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ABSTRACT 
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In this paper an approach for fault localization in closed-loop Discrete Event Systems is proposed. The 
presented diagnosis method allows fault localization using a fault-free system model to describe the 
expected system behavior. Via a systematic comparison of the observed and the expected behavior, a 
fault can be detected and a set of fault candidates is determined. Inspired by residuals known from 
diagnosis in continuous systems, different set operations are introduced to generate the fault candidate 
set. After fault detection and a first fault localization. a procedure is given to render the fault 
localization more precisely by an analysis of the further observed system behavior. Special emphasis 
is given to the use of identified models for the fault-free system behavior. The approach is explained 
using a laboratory manufacturing facility. 

t. Introduction 

Diagnosis in Discrete Event Systems (DES) has been a vital 
research area in the last 15 years. The class of technical systems 
that can be modeled as DES includes production, transportation 
and communication systems (Cassandras & Lafortune, 2006). One 
of the main purposes of diagnosis methods for technical systems 
is to increase their availability by helping the system operator to 
find fault sources as quickly as possible. An increased availability 
leads to an improved system dependability and has positive 
effects on economic key issues such as productivity. 

An important class of DES diagnosis approaches is model 
based. The idea behind is to compare the modeled and the 
observed system behavior in order to detect and to localize faults. 
Model-based approaches can be divided in two groups. The first 
group considers models that contain fault-free behavior as well as 
system behavior for given faults. The second possibility uses 
models of fault-free system behavior only. 

A prominent example for DES-approaches with automaton 
models including the faulty system behavior is given in Sampath, 
Sengupta, Lafortune, Sinnamohideen, and Teneketzis (1996). One 
of the main features ofthis "diagnoser" approach is the possibility 
to give guarantees concerning the diagnosability of faults that are 
considered in the underlying model. If certain conditions hold, 
faults considered in the model can be precisely localized. Various 
improvements of this approach have been proposed in the last 
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years mainly dealing with adapting the method for distributed 
diagnosis e.g. Sayed-Mouchaweh, Philippot, and Carre-Menetrier 
(2008) or incorporating timing information e.g. Hashtrudi Zad, 
Kwong, and Wonham (2005). 

Apart from using automata as system models for DES, Petri 
nets are a widely spread modeling formalism. In Fanti and Seatzu 
(2008) an overview of existing diagnosis approaches using Petri 
nets is given. In the most recent works it is proposed to perform 
diagnosis based on integer linear programming, see e.g. Dotoli, 
Fanti, Mangini. and Ukovich (2009). The idea is to check if an 
observed behavior is consistent with some modeled faulty beha­
vior. An inherent disadvantage of approaches relying on fault 
models is that only faults explicitly considered in the system 
model can be detected and localized. 

Diagnosis methods only working with a model of the nominal 
fault-free system behavior avoid this disadvantage. Faults that lead 
to an inconsistency between the nominal and the observed behavior 
can be detected when comparing modeled behavior and measure­
ments without having to be considered explicitly (Cordier et aI., 
2004; Reiter, 1987). Another advantage of this class of methods is 
that model building is straightforward since no special knowledge of 
faulty system behavior is necessary. A drawback of this second class 
of approaches is that fault localization is more ambitious than in the ­
case of methods relying on fault models, since the models have been 
built using less knowledge. A second drawback is that diagnosability 
of given faults can usually not be guaranteed. 

In this paper, fault localization is studied based on a fault-free 
system model. The approach has been developed for a widely used 
class of closed-loop DES consisting of a plant and a controller. 
Although the proposed method is not restricted to identified models, 
special emphasis will be given to the implications of models obtained 
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by identification. The paper is structured as follows: In Section 2 an 
overview of the proposed diagnosis approach is given. Section 3 
sketches the identification method that has been used to obtain the 
fault-free system model. It also defines the semantics of the used 
model class. Section 4 represents the kernel of the paper: It is 
explained how to detect faults and to define appropriate residuals for 
fault localization using the model defined in Section 3. In order to 
show the relevance of the proposed method for real systems, a case 
study is treated in Section 5. 

2. Overview of the proposed diagnosis approach 

According to Isermann and Balle (1997) the term fault diag­
nosis is defined as follows. 

Diagnosis: Determination of the time of detection, kind, size 
and location of a fault. Diagnosis follows detection, includes 
fault isolation and identification. 

