
HAL Id: hal-00640169
https://hal.science/hal-00640169

Submitted on 10 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The concept of residuals for fault localization in discrete
event systems

Matthias Roth, Jean-Jacques Lesage, Lothar Litz

To cite this version:
Matthias Roth, Jean-Jacques Lesage, Lothar Litz. The concept of residuals for fault localization in
discrete event systems. Control Engineering Practice, 2011, 19 (9), pp.978-988. �hal-00640169�

https://hal.science/hal-00640169
https://hal.archives-ouvertes.fr

The concept of residuals for fault localization in discrete event systems

Matthias Roth a,b.*, Jean-Jacques Lesage b, Lothar Litza

• Institute of Automatic Control, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
b LURPA _ Ecole Normale Superieur de Cachan, 61, Avenue du President Wilson, 94235 Cachan Cedex, France

ABSTRACT

Keywords:
Discrete event systems
Fault detection
Fault diagnosis

In this paper an approach for fault localization in closed-loop Discrete Event Systems is proposed. The
presented diagnosis method allows fault localization using a fault-free system model to describe the
expected system behavior. Via a systematic comparison of the observed and the expected behavior, a
fault can be detected and a set of fault candidates is determined. Inspired by residuals known from
diagnosis in continuous systems, different set operations are introduced to generate the fault candidate
set. After fault detection and a first fault localization. a procedure is given to render the fault
localization more precisely by an analysis of the further observed system behavior. Special emphasis
is given to the use of identified models for the fault-free system behavior. The approach is explained
using a laboratory manufacturing facility.

t. Introduction

Diagnosis in Discrete Event Systems (DES) has been a vital
research area in the last 15 years. The class of technical systems
that can be modeled as DES includes production, transportation
and communication systems (Cassandras & Lafortune, 2006). One
of the main purposes of diagnosis methods for technical systems
is to increase their availability by helping the system operator to
find fault sources as quickly as possible. An increased availability
leads to an improved system dependability and has positive
effects on economic key issues such as productivity.

An important class of DES diagnosis approaches is model
based. The idea behind is to compare the modeled and the
observed system behavior in order to detect and to localize faults.
Model-based approaches can be divided in two groups. The first
group considers models that contain fault-free behavior as well as
system behavior for given faults. The second possibility uses
models of fault-free system behavior only.

A prominent example for DES-approaches with automaton
models including the faulty system behavior is given in Sampath,
Sengupta, Lafortune, Sinnamohideen, and Teneketzis (1996). One
of the main features ofthis "diagnoser" approach is the possibility
to give guarantees concerning the diagnosability of faults that are
considered in the underlying model. If certain conditions hold,
faults considered in the model can be precisely localized. Various
improvements of this approach have been proposed in the last

E-mail addresses:mroth@eit.uni-kl.de (M. Roth),
lesage@lurpa.ens-cachanJr U.-J. Lesage), Iitz@eit.uni-kl.de (I.. Litz),

years mainly dealing with adapting the method for distributed
diagnosis e.g. Sayed-Mouchaweh, Philippot, and Carre-Menetrier
(2008) or incorporating timing information e.g. Hashtrudi Zad,
Kwong, and Wonham (2005).

Apart from using automata as system models for DES, Petri
nets are a widely spread modeling formalism. In Fanti and Seatzu
(2008) an overview of existing diagnosis approaches using Petri
nets is given. In the most recent works it is proposed to perform
diagnosis based on integer linear programming, see e.g. Dotoli,
Fanti, Mangini. and Ukovich (2009). The idea is to check if an
observed behavior is consistent with some modeled faulty beha­
vior. An inherent disadvantage of approaches relying on fault
models is that only faults explicitly considered in the system
model can be detected and localized.

Diagnosis methods only working with a model of the nominal
fault-free system behavior avoid this disadvantage. Faults that lead
to an inconsistency between the nominal and the observed behavior
can be detected when comparing modeled behavior and measure­
ments without having to be considered explicitly (Cordier et aI.,
2004; Reiter, 1987). Another advantage of this class of methods is
that model building is straightforward since no special knowledge of
faulty system behavior is necessary. A drawback of this second class
of approaches is that fault localization is more ambitious than in the ­
case of methods relying on fault models, since the models have been
built using less knowledge. A second drawback is that diagnosability
of given faults can usually not be guaranteed.

In this paper, fault localization is studied based on a fault-free
system model. The approach has been developed for a widely used
class of closed-loop DES consisting of a plant and a controller.
Although the proposed method is not restricted to identified models,
special emphasis will be given to the implications of models obtained

mailto:Iitz@eit.uni-kl.de
mailto:lesage@lurpa.ens-cachanJr
mailto:addresses:mroth@eit.uni-kl.de

by identification. The paper is structured as follows: In Section 2 an
overview of the proposed diagnosis approach is given. Section 3
sketches the identification method that has been used to obtain the
fault-free system model. It also defines the semantics of the used
model class. Section 4 represents the kernel of the paper: It is
explained how to detect faults and to define appropriate residuals for
fault localization using the model defined in Section 3. In order to
show the relevance of the proposed method for real systems, a case
study is treated in Section 5.

2. Overview of the proposed diagnosis approach

According to Isermann and Balle (1997) the term fault diag­
nosis is defined as follows.

Diagnosis: Determination of the time of detection, kind, size
and location of a fault. Diagnosis follows detection, includes
fault isolation and identification.

The definition of Isermann and Balle (1997) is proposed with the
background of time continuous systems. Since this paper deals with
a different class of systems and different models, not each aspect of
this definition applies to the presented approach. Systems that are
considered in this paper are DES consisting of a closed-loop of plant
and controller (Fig. 1). The controller has a certain number of binary
outputs connected with actuators in the plant. Sensors of the plant
are connected to binary controller inputs. Possible faults in this
scenario are broken actuators and sensors as well as damaged plant
hardware. In the presented approach the only information used to
perform the diagnosis task are the signals exchanged between
controller and plant. The aim is to detect if a sensor or an actuator
fails or if some plant hardware gets damaged which leads to an
abnormal behavior. Recognizing such an abnormal behavior will be
referred to as fault detection. In order to allow systematic repair
actions, it is also helpful to give information of where a detected
fault is located. This process will be referred to as fault localization.

Closedloop DES

Controller

l~-=======~~c.l. Signals exchanged

tt between controller
and plant

<.> Plant

Fig. 1. Closed-loop DESconsisting of plant and controller.

The aim of fault localization in the context of this paper is to
determine controller I/Os (inputs and outputs) which are related to a
faulty component. Based on the binary signals exchanged between
controller and plant it is not possible to gather any information
concerning the "size" of a fault. Hence, in this paper the diagnosis
task is considered to be completed after fault localization.

A model-based diagnosis method that is well established for
continuous systems is to use residuals. Isermann and Balle (1997)
define residuals as follows:

A residual is a fault indicator, based on a deviation between
measurements and model-based computation.

