mainly reduce the noise
and preserve the finest details that might be of interest from a medical point of view.
The images acquired with a 15000 and 10000 photon count and reconstructed with
λ ∈ {25, 40} are accurate and edges are sharp. However, the same values of λ for lower
photon counts introduce a blur which in particular slightly degrades the accuracy of the
paws or the spine of the mouse. A lower value of λ leads to reconstructions that are
satisfactory for a diagnosis, but that may be noisy and then less adapted to be the input
of a segmentation or classification algorithm, or to a statistical analysis. The trade-off
has then to be made jointly with medical experts, and it strongly depends on the future
use of the images.

Figure 18 displays a comparison of reconstructed images as a function of the num-
ber of projection angles used as measurements. Reconstructions with 90, 60 and 36
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projection angles are showed together with the reference reconstruction obtained from
the full set of 360 projections by Filtered Back-Projection. These reconstructions have
been obtained with the same value λ = 20. Even if the quality of images is logically
decreasing when the number of projections is reduced, the overall quality of reconstruc-
tion with only 36 projection angles and a 600 photon count is high enough to visually
identify the main features. This worst tested case corresponds to a theoretical reduction
of X-ray dose of 250 when compared to a reconstruction with 360 projection angles with
a photon count of 15000. However, these images suffer from noise, due to the low level
of the acquired signal which is consequently strongly corrupted by Poisson noise. This
noise can only be completely eliminated by a strong regularization which may introduce
a blur and make a diagnosis more difficult to establish.
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Figure 11: PET contrast phantom reconstruction results for a noise level of fcount =
2e5. Leftmost to rightmost columns: MLEM,MLEM-Huber and CP-TV-BT algorithms.
Top to bottom row: from 90 to 30 projections.
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Figure 12: PET resolution phantom reconstruction results for 60 angles of projections
and a noise level of fcount = 2e5. Leftmost to rightmost columns: MLEM,MLEM-Huber
and CP-TV-BT algorithms.

Figure 13: Profile of the PET contrast (left) and resolution (right) phantom reconstruc-
tion results for 60 angles of projections and a noise level of fcount = 2e5.
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Figure 14: Results obtained on real CBCT acquisitions with flat irradiation of 15000
photons per pixel. Top-left: Filtered back-projection with 360 projection angles (full
data), top-middle: Filtered back-projection with 60 projection angles (decimated data).
Top-right: FB-TV reconstruction with 60 projection angles and λ = 5. Bottom, from
left to right: FB-TV reconstruction with 60 projection angles with λ = 15, λ = 25 and
λ = 40.
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Figure 15: Results obtained on real CBCT acquisitions with flat irradiation of 10000
photons per pixel. Top-left: Filtered back-projection with 360 projection angles (full
data), top-middle: Filtered back-projection with 60 projection angles (decimated data).
Top-right: FB-TV reconstruction with 60 projection angles and λ = 5. Bottom, from
left to right: FB-TV reconstruction with 60 projection angles with λ = 15, λ = 25 and
λ = 40.
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Figure 16: Results obtained on real CBCT acquisitions with flat irradiation of 1000
photons per pixel. Top-left: Filtered back-projection with 360 projection angles (full
data), top-middle: Filtered back-projection with 60 projection angles (decimated data).
Top-right: FB-TV reconstruction with 60 projection angles and λ = 5. Bottom, from
left to right: FB-TV reconstruction with 60 projection angles with λ = 15, λ = 25 and
λ = 40.
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Figure 17: Results obtained on real CBCT acquisitions with flat irradiation of 600
photons per pixel. Top-left: Filtered back-projection with 360 projection angles (full
data), top-middle: Filtered back-projection with 60 projection angles (decimated data).
Top-right: FB-TV reconstruction with 60 projection angles and λ = 5. Bottom, from
left to right: FB-TV reconstruction with 60 projection angles with λ = 15, λ = 25 and
λ = 40.
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Figure 18: Results obtained on real CBCT acquisitions. From left to right : Filtered
Back-Projection reconstruction from the full data set (360 projection angles), FB-TV
reconstruction with 90, 60 and 36 projection angles with λ = 20. From top to bottom
: Reconstructions performed from real data obtained with a photon count of 15000,
10000, 1000 and 600 in flat irradiation conditions.
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