The definition of Isermann and Balle (1997) is proposed with the 
background of time continuous systems. Since this paper deals with 
a different class of systems and different models, not each aspect of 
this definition applies to the presented approach. Systems that are 
considered in this paper are DES consisting of a closed-loop of plant 
and controller (Fig. 1). The controller has a certain number of binary 
outputs connected with actuators in the plant. Sensors of the plant 
are connected to binary controller inputs. Possible faults in this 
scenario are broken actuators and sensors as well as damaged plant 
hardware. In the presented approach the only information used to 
perform the diagnosis task are the signals exchanged between 
controller and plant. The aim is to detect if a sensor or an actuator 
fails or if some plant hardware gets damaged which leads to an 
abnormal behavior. Recognizing such an abnormal behavior will be 
referred to as fault detection. In order to allow systematic repair 
actions, it is also helpful to give information of where a detected 
fault is located. This process will be referred to as fault localization. 

Closedloop DES 

Controller 

l~-=======~~c.l. Signals exchanged 

tt between controller 
and plant 

<.> Plant 

Fig. 1. Closed-loop DESconsisting of plant and controller. 

The aim of fault localization in the context of this paper is to 
determine controller I/Os (inputs and outputs) which are related to a 
faulty component. Based on the binary signals exchanged between 
controller and plant it is not possible to gather any information 
concerning the "size" of a fault. Hence, in this paper the diagnosis 
task is considered to be completed after fault localization. 

A model-based diagnosis method that is well established for 
continuous systems is to use residuals. Isermann and Balle (1997) 
define residuals as follows: 

A residual is a fault indicator, based on a deviation between 
measurements and model-based computation. 

In the upper part of Fig. 2 this principle is depicted for continuous 
systems. The deviation between a measured signal evolution (dashed 
line) and the signal evolution computed using a model (continuous 
line) is quantified. Analyzing this quantification it is possible to 
detect and localize faults in the observed system. Fig. 2 also shows 
measurements of a DES and an automaton that models the con­
sidered system. Typically,observations of a DES are event sequences 
as shown in the lower part of the figure. The expected event trace 
can be derived from the automaton modeling the system. The 
observed sequence a, b can be reproduced by the state trajectory 
0, 4, 5. When event c is observed, the sequence is no longer 
reproducible with the given automaton and a fault can be detected. 
The approach presented in this paper focuses on the analysis of the 
difference between measured and expected DES behavior. Two 
generic fault symptoms will be considered in Section 4: Faults 
leading to observed but unexpected events and faults that lead to 
missed events. 
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Fig. 3. FDI principle for closed loop DES. 
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Fig. 2. Residuals in time-continuous and in discrete event systems. 



The proposed fault detection and localization principle for 
closed loop DES is depicted in Fig. 3. The closed-loop DES is 
observed by collecting the signals exchanged between controller 
and plant. This measured system output is given to an evaluator 
which contains an automaton modeling the fault free system 
behavior. The evaluator tries to reproduce the observed system 
output using the embedded model. This evaluation creates the model 
output that is compared to the measured output. If measured and 
modeled output differ, a fault is detected and fault localization starts 
in order to determine where the fault is located. 

3. Model identification 

3.1. Data collection and arrangement 

As explained in the former section. model-based diagnosis is 
driven by the comparison of modeled and observed behavior. The 
closer the model to the real behavior is. the more accurate results 
model-based diagnosis can yield. The usual way for manual building 
of systems consisting of controller and plant (see Fig. 1) is to build 
models for the plant GPlanc and for the controller algorithm GConrcollec 

(Sampath et al., 1996). The system model G is obtained by parallel 
composition of the plant and controller models: G = GPlancllGConrcoller' 

Usually. GConrcoller only models the idealized behavior of the con­
troller algorithm. Hardware specific aspects of the controller are 
usually not considered. An example for such an aspect are industrial 
controllers where several controller outputs can change their value 
within one controller cycle. An example for effects usually not 
considered during manual model building of the plant model GPlanc 

are chattering sensors. As a consequence. manually built models 
often represent the specified system behavior rather than the real 
one. If the real behavior is compared with an idealized model. the 
results can either be false alerts or non-detectable faults. 

The main advantage of working with an identified model is 
that it represents the real behavior of the closed loop system with 
respect to the identification data base. As identification data base. 
it is possible to use behavior observed during normal system 
operation. This behavior includes consequences implied by the 
specific controller hardware as well as non-ideal (but not faulty) 
plant behaviors like chattering sensors. 

For model identification and for diagnosis itself it is necessary 
to collect the signals exchanged between controller and plant 
when the system is in operation. These signals are available by 
considering the inputs and outputs of the controller. The con­
troller I/Os are arranged in I/O vectors with several properties 
summarized in Definition 1. 