In the upper part of Fig. 2 this principle is depicted for continuous
systems. The deviation between a measured signal evolution (dashed
line) and the signal evolution computed using a model (continuous
line) is quantified. Analyzing this quantification it is possible to
detect and localize faults in the observed system. Fig. 2 also shows
measurements of a DES and an automaton that models the con­
sidered system. Typically,observations of a DES are event sequences
as shown in the lower part of the figure. The expected event trace
can be derived from the automaton modeling the system. The
observed sequence a, b can be reproduced by the state trajectory
0, 4, 5. When event c is observed, the sequence is no longer
reproducible with the given automaton and a fault can be detected.
The approach presented in this paper focuses on the analysis of the
difference between measured and expected DES behavior. Two
generic fault symptoms will be considered in Section 4: Faults
leading to observed but unexpected events and faults that lead to
missed events.

Closed loop DES

Deviation

Fault detection
Fault localization

System output

I~II---
Model output
Fault tree system model

Evaluator

Fig. 3. FDI principle for closed loop DES.

~
~ Model-
III ~ __ Residual: Quantification of

E'" Yl'bg Observation - " -- the difference between
::>c:: I expected and observed
.~ t signals
U

'" q be u Quantification of
T;; Model :~esidual:

the difference between ~
E observed but unexpected.
u b d> expected but unobserved u
u f

eventsb ee Observation •
l;l I I I

i:5

Fig. 2. Residuals in time-continuous and in discrete event systems.

The proposed fault detection and localization principle for
closed loop DES is depicted in Fig. 3. The closed-loop DES is
observed by collecting the signals exchanged between controller
and plant. This measured system output is given to an evaluator
which contains an automaton modeling the fault free system
behavior. The evaluator tries to reproduce the observed system
output using the embedded model. This evaluation creates the model
output that is compared to the measured output. If measured and
modeled output differ, a fault is detected and fault localization starts
in order to determine where the fault is located.

3. Model identification

3.1. Data collection and arrangement

As explained in the former section. model-based diagnosis is
driven by the comparison of modeled and observed behavior. The
closer the model to the real behavior is. the more accurate results
model-based diagnosis can yield. The usual way for manual building
of systems consisting of controller and plant (see Fig. 1) is to build
models for the plant GPlanc and for the controller algorithm GConrcollec

(Sampath et al., 1996). The system model G is obtained by parallel
composition of the plant and controller models: G = GPlancllGConrcoller'

Usually. GConrcoller only models the idealized behavior of the con­
troller algorithm. Hardware specific aspects of the controller are
usually not considered. An example for such an aspect are industrial
controllers where several controller outputs can change their value
within one controller cycle. An example for effects usually not
considered during manual model building of the plant model GPlanc

are chattering sensors. As a consequence. manually built models
often represent the specified system behavior rather than the real
one. If the real behavior is compared with an idealized model. the
results can either be false alerts or non-detectable faults.

The main advantage of working with an identified model is
that it represents the real behavior of the closed loop system with
respect to the identification data base. As identification data base.
it is possible to use behavior observed during normal system
operation. This behavior includes consequences implied by the
specific controller hardware as well as non-ideal (but not faulty)
plant behaviors like chattering sensors.

For model identification and for diagnosis itself it is necessary
to collect the signals exchanged between controller and plant
when the system is in operation. These signals are available by
considering the inputs and outputs of the controller. The con­
troller I/Os are arranged in I/O vectors with several properties
summarized in Definition 1.

Definition t (Controller I/O vector). Given r different controller
inputs II• ... • IT and s different controller outputs 0 1• __ .• Os. the
controller I/O vector U=(J0I •... ,JOm) with m=r+s is given by
IOj = Ijvi = 1.. _.r and IOT + i = 0ivi = 1.. _.s. m denotes the dimension
of the vector (number of controller I/Os).

The identification ofthe model is based on sequences of observed
I/O vectors. For the identification it is necessary to observe a certain
number of system evolutions and to collect the according I/Ovectors.
The sequence of I/O vectors that is exhibited during a given system
evolution is built by I/O vectors in the order of their appearance:

Definition 2 (//0 vector sequence). If during the h-th system
evolution lh I/O vectors Uh have been observed. the sequence is
denoted as a(h) = (Uh(1).Uh(2) •...•Uh(lh))'

Hence lh denotes the length of the h-th I/O vector sequence.
We assume that for two successive I/O vectors u(t) #-u(t-1) holds.
In order to translate the observed I/O vector sequences into a

model. a formal definition of the observed system behavior is
necessary. We define the set of observed words with length q
observed during p different system evolutions:

Definition 3 (Observed word set and language). The observed
words of length q are denoted as

W6bs = _. •U j (j+ q- 1))) .i~1 (/;:Q\Ui(j),Ui(j+ 1)•.

With the observed word set we can define the observed language
of length n of the system as

n

L3bs = U Whbs'
j=1

The observed language of length n consists of the I/O vector
sequences up to length n that have been observed to get the
necessary data base for identification.

3.2. Model definition

Since the observed system language has to be translated into
an appropriate DES model, we have to define an automaton that
reflects the characteristics ofthe closed-loop DES. The closed-loop
DES from Fig. 1 is an autonomous event generator that exhibits a
system output. A well programmed controller can be considered
as deterministic, whereas the physical plant must generally be
considered as non-deterministic. Hence the coupled system of
plant and controller must be considered as non-deterministic. An
automaton that reflects these properties is the Non-Deterministic
Autonomous Automaton with Output that is defined by

Definition 4 (NDAAO). NDAAO= (X,QJ).•xo) with X finite set of
states. Q output alphabet. f :X ---> 2x non-deterministic transition
function. A. : X ---> Q output function and Xo the initial state.

This automaton will be presented as a digraph in the usual
manner (Cassandras & Lafortune, 2006). The words and language
generated by this automaton are given by

Definition 5 (Words and Language of the NDAAO). The set of
words of length n generated from a state x(i) is defined as

W;(.) I = (we QI : w = A.(x(i))}

and

W;(.) 1 = {we Qn : w = (A.(x(i».A.(x(i + 1)).

... •A.(x(i+n-1))): x(j+ 1) ef(x(j))Vi:s;j:s; i+n-2}.

The language generated by the NDMO is given by
n

LrdenC = U U W~.
i=lx€X

Ifthe output alphabet Q consists of I/O vectors. it is possible to
reproduce the observed language by performing state trajectories
in the automaton.

3.3. Identification and model properties

For identification of DES various methods exist (see e.g. Fanti &
Seatzu, 2008 for an overview of identification of Petri nets). An
identification algorithm that has especially been designed to
deliver appropriate models for fault detection purposes is given
in Klein (2005). It works on the basis of words of the parametric
length k and yields a non-deterministic autonomous automaton
with output (NDMO) as introduced in Definition 4. Basically.
states representing observed words of length k are connected in

the order the words have been observed. The algorithm delivers
an automaton that is k+ 1-complete (Moor, Raisch, & Young.
1998). This means that the automaton generates exactly the set
of observed words of length k+ 1: L~tsl =Lfd~~t. This characteristic
is advantageous for fault detection: If the observed language has
been collected during fault-free system behavior only, it can be
made sure that each fault leading to an abnormal word of length
k+ 1 can be detected since the model (that is intended to be fault­
free) cannot erroneously reproduce it. Faulty I/O vector sequences
(words) that are reproduced by the model represent undetectable
faults.

A second important model property is shown in Roth, Jean­
Jacques, and Litz (201Oa): If it is possible to state L~t/ =L~-:;i
(with L~-:;i denoting the fault-free language of the considered
system) for an arbitrary k, L?d~n~ ~ L~~k holds: If the system
language of length k+ 1 (L~-:;;) has been completely observed.
the identified model simulates the complete original system
language of length larger than k (L~~k). This reduces the number
of false alerts when using the identified model for diagnosis
purposes: If L~tsl =L~-:;i holds for a given k, the model is able to
reproduce any fault-free word which can be exhibited by the
system. Hence, none of the fault-free words will lead to a false
alert. Since both model properties relate the identified and the
observed system language, they help validating the model against
the observed behavior.

Since for the second property it is necessary to state ~t,1 =~ .
the most important question for the identification approach is to
determine a k for which this assumption holds. Fig. 4 gives a typical
evolution of the observed word set for a closed loop system over
time. The data has been captured for the case study system that will
be described in detail in Section 5. The word sets have been collected
during fault-free system evolutions. It can be seen that 1Lbb, 1 con­
verges to a stable level after about 8 system evolutions. This allows
concluding that probably each word of length one (single I/Ovectors)
that is exhibited during normal system behavior has been observed.
It is reasonable to state that this also holds IL~,I and IL6bsi (I/O vector
sequences of length two and three). If word sets containing longer
sequences are considered, it can be seen that the according curves
do not perfectly converge. For the data depicted in Fig. 4 it can be
concluded that ~tsl =~ holds for k=2 due to the convergence of
the according curves. A model identified with k=2 will thus not lead
to false alerts during online diagnosis. If k is chosen to a larger value,
it is likely that the system exhibits new fault-free words of length
k+ 1 after the identification data has been collected since the
according languages do not converge to a stable level. Since these
new words cannot be reproduced by the model, false alerts would be
the consequence.

Note that problems similar to the choice of k must be solved if
the model is obtained from manual model building. The engineer

F=============:;;::::::::::;;;;;:===] n = 10

2500 I-----:::;::;;;=...-='------=:::::;====---jn=9

2000 r-----;r7""""::::::::::---:::::==......----====i n = 8

:...~ 1500 1r--/;~:;;~_--=~======~n=7

I~~~~===~~;;::=::::::~ n- 61000 ~ n = 5

i::r//S~~~~~n=4
500 r-?": n = 3

o 'c n-Ii=§~=================~ n =21 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
System evolutions in chronological order

Fig. 4. Evolution of the observed word set for the case study.

creating the model has always to decide upon the level of
abstraction and necessary model accuracy. It is up to his model­
ing experience to ensure that the model that is supposed to
represent the fault-free system behavior contains any possible
fault-free behavior and does not erroneously contain faulty
sequences. In general, neither working with identified nor work­
ing with manually created models guarantees having a perfect
system representation.

4. Fault detection and localization

4.1. Definition of I/O behavior

In Section 3.2 it has been explained that the NOMO can be used
to reproduce I/O vector sequences of the considered system if its
output alphabet consists of I/O vectors. In case of a fault it is not
sufficient to know that an observed I/O vector sequence cannot be
represented by the model (fault detection). It is necessary to
determine I/Oswhich are possibly responsible of the malfunctioning
(fault localization). Hence, it should be possible to determine the
behavior of single I/Os based on the observed and modeled I/O
vectors. If the system produces a new I/Ovector, it is the result of at
least one I/O changing its value. If a binary I/O changes its value a
rising or falling edge can be observed (see Fig. 5):

Definition 6 (Edges). For each controller I/O IO j there exist three
edges: 10;_0 to indicate a change from 1 to 0 (falling edge), 1Oi-1
to indicate a change from 0 to 1 (rising edge) and IO j_ B to indicate
no change in value:

E = {JOj_O U lOi_1 U IO jj'i1 ::0:; i::o:; m},

with m denoting the number of controller I/Os in the system.

In order to determine edges appearing if two arbitrary I/O
vectors are considered, an edge function is defined:

Definition 7 (Edge function). Let10m, 1O,{k) be the i-th controller
I/O in the j- and k-th I/O vector.

lOi_1 if IOj (j) = 0 and IOj(k) = 1,

Edge(lOj(J),lO j(k» = 10j_0 if IOj(j) = 1 and IOj(k) = 0,
{ IO;_B if IOj(j) = IOj(k)

delivers the resulting edge of the i-th I/O from the comparison of
its values from the I/O vectors uU) and u(k).

Instead of Edge(IO,U), IOj(k» it is also written Edge(uU)[i],
u(k)[i]). Since more than one I/O can change their value when
new I/O vectors are produced, the evolution set that summarizes
the edges 'between' two I/O vectors is defined:

Definition 8 (Evolution set).

ES(u(j).u(k)) = {Edge(u(j)[I1.u(k)[l1) E EI
Edge(u(j)[i],u(k)[i]) # IOjjv1 ::0:; i::o:; m}

determines the set of rising and falling edges between two I/O
vectors uU) and u(k).

risingccjse: 10,_1 , no edge:1°
1
_ £

/0, t ~-' '_','"
: U-LlitIli"lledllt:JO'_O

I

Fig. 5. Example for rising or falling edges of an 1/0.

Fig. 6 shows an example for the evolution set resulting from
the comparison of two I/O vectors.

4.2.	 The NDAAO as part of the evaluator

As explained in Section 2, the first step in diagnosis is fault
detection. In the presented approach fault detection is performed
using the NDMO as fault-free system model. Fig. 3 shows that the
model is used in the evaluator to reproduce the observed system
output.

A more detailed view of this procedure is given in Fig. 7. The
part with dashed lines will be introduced in the next section. The
current I/O vector u(t) that is exhibited by the closed-loop DES is
given to the evaluator. Following Algorithm 1, the evaluator tries
to determine the current state of the NDMO. The main idea of
this algorithm is to determine a current state estimation follow­
ing the observed evolution set.).(x) determines the output of an
NDMO state according to Definition 4 and ES is the evolution set
according to Definition 8. With Xt - 1 and Xt the state estimations
after the occurrence of the t-th and t -l-th I/O vector are denoted.
Before the algorithm is started, both sets are empty.