Definition t (Controller I/O vector). Given r different controller 
inputs II• ... • IT and s different controller outputs 0 1• __ .• Os. the 
controller I/O vector U=(J0I •... ,JOm) with m=r+s is given by 
IOj = Ijvi = 1.. _.r and IOT + i = 0ivi = 1.. _.s. m denotes the dimension 
of the vector (number of controller I/Os). 

The identification ofthe model is based on sequences of observed 
I/O vectors. For the identification it is necessary to observe a certain 
number of system evolutions and to collect the according I/Ovectors. 
The sequence of I/O vectors that is exhibited during a given system 
evolution is built by I/O vectors in the order of their appearance: 

Definition 2 (//0 vector sequence). If during the h-th system 
evolution lh I/O vectors Uh have been observed. the sequence is 
denoted as a(h) = (Uh(1).Uh(2) •...•Uh(lh))' 

Hence lh denotes the length of the h-th I/O vector sequence. 
We assume that for two successive I/O vectors u(t) #-u(t-1) holds. 
In order to translate the observed I/O vector sequences into a 

model. a formal definition of the observed system behavior is 
necessary. We define the set of observed words with length q 
observed during p different system evolutions: 

Definition 3 (Observed word set and language). The observed 
words of length q are denoted as 

W6bs = _. •U j (j+ q- 1))) .i~1 (/;:Q\Ui(j),Ui(j+ 1)•. 

With the observed word set we can define the observed language 
of length n of the system as 

n 

L3bs = U Whbs' 
j=1 

The observed language of length n consists of the I/O vector 
sequences up to length n that have been observed to get the 
necessary data base for identification. 

3.2. Model definition 

Since the observed system language has to be translated into 
an appropriate DES model, we have to define an automaton that 
reflects the characteristics ofthe closed-loop DES. The closed-loop 
DES from Fig. 1 is an autonomous event generator that exhibits a 
system output. A well programmed controller can be considered 
as deterministic, whereas the physical plant must generally be 
considered as non-deterministic. Hence the coupled system of 
plant and controller must be considered as non-deterministic. An 
automaton that reflects these properties is the Non-Deterministic 
Autonomous Automaton with Output that is defined by 

Definition 4 (NDAAO). NDAAO= (X,QJ).•xo) with X finite set of 
states. Q output alphabet. f :X ---> 2x non-deterministic transition 
function. A. : X ---> Q output function and Xo the initial state. 

This automaton will be presented as a digraph in the usual 
manner (Cassandras & Lafortune, 2006). The words and language 
generated by this automaton are given by 

Definition 5 (Words and Language of the NDAAO). The set of 
words of length n generated from a state x(i) is defined as 

W;(.) I = (we QI : w = A.(x(i))} 

and 

W;(.) 1 = {we Qn : w = (A.(x(i».A.(x(i + 1)). 

... •A.(x(i+n-1))): x(j+ 1) ef(x(j))Vi:s;j:s; i+n-2}. 

The language generated by the NDMO is given by 
n 

LrdenC = U U W~. 
i=lx€X 

Ifthe output alphabet Q consists of I/O vectors. it is possible to 
reproduce the observed language by performing state trajectories 
in the automaton. 

3.3. Identification and model properties 

For identification of DES various methods exist (see e.g. Fanti & 
Seatzu, 2008 for an overview of identification of Petri nets). An 
identification algorithm that has especially been designed to 
deliver appropriate models for fault detection purposes is given 
in Klein (2005). It works on the basis of words of the parametric 
length k and yields a non-deterministic autonomous automaton 
with output (NDMO) as introduced in Definition 4. Basically. 
states representing observed words of length k are connected in 



the order the words have been observed. The algorithm delivers 
an automaton that is k+ 1-complete (Moor, Raisch, & Young. 
1998). This means that the automaton generates exactly the set 
of observed words of length k+ 1: L~tsl =Lfd~~t. This characteristic 
is advantageous for fault detection: If the observed language has 
been collected during fault-free system behavior only, it can be 
made sure that each fault leading to an abnormal word of length 
k+ 1 can be detected since the model (that is intended to be fault­
free) cannot erroneously reproduce it. Faulty I/O vector sequences 
(words) that are reproduced by the model represent undetectable 
faults. 

A second important model property is shown in Roth, Jean­
Jacques, and Litz (201Oa): If it is possible to state L~t/ =L~-:;i 
(with L~-:;i denoting the fault-free language of the considered 
system) for an arbitrary k, L?d~n~ ~ L~~k holds: If the system 
language of length k+ 1 (L~-:;;) has been completely observed. 
the identified model simulates the complete original system 
language of length larger than k (L~~k). This reduces the number 
of false alerts when using the identified model for diagnosis 
purposes: If L~tsl =L~-:;i holds for a given k, the model is able to 
reproduce any fault-free word which can be exhibited by the 
system. Hence, none of the fault-free words will lead to a false 
alert. Since both model properties relate the identified and the 
observed system language, they help validating the model against 
the observed behavior. 