Algorithm t. Evaluator algorithm.

Require New observed I/O vector u(t) and former state
estimation XC- 1

1: if IXt - 1 1> 0: then
2:	 Xc <- Ix E XI3Xpre E Xt-1 : X Ef(xpre)

1\ ES(),(xpre),).(x» = ES().(xpre),u(t»}

3: else
4:	 Xt <- (x E XI).(x) = u(t)}

5: end if
6: Xt-1 <-Xt
7: return Xt

The algorithm checks if the former state estimation XC- 1

contains at least one state. If the observation is being initialized
or after a fault has been detected, this set is empty. In case of an
empty estimation IXC- 11= 0, the evaluator determines each
NDMO state with the observed I/O vector as output as possible
current state (see line 4 of Algorithm 1) and adds it to the current
state estimation Xt. If the former state estimation Xt-1 was not
empty (line 2), the algorithm checks the observed evolution set of
I/O edges in order to determine the current state estimation. Each
NDMO state that can be reached by reproducing the observed I/O
edges starting in one of the states from the former state estimate

/0. 0 £8(11(1).11(2» =UO, _0.10, _I} 010'] [I]	 [0
. : 11(1) =	 • = 11(2)
~ 0	 0
10, 0	 I

Fig. 6. Example fort he evolution set resulting from the two I/O vectors u(1) and u(2).

Evaluator

[~J=U(l)

XC- 1 is added to the current state estimation Xc. At the end of the
algorithm, the former state estimation Xt - 1 for the next run ofthe
algorithm is prepared by copying Xc to it.

The complexity of the evaluator algorithm with respect to the
number of I/Os in the system is linear since the number of [/Os
defines the number of comparisons carried out in line 2 or line 4.
Practical experience with the algorithm showed that it is able to
process a newly observed I/O vector even with a large model
within a few milliseconds which is sufficient for most industrial
applications.

The resulting state estimation Xt of the evaluator as well as the
observed I/O vector u(t) are given to the analyzer where the fault
detection policy as well as the fault localization operations are
implemented. The fault detection policy is given by

- _	 {faUlt if IXtl #-1,
(1)FD(Xtl- OK if IXtl = 1.

A fault is detected if the evaluator cannot determine an unam­
biguous state estimation. Fig. 8 shows an example of the state
estimation and fault detection process. In the lower part of the
figure, the NDMO is depicted. In the part "observation" an observed
I/O vector sequence is shown. Between NDMO states and between
I/O vectors, the resulting edges are given. It is supposed that the
algorithm starts without a defined initial NDMO state Xo like it is
the case if the start of the diagnosis procedure is not synchronized
with the start of the closed-loop DES. After the observation of the
first I/O vector, the evaluator algorithm goes to line 4 since
IXc- 11= 0. The evaluator determines the NDMO states with
).(x) = u(t) and adds them to Xc. State Xl and state X3 have the first
observed I/O vector as output. The fault detection policy returns
"fault" since the state estimation is not unambiguous. This changes
as soon as the next I/O vector is observed which leads to 101_°.
Starting from Xl or X3 only X2 can be reached by producing the same
evolution set. Hence the state estimation only contains one state
(line 2 of Algorithm 1) which makes the fault detection policy
declare "OK". The state estimation proceeds with the next observed

(~J 10,_0 (~J 10,_1 (~J 10,_1 (:J IOI_O(~Js

]-t--'-..:;...",-.-"--'----'-'---'-'----'-'--­.Y, {x,.x,} (x,) {x,} {x,l {}

FD Jault OK OK OK Jault

~ o
;z.

Fig. 8. Example for state estimation and fault detection.

Fault Detection I Fault Localization

.~~.~! ~ .
i ResI i
i Res2 i
: Res3 i~i..~~~..i Analyzer

Fig. 7. FDIscheme with the NDMO.

I/O vectors by determining the state trajectory X3, X4. When the last
I/O vector is observed, the resulting evolution set {lOt_a} cannot be
produced by leaving state X4. The only evolution set that can be
generated by leaving X4 is {lOt_O, 102_0} which differs from the
observed one. Hence the state estimation from line 2 in Algorithm 1
results in an empty set which leads to fault detection. During the
initial phase of the observation a fault is detected until the state
estimation becomes unambiguous. This can be avoided if an initial
NOMO state Xo is given and the start of the diagnosis process and
the closed-loop OES are synchronized.

4.3. Definition of the residuals

After a fault has been detected, the next step is to determine
which sensor, actuator or hardware part of the plant is possibly
affected. Since sensors and actuators are directly connected to
controller l/Os, it is helpful to give a certain number of I/Os that
could be related to the fault. In the following two subsections four
residuals will be introduced that formalize generic fault symp­
toms. The idea of the residuals follows the definition of Isermann
and Balle (1997) where they are defined as fault indicators based
on a deviation between measurements and model-based computa­
tion (see Section 2). In order to calculate the residuals the state
estimation before a fault was detected is supposed to be unam­
biguous IXt-tl = 1. Hence, only one NOMO state was formerly
considered as possible current state. If this condition does not
hold, the residuals are not calculated.

4.3.1. Unexpected behavior

The first class of residuals has the aim to localize faults that led
to an observed behavior that was unexpected in the given
context. The current context is defined by the last estimated
actual state x in the automaton. The first residual is

Res1(x,u(t)) = ES(A,(x),u(t))\ U ES(A,(x),A,(x')). (2)
'Ix' ef(x)

With ES(A,(x),u(t)) the rising and falling edges are determined that
are observed when comparing the I/O vector of the last estimated
current state and the I/O vector that led to fault detection. This set
represents what actually happened when the fault was detected
and refers to the notion measurements in the residual definition.
Uvx' ef(x)ES(A,(X),A,(x')) represents the union of the sets of rising and
falling edges when the last estimated current state and each of its
direct successor states are considered. It represents the expected
behavior. This refers to the model-based computation in the
residual definition. The set difference of the observed (ES(A,(x),

u(t))) and the expected (Uvx'ef(xlES(A,(x),A,(x'))) behavior is built in
the residual equation and thus represents the unexpected beha­
vior. In Res1, the expected behavior is given by the union of each
possible following behavior of the last estimated current state.
A stricter formulation of the expected behavior is used in the
second residual:

Res2(X,u(t)) = ES(A,(x),u(t))\ n ES(A,(x),A,(x')). (3)
Vx' ef(x)

Instead of a union over the expected behavior of the possible
following states, an intersection is used. The intersection delivers
the I/O edges that must be observed no matter which following
state in the model is taken. It is obvious that Res1 c;;Res2 since
Uvx'eflX)ES(A,(X),A,(x')) ;2 flvx' ef(x)ES(A,(x),A,(x')).