Since for the second property it is necessary to state ~t,1 =~ . 
the most important question for the identification approach is to 
determine a k for which this assumption holds. Fig. 4 gives a typical 
evolution of the observed word set for a closed loop system over 
time. The data has been captured for the case study system that will 
be described in detail in Section 5. The word sets have been collected 
during fault-free system evolutions. It can be seen that 1Lbb, 1 con­
verges to a stable level after about 8 system evolutions. This allows 
concluding that probably each word of length one (single I/Ovectors) 
that is exhibited during normal system behavior has been observed. 
It is reasonable to state that this also holds IL~,I and IL6bsi (I/O vector 
sequences of length two and three). If word sets containing longer 
sequences are considered, it can be seen that the according curves 
do not perfectly converge. For the data depicted in Fig. 4 it can be 
concluded that ~tsl =~ holds for k=2 due to the convergence of 
the according curves. A model identified with k=2 will thus not lead 
to false alerts during online diagnosis. If k is chosen to a larger value, 
it is likely that the system exhibits new fault-free words of length 
k+ 1 after the identification data has been collected since the 
according languages do not converge to a stable level. Since these 
new words cannot be reproduced by the model, false alerts would be 
the consequence. 

Note that problems similar to the choice of k must be solved if 
the model is obtained from manual model building. The engineer 
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Fig. 4. Evolution of the observed word set for the case study.
 

creating the model has always to decide upon the level of 
abstraction and necessary model accuracy. It is up to his model­
ing experience to ensure that the model that is supposed to 
represent the fault-free system behavior contains any possible 
fault-free behavior and does not erroneously contain faulty 
sequences. In general, neither working with identified nor work­
ing with manually created models guarantees having a perfect 
system representation. 

4. Fault detection and localization 

4.1. Definition of I/O behavior 

In Section 3.2 it has been explained that the NOMO can be used 
to reproduce I/O vector sequences of the considered system if its 
output alphabet consists of I/O vectors. In case of a fault it is not 
sufficient to know that an observed I/O vector sequence cannot be 
represented by the model (fault detection). It is necessary to 
determine I/Oswhich are possibly responsible of the malfunctioning 
(fault localization). Hence, it should be possible to determine the 
behavior of single I/Os based on the observed and modeled I/O 
vectors. If the system produces a new I/Ovector, it is the result of at 
least one I/O changing its value. If a binary I/O changes its value a 
rising or falling edge can be observed (see Fig. 5): 

Definition 6 (Edges). For each controller I/O IO j there exist three 
edges: 10;_0 to indicate a change from 1 to 0 (falling edge), 1Oi-1 
to indicate a change from 0 to 1 (rising edge) and IO j_ B to indicate 
no change in value: 

E = {JOj_O U lOi_1 U IO jj'i1 ::0:; i::o:; m}, 

with m denoting the number of controller I/Os in the system. 

In order to determine edges appearing if two arbitrary I/O 
vectors are considered, an edge function is defined: 

Definition 7 (Edge function). Let10m, 1O,{k) be the i-th controller 
I/O in the j- and k-th I/O vector. 

lOi_1 if IOj (j) = 0 and IOj(k) = 1, 

Edge(lOj(J),lO j(k» = 10j_0 if IOj(j) = 1 and IOj(k) = 0, 
{ IO;_B if IOj(j) = IOj(k) 

delivers the resulting edge of the i-th I/O from the comparison of 
its values from the I/O vectors uU) and u(k). 

Instead of Edge(IO,U), IOj(k» it is also written Edge(uU)[i], 
u(k)[i]). Since more than one I/O can change their value when 
new I/O vectors are produced, the evolution set that summarizes 
the edges 'between' two I/O vectors is defined: 

Definition 8 (Evolution set). 

ES(u(j).u(k)) = {Edge(u(j)[I1.u(k)[l1) E EI 
Edge(u(j)[i],u(k)[i]) # IOjjv1 ::0:; i::o:; m} 

determines the set of rising and falling edges between two I/O 
vectors uU) and u(k). 

risingccjse: 10,_1 , no edge:1°
1
_ £ 

/0, t ~-' '_','" 
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Fig. 5. Example for rising or falling edges of an 1/0. 