Example. Fig. 9 shows an example for unexpected behavior that
led to fault detection (instead ofthe I/O vectors only the I/O edges
between two states are given): from the estimated actual NOMO
state Xt it is not possible to take a transition that has exactly the
observed falling edges 103_°and 104_°.Hence a fault is detected.

,-'" 10,_010, _ 0 ~ observed
\f,'" - -- results from ES(A(X,),u(r»

XI

Fig. 9. Example for an unexpected behavior.

The result of Res1 (with x= Xt) is

Res1(x,u(t)) = {I03_0,104_0}\({I0t_O,102_1,104_0} U {I0t_O,102_1})

= {I03_0}.

This result means that 103_°was an unexpected event which
implies that the system operator should check the sensor or
actuator that is connected with 103 • However, it is possible that
the fault cannot be found at this component. If this is the case,
Res2 should be calculated in order to use a stricter formulation of
the expected behavior. In Res1 each possible following behavior is
subtracted from the observation. Using Res2 only the behavior
that must occur no matter which regular following behavior is
considered:

Res2(x,u(t)) = {I03_0,104_0}\({I0t_O,102_1,104_0} n (lOt _O,102_1})

= {I°3_0,104_O}

This result implies that the occurrence of a change in value of 104 is
not always expected and thus another possible fault localization.

4.3.2. Missed behavior
In contrast to an observed but unexpected behavior it is also

possible that a fault can be localized by determining a missed event.
Set operations that help to localize an expected but unobserved
behavior are given by the third and the fourth residual:

Res3(x,u(t)) = n ES(A,(x),A,(x'))\ES(A,(x),U(t)). (4)
v« ef(x)

Res3 is the set difference of the I/O edges that are expected no
matter which following state is taken (flvx' ef(x)ES(A,(x),A,(x'))) and
the I/O edges that have been observed (ES(A,(x),u(t))). Each rising or
falling edge that must occur when the estimated actual state is left
but has not been observed is part of Res3. The expected behavior is
represented by the intersection of each possible following behavior.
It is also possible to give a less strict formulation of the expected
behavior by using the union operation instead of the intersection:

Res4(x,u(t)) = U ES(A,(x),A,(x'))\ES(A,(x),u(t)). (5)
Vx' ef(x)

Since Res3 c;;Res4, the result of Res4 is usually less restrictive than
Res3, it contains more elements.

Example. The situation in Fig. lOis considered to iIlustrate Res3

and Res4. The observation of the edge 103_° leads to fault detection
with Xt as estimated actual NOMO state. Applying the residuals
results in Res3={/Ot_O} and Res4={lOt_OJ02_1}. The same proce­
dure as explained for Res1 and Res2 should be started: First, the
component connected with lOt should be checked. If the system
operator does not find a fault at this component, he should proceed
with checking 102 which is additionally part of Res4.

Especially if production systems with many I/Os are consid­
ered, the residuals can help to get a relatively small set of I/Os
that could be related to the fault. A maintenance operator can

,-'"'- /0, _ 0-7 observed
\!" - -.. results from ES(A(X,).u(I»

X\
/0,_0/0,_'

Fig. 10. Example for a missed behavior.

then check the possibly faulty sensors or the related actuators.
Actuators are related to a sensor if their activation or deactivation
can have an influence on the sensor value.

4.4. Reduction of the residual sets

Once a fault has been detected. the four residuals are available
to localize controller I/Os that are related with the fault. It has
been explained that the residuals analyze two different generic
fault symptoms: missed and unexpected behavior. In general. it is
not a priori possible to tell if a fault was caused by missed or by
unexpected behavior. Hence. all residuals must be calculated
which results in a set of possible fault candidates. The system
operator has to check each of the I/Os according to the priority
explained before. This operation can be supported by the infor­
mation if the considered I/O is suspected to have shown a missed
or an unexpected behavior. In order to give a more precise
estimation of which I/O is possibly affected, it is possible to take
further I/O vectors into account that follow the vector that led to
fault detection. Of course. this approach is only possible if the
system does not immediately have to be stopped after fault
detection like for fault tolerant systems. The reduction of the
fault candidate set is based on the following heuristic:

After a fault has been detected it is possible to delete a fault
candidate from the candidate list if it shows a following
behavior that can reasonably be considered as fault-free.

To decide if the following behavior of a possibly affected I/O can
reasonably be considered as fault-free. a special state estimation
algorithm is proposed. The idea of this algorithm is to mask out
the possibly faulty part of the I/O vector and to perform state
estimation only based on the 'healthy' I/Os. This state estimation
results in a set of states that represent possible descriptions for the
non-faulty part of the current system state. If a possibly affected I/O
has the same value in each of these states and in the currently
observed I/Ovector, it is assumed that this can be considered as the
result of a fault-free I/O behavior. The I/O showed a behavior that is
completely explicable with fault free system states which have been
determined without considering the I/O itself. Hence this I/O can be
deleted from the fault candidate list.

The candidate set of all I/O edges that are reported by the
residuals is given by

Resu(x.u(t)) = ES(l(x).u(t)) u U ES(l(x).l(x'»). (6)
VI(eN')

It is obvious that Res., = Res1 URes2URes3URes4. In order to get
the controller I/Os that have edges in the candidate set the
following function is applied:

JOUst = (JOdOOi_1 v JOj_O) E Resu}.	 (7)

This JOUstcontains the part of the system I/O vector that is possibly
influenced by the fault based on the result of the residuals. The
possibly faulty I/Os from JOList can create the following edges:

CandEdges = {JOj_1,JOi_0 E EIJOj E 10List}.	 (8)

Since the state estimation algorithm will work on the basis of the
non-affected part of the I/O vector. this part has to be calculated by
an I/O vector projection:

Definition 9 (I/O vector projection). The I/O vector projection of
an I/O vector u to a list of I/Os (JOUst) that is to be masked out is
defined as

uri] if JOi¢JOUst,
JOPIOLisr(u)[zl = { * if JO; E JOList

vi = 1,m (with m denoting the number of controller I/Os in
vector u).

~OPIOLjSr(U)[l]

10PIOList(U) = :
{

JOPIOList(u)[m]

applies the function to the entire vector. JOPIOLisrtU) contains for
each I/O that has to be masked out (i.e. an I/O in the JOList) the do
not care symbol *. For each I/O that has to be considered,
JOPIOList(U) has the according I/O value in vector u.

Algorithm 2. State estimation and candidate set reduction.

Require JOUst. CandEdges. X
{Initialization}

1:	 Xt _ 1 <-X

{State estimation}
2:	 Wait for the next observed I/O vector denoted as u(t)

3:	 Xt <-(x EXt_I IJOPIOList(l(x)) = JOPIOList(U(t))}

4:	 Xt<-XtU{x'EX 13x EXt_1 :x'Ef(x)AlOP,oList(l(x'))

= JOPIOList(U(t))}

5:	 XReach <-(x(i+n) E XI3(x(i)..... x(i+n») :

x(i) E Xt /\ vi ~j ~ i +n : (x(j+ 1) Ef(x(j))/\ES(l(x(J)).

l(x(j+ 1))) s; CandEdges)}

6:	 Xt<-X t UXReach

7:	 X t-1 <-Xt
{Candidate set reduction}

8:	 for all JOj E JOUst do
9: if IX r I> 0/\ VXEXt: l(X)[ll = u(t)[ll holds then
10: JOUst<-JOList\lOj
11: end if
12:	 end for

{recalculate CandEdges}

13:	 CandEdges= {JOj_l,lOj_OE EI/OiE JOList}

{Analyze result}

14:	 if IXtl > 0 and IJOUst(= 0 then
15:	 (probably) false alert --+ end algorithm and

start Algorithm 1 with Resl-4={} and Xt- 1 =Xt

16:	 end if
17:	 if IXtl > 1 and IJOUstl > 0 then
18: go back to line 2
19:	 end if
20:	 if IXtl = 0 then
21: no state estimation possible
22:	 end if

With these sets it is possible to perform Algorithm 2 instead
of Algorithm 1 in order to estimate the current system state. Since
the algorithm starts with considering the first I/O vector after
fault detection, the former state estimate is empty and must be
reinitialized. Each NDAAO state must be considered as possible
estimate (line 1). When the next I/O vector is observed it is
checked which NDAAO state of the former estimate is still con­
form with the 'healthy' part of the new I/O vector (line 3). Possibly

affected [/Os do not contribute any information to determine the
new estimate Xt • After this, NOMO states are determined which can
be reached starting in the former estimate Xt - 1 by considering the
I/O vector projection of the new I/O vector. Each following state of
the former estimate (x' E!(x)lx EXt - 1) that has the same 'healthy'
part of the [/0 vector as output as it has been observed is added to
the new estimate (line 4). Since the state estimation should only be
restricted with the non-affected part of the I/O vector, the set XReach

is calculated in line 5. It contains each NOMO state that can be
reached starting in the current estimation Xt if during the state
trajetory only possibly affected I/Oedges occur (CandEdges). This set
is added to the current estimate. This ensures that the state
estimation is not blocked by I/Os that are possibly related to the
fault. In line 7, the set Xt-1 for the analysis of the next I/O vector is
prepared.

After the state estimation part is finished, the candidate
reduction starts. For each I/O in the /oUst it is checked if it has
the same value in each state of the estimate and in the currently
observed I/O vector. If this is true, the I/O gets removed from the
JOUst since the currently observed I/O value is explicable with
each estimated NOMO state. Since the estimated states were
determined only using the 'healthy' part of the I/O vector, it is
assumed that it is highly probable that the considered I/O is not
faulty as it fits well in each fault-free interpretation of the current
system state. After the JOUst has been updated, the CandEdges set
must also be recalculated. Then, the calculated sets are inter­
preted. If the /oUst is empty, the fault detection was probably
a false alert since the current observation can perfectly be
explained by the estimated fault-free model states. Most often,
in this case IXt! = 1 also holds. Hence, the normal observation can
go on (Algorithm 1). If at least one I/O is left in the /oUst and Xt is
not empty, the algorithm loops back and waits for the next I/O
vector. If it was not possible to determine a state estimation, the
algorithm cannot proceed and stops. The operator must check the
remaining I/Os. Note that the number of candidates in JOUst is

typically much smaller than the number of I/Os in the system:
Before the algorithm is started, JOUst is calculated according to
Eq. (7) as the union of l/Os contained in the residuals. Processing
further I/O vectors, JOUst can only be reduced in the algorithm as
can be seen from line 8 to 12.

The algorithm only calculates a new state estimation and an
updated candidate set if a new I/O vector is observed. The time to
recalculate these two sets depends thus on the time between the
observation of the new I/O vectors and cannot be calculated a
priori. Since the algorithm has to compare each value of an [/0 in
an observed vector with the according I/O in the model states, the
complexity of the algorithm with respect to the number of I/Os is
linear.

5. case study

5.1. System description

In order to demonstrate the relevance of the proposed method
for existing closed-loop DES, a case study is presented in this section.
The considered system is a laboratory facility at the Institute of
Automatic Control, University of Kaiserslautem. The purpose of the
system depicted in Fig. 11 is to treat work pieces that are stored in
the feeder (left most station) with three machine tools. The system
is controlled using a Siemens S300 PLC (Programmable Logic
Controller) with 14 inputs and 15 outputs. The controller inputs
and the corresponding sensors can be seen in Fig.11. Inputs that are
written in italic are connected to sensors with a specific technology
that delivers a logical 0 if they detect something and a logical 1 if
they do not detecting anything. All sensors except of those for work
piece positions have this technology. The outputs are given in
Table 1. If they are set to 1, the according actuator is activated. In
order to make the I/O names easier to read they are not labeled 10;

11.3: Station! 11.2: Stationl 12.2: Station2 12.3: Station2 13.2: Station3 13.3:Station3
bottom position top position top position bottom position

conveyor conveyor conveyor conveyor
position left position center position left position center

Station I: drilling station Station 2: vertical milling station

Fig. 11. Lab system.

Table 1

Controller outputs of the case study.

11.4: Stationl U.S: Stationl 12.4: Station2 12.5:Station2

top position bottom position

13.0: Station3
back position

13.1: Station3
front position

13.4: Station3
conveyor

13,5: Station3
conveyor

position left position center

Station 3: horizontal milling station

I/O Description I/O Description

01.2 Drilling machine motor up 02.2 Vertical milling machine motor up
01.3 Drilling machine motor down 02.3 Vertical milling machine motor down
01.4 Drilling machine drilling motor 02.4 Vertical milling milling motor
01.5 Drilling machine conveyor on 02.5 Vertical milling machine conveyor on

02.7 Change milling head
03.0 Horizontal milling machine motor back 03.1 Horizontal milling machine motor front
03.2 Horizontal milling machine motor up 03.3 Horizontal milling machine motor down
03.4 Horizontal milling machine milling motor 03.5 Horizontal milling machine conveyor on

but with 11.2 etc. to indicate the second input that belongs to the
first machine and 02.4 for the fourth output of the second station.

A production cycle (or system evolution in terms of Section 3)
consists of the treatment of two work pieces that are stored in the
feeder. At the beginning of a system evolution the feeder pushes
the first work piece to the conveyor. Then it is transported to the
drilling station (station 1). In the drilling station the work piece is
stopped and two holes are drilled. After this, the work piece is
transported to the vertical milling machine (station 2) and the
next piece is taken from the feeder and transported to station 1.
The first work piece gets treated by the vertical milling machine
(each of its three milling tools is applied to the piece) and the
second work piece by the drilling station. After the treatment at
the vertical milling machine has finished the according work
piece is transported to the horizontal milling station (station 3).
The second work piece moves from the drilling station to the
vertical milling machine. When the work piece has been treated
in the horizontal milling machine, it is stored in the storage at the
right side in Fig. 11. This process continues until both work pieces
have been treated by each of the three stations.

5.2. Data collection for identification and online diagnosis

As explained in Section 2, the proposed method works on the
basis of signals exchanged between controller and plant (see
also Fig. 3). The data collection method that was chosen for the
case study works with a standard communication processor that is
part of the PLC. When controlling the system evolution, the PLC
performs the following three steps cyclically: reading the inputs,
executing the program in order to determine the new output setting
and finally writing the outputs. The transfer of the I/O vector to the
diagnosis computer takes place at the end of the second step
(program execution). At the same time when the newly determined
outputs are transfered to the output card of the PLC, the new I/O
vector is sent to a standard PC using the communication processor
via a UDP-connection. Since the I/O vectors are captured at the end
of the PLC cycle and are thus sampled, it is possible to have different
I/Os changing their value between two I/O vectors. This method can
be applied to each system with a controller that is able to send data
via an Ethernet data link which is a common feature of almost all
industrial controllers today.

For the application of the proposed diagnosis method it is
necessary to have a model that describes the fault-free behavior of
the considered closed-loop system. For the case study system such a
model has been identified using the method outlined in Section 3.
The data base for the identification consists of 60 fault-free system
evolutions (60 treatments of two work pieces) that have been
observed using the data link described above. The evolution of the
according observed languages (sets of I/O vector sequences of
varying length) are shown in Fig. 4 in Section 3.3. It has been
explained that with k=2 a model can be identified which is not
expected to deliver false alerts during online diagnosis. The identi­
fied automaton has 121 states and 162 transitions. Fault-free and
faulty system behavior can be distinguished since behavior that has
not been seen during the model learning phase is considered as a
fault symptom. Parts ofthe identified NDMO can be seen in Figs. 12
and 13. Since the state output),(x) is too large to be depicted (I/O
vector with 29 I/Os), only the evolution set that is obtained when
comparing the I/O vectors of two connected states is shown.

5.3. Fault localization examples

The first example is a fault at the sensor connected with
controller input 13.3. During normal operation, this controller input
changes its value from 1 to °when the head of the horizontal

Fig. 12. Example for a fault at 13.3.

milling station reaches the bottom position. The fault that has been
introduced artificially is a short circuit causing the sensor to switch
its signal from 1 to 0. The fault has been produced when the first
work piece was treated by the second machine (vertical milling). At
the same time, the second work piece gets drilled in the first station.
In this situation no work piece is in front of the horizontal milling
station and its milling head is in its home position at the top. Hence,
none of the inputs belonging to station 3 should change their value.
The short circuit has been introduced when milling with the second
of the three tools in station 2 started and the vertical milling head
left the top position. This situation is depicted in Fig. 12. After the
observation of 12.2_1 indicating that the milling head just left its
home position, the evaluator algorithm delivers state XIS as single
state estimate. Hence, no fault is detected. Then the falling edge
13.3_0 is observed that occurs due to the fault. The evaluator
algorithm does not find a following state of XIS that can be reached
by this edge. Since Xt is empty, a fault is detected due to Eq. (1).
Consequently the residuals are applied with x= XIS as the former
unique estimate:

Res1(x,u(t» = {13.3_0J,

Res2(x,u(t» = {13.3_0},

Res3(x,u(t» = {},

Res4(x,u(t» = {J1.5_1,J2.3_0,Ol.3_1,Ol.4_1,Ol.5_1,02.2_1,02.3_0}.

Res1 and Res2 both result in the same unexpected edge that is
caused by the fault. Res3 results in an empty set and Res4 shows a
union of the legal following behavior of state XIS. In this case, Res3
and Res4 do not contribute to fault localization. Res1 and Res2
provide the "right" candidate for fault localization.

The second example is a fault at the sensor connected to 12.4.
This sensor detects if a work piece is at the left most position of
station 2 (12.4= 1). The artificially introduced fault prevents the
sensor from switching back to °when the work piece has left the
left most position. The fault was introduced when the first work
piece gets transported from station 2 to station 3 and the second
work piece from station 1 to station 2. Fig. 13 shows two parts of
the identified NDMO. The lower part represents the described
situation. The evaluation algorithm (Algorithm 1) determines X49

as the actual estimate when the second work piece arrives at
position 12.4 and produces the rising edge 12.4_1. Now, the fault
prevents 12.4 from switching again to °when the work piece
leaves the position due to the start of the conveyor (02.5_1). The
fault is detected when the rising edge of 13.5 and its correspond­
ing output changes are observed before 12.4 changed back to 0.
The residuals are calculated:

Res1(x,u(t» = {13.5_1 ,03.3_1 ,03.4_1 ,03.5_0},

Res2(x,u(t» = {13.5_1 ,03.3_1 ,03.4_1 ,03.5_0}.

(x:::..<,

13.5._103.3.) 03.4... 103.5)··...

13.5 103.3 I
03.(.103.~O

Fig. 13. Example for a fault at 12.4.

In this case, Res1 and Res2 do not contribute to fault localization
since they show the observed behavior that is not responsible for
the fault. The controller input related to the blocked sensor is
localized by both Res3 and Res4 since it is a missed behavior.

A fault that leads to exactly the same symptoms is a defect at
the motor of the conveyor in front of the vertical milling machine
(02.5).lfthe conveyor motor does not start due to the motor fault,
the symptoms are comparable: The sensor connected to /2.4 does
not change its value since the conveyor does not transport the
work piece away from the left most position of station 2. Hence, if
Res3 or Res4 report a missing change in value at a sensor, it is
reasonable to not only check the according sensor but also the
actuators that have a direct influence to this sensor.

In the second example, Res3 and Res4 contained the controller
input that was connected to the faulty sensor or the sensor that did
not change its value due to a fault at a related actuator. Additionally,
the residuals contain controller outputs. These controller outputs are
set if a controller input leads to a fulfilled logical condition in the
control program and are usually not directly related to the fault.
Nevertheless, they can be useful to decide if the fault candidates
reported by Res1 and Res2 or the candidates of Res3 and Res4
should be analyzed at first. If controller inputs appear in Res1 or
Res2, they are supposed to be unexpected. Indeed, the fault-free
system model did not expect their change in value at the time of its
observation. Nevertheless, if a change in value of an input together
with change in values of controller outputs is observed, it is possible
that this was not completely unexpected: The controller program
was in an internal state where it waited for the change in value of
the input and thus triggered some outputs upon its observation.

Given a situation like in the second example, this can help to decide
that the observed change in value of 13.5 was not completely
unexpected by the controller since it was in an internal state that
allowed setting corresponding outputs. Hence, the candidates deliv­
ered by Res3 and Res4 should be checked first which delivers the
right fault candidate.

Apart from using this strategy to decide which candidate
should be analyzed first, the candidate set reduction algorithm
presented in Section 4.4 can be applied. As explained before, it
must be possible to run the system even if a fault was detected.
This is a scenario that is often possible in industrial system like
e.g. the system in Supavatanakul, Lunze, Puig, and Quevedo
(2006). As an example to illustrate Algorithm 2 we consider the
fault of the second example (12.4does not switch back to 0). Based
on the residuals calculated before, the combined set Resu can be
determined to

Resu (x, u(t)) = {/3.5_1,/2.4_0,03.3_1,03.4_1,03.5_0,O1.5_0}

according to Eq. (6).
Algorithm 2 is started to reduce the candidate set and to

estimate the current system state using the next observed I/O
vector following fault detection. In line 1, the complete NDMO
state space is assigned to the former estimate. The I/O vector that
is observed after fault detection leads to the evolution set {12.5_1,
02.3_1,02.4_1, 02.5_0} when compared to the former I/O vector.
The I/O vector projection of the current vector and the state
outputs of the former estimate (Iine3) leads to the following
estimated states: X17 (upper part of Fig. B), XS1, X93, X113 and X118.

This estimate remains unchanged in line 4. XReach representing the

states that can be reached starting in one of the states of the
current estimate and only producing edges of possibly affected
I/Os is determined to state X113. Starting from XSI it is possible to
reach X113 only producing possibly affected I/Os. Since X113 is
already part of the current estimate it does not change in line 6.
Comparing the observed values of the possibly affected l/Os with
the values in each ofthe estimated states reveals that none ofthe
I/Os can yet be erased from JOUst. Since IX tI > 1 and IJOUstl > 0
the algorithm loops back to line 2.

The next observed I/O vector leads to the edge 13.2_1 when
compared with its predecessor. Since 13.2 is not part of the possibly
affected l/Os, it does not have the observed value 1 in one of the
states from the former estimate. Hence, Xt becomes an empty set in
line 3. As state XlOS has the same I/O vector projection as the
currently observed I/O vector and XlOS E!(X93) (X93 was part of the
former estimate), the current estimate is determined to {XlOS} in line
4. The operation of line 5 results in an empty set. Hence, the current
estimate consists only of one state. The candidate set reduction from
line 8 to 12 reveals that only the I/Os 12.4 and 01.5 differ in the
observed vector and in the estimated state. The other fault candi­
dates can thus be removed from /oUst since they showed a behavior
that can be considered as normal. Since IX tI > 1 and IJOList I> 0 the
algorithm loops back to line 2 but has reduced the number of fault
candidates. Hence the fault must be searched at the sensor that is
connected to 12.4 which corresponds to the artificially introduced
fault.

6. Conclusions and outlook

In this paper a fault localization technique working on the basis
of a fault-free nominal system model has been presented. The
concept of residuals known from fault diagnosis in continuous
systems has has been introduced to solve the fault localization
problem in DES. It has been shown how an identified model can be
used for fault detection and fault localization. Results from a case
study that represents typical characteristics of industrial production
systems show that the residual approach is able to deliver a small
subset of controller I/Os possibly related to a detected fault. Using a
special candidate set reduction algorithm it is possible to reduce this
set of fault candidates. The presented approach was developed for
monolithic system models. In large applications, automata networks
are often used for diagnosis purposes following a decentralized
approach. After the development of an appropriate distributed
identification approach in Roth, Jean-Jacques, and Litz (2010b), the
fault localization approach will be extended for the application in
automata networks in future works.

Many faults are characterized by an altered timed behavior.
Typical examples are actuator faults often leading to deadlocks.
Analyzing the timed behavior for diagnosis purposes necessitates
using timed models. Since the determination of timed models is
very demanding, current work concentrates on identifying the
timed behavior. After the development of appropriate identifica­
tion algorithms, future works aim at extending the residual
approach for timed models.

References

Cassandras, C. G., & Lafortune. S. (2006). Introduction to discrete event systems.
Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Cordier, M., Dague, P., Levy, F.,Montmain, J., Staroswiecki, M.. & Trave-Massuyes, L.
(2004). Conflicts versus analytical redundancy relations: A comparative
analysis of the model based diagnosis approach from the artificial intelligence
and automatic control perspectives. IEEE Transactions on Systems, Man and
Cybernetics Part B-Cybernetics, 34(5), 2163-2177.

Dotoli, M., Fanti, M. P., Mangini, A. M., & Ukovich, W. (2009). On-line fault
detection in discrete event systems by Petri nets and integer linear program­
ming. Automatica, 45(11), 2665-2672.

Fanti, M. P., & Seatzu, C. (2008). Fault diagnosis and identification of discrete event
systems using Petri nets. In Proceedings of the ninth international workshop on
discrete event systems (pp. 432-435), WODES 08, Gtiteborg, Sweden.

Hashtrudi Zad, S., Kwong, R. H., & Wonham, w. M. (2005). Fault diagnosis in
discrete-event systems: Incorporating timing information. IEEE Transactions on
Automatic Control, 50(7),1010-1015.

Isermann, R., & Balle, P. (1997). Trends in the application of model based fault
detection and diagnosis of technical processes. Control Engineering Practice,
5(5),709-719.

Klein, S. (2005). Identijication of discrete event systems for fault detection purposes.
Shaker Verlag.

Moor, T., Raisch, J.. & Young, S. (1998). Supervisory control of hybrid systems via
I-complete approximations. In Proceedings of the lEE fourth workshop on
discrete event systems WDDES98 (pp. 426-431), Cagliari, Italy.

Reiter, R. (1987). A theory of diagnosis from first principles. Artijiciallntelligence,
32(1),57-95.

Roth, M.. Jean-Jacques, L., & Litz, L. (201Oa). Identification of discrete event
systems-implementation issues and model completeness. In Proceedings of
the seventh international conference on informatics in control, automation and
robotics (lCINCD), Funchal, Portugal, June 15-18.

Roth, M., Jean-Jacques, L., & Litz, L. (201 Ob). Black-box identification of discrete
event systems with optimal partitioning of concurrent subsystems. In Proceed­
ings of the 2010 American control conference (ACC201O) (pp. 2601-2606),
Baltimore, USA, June 30-July 2.

Sam path, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., & Teneketzis, D.
(1996). Failure diagnosis using discrete-event models. IEEE Transactions on
Control Systems Technology, 4(2),105-124.

Sayed-Mouchaweh, M.. Philippot, A., & Carre-Menetrier, V. (2008). Decentra­
lized diagnosis based on Boolean discrete event models: Application on
manufacturing systems. International Journal of Production Research, 46(19),
5469-5490.

Supavatanakul, P., Lunze,].. Puig, V., & Quevedo, J. (2006). Diagnosis of timed
automata: Theory and application to the damadics actuator benchmark
problem. Control Engineering Practice, 14(6),609-619.