Fig. 6 shows an example for the evolution set resulting from 
the comparison of two I/O vectors. 

4.2.	 The NDAAO as part of the evaluator 

As explained in Section 2, the first step in diagnosis is fault 
detection. In the presented approach fault detection is performed 
using the NDMO as fault-free system model. Fig. 3 shows that the 
model is used in the evaluator to reproduce the observed system 
output. 

A more detailed view of this procedure is given in Fig. 7. The 
part with dashed lines will be introduced in the next section. The 
current I/O vector u(t) that is exhibited by the closed-loop DES is 
given to the evaluator. Following Algorithm 1, the evaluator tries 
to determine the current state of the NDMO. The main idea of 
this algorithm is to determine a current state estimation follow­
ing the observed evolution set. ).(x) determines the output of an 
NDMO state according to Definition 4 and ES is the evolution set 
according to Definition 8. With Xt - 1 and Xt the state estimations 
after the occurrence of the t-th and t -l-th I/O vector are denoted. 
Before the algorithm is started, both sets are empty. 

Algorithm t. Evaluator algorithm. 

Require New observed I/O vector u(t) and former state 
estimation XC- 1 

1: if IXt - 1 1> 0: then 
2:	 Xc <- Ix E XI3Xpre E Xt-1 : X Ef(xpre)
 

1\ ES(),(xpre),).(x» = ES().(xpre),u(t»}
 

3: else 
4:	 Xt <- (x E XI).(x) = u(t)} 

5: end if 
6: Xt-1 <-Xt 
7: return Xt 

The algorithm checks if the former state estimation XC- 1 

contains at least one state. If the observation is being initialized 
or after a fault has been detected, this set is empty. In case of an 
empty estimation IXC- 11= 0, the evaluator determines each 
NDMO state with the observed I/O vector as output as possible 
current state (see line 4 of Algorithm 1) and adds it to the current 
state estimation Xt. If the former state estimation Xt-1 was not 
empty (line 2), the algorithm checks the observed evolution set of 
I/O edges in order to determine the current state estimation. Each 
NDMO state that can be reached by reproducing the observed I/O 
edges starting in one of the states from the former state estimate 

/0. 0 £8(11(1).11(2» =UO, _0.10, _I} 010'] [I]	 [0
. : 11(1) =	 • = 11(2) 
~ 0	 0 
10, 0	 I 

Fig. 6. Example fort he evolution set resulting from the two I/O vectors u(1) and u(2). 

Evaluator 
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XC- 1 is added to the current state estimation Xc. At the end of the 
algorithm, the former state estimation Xt - 1 for the next run ofthe 
algorithm is prepared by copying Xc to it. 

The complexity of the evaluator algorithm with respect to the 
number of I/Os in the system is linear since the number of [/Os 
defines the number of comparisons carried out in line 2 or line 4. 
Practical experience with the algorithm showed that it is able to 
process a newly observed I/O vector even with a large model 
within a few milliseconds which is sufficient for most industrial 
applications. 

The resulting state estimation Xt of the evaluator as well as the 
observed I/O vector u(t) are given to the analyzer where the fault 
detection policy as well as the fault localization operations are 
implemented. The fault detection policy is given by 

- _	 {faUlt if IXtl #-1, 
(1)FD(Xtl- OK if IXtl = 1. 

A fault is detected if the evaluator cannot determine an unam­
biguous state estimation. Fig. 8 shows an example of the state 
estimation and fault detection process. In the lower part of the 
figure, the NDMO is depicted. In the part "observation" an observed 
I/O vector sequence is shown. Between NDMO states and between 
I/O vectors, the resulting edges are given. It is supposed that the 
algorithm starts without a defined initial NDMO state Xo like it is 
the case if the start of the diagnosis procedure is not synchronized 
with the start of the closed-loop DES. After the observation of the 
first I/O vector, the evaluator algorithm goes to line 4 since 
IXc- 11= 0. The evaluator determines the NDMO states with 
).(x) = u(t) and adds them to Xc. State Xl and state X3 have the first 
observed I/O vector as output. The fault detection policy returns 
"fault" since the state estimation is not unambiguous. This changes 
as soon as the next I/O vector is observed which leads to 101_°. 
Starting from Xl or X3 only X2 can be reached by producing the same 
evolution set. Hence the state estimation only contains one state 
(line 2 of Algorithm 1) which makes the fault detection policy 
declare "OK". The state estimation proceeds with the next observed 

(~J 10,_0 (~J 10,_1 (~J 10,_1 (:J IOI_O(~Js
 

]-t--'-..:;...",-.-"--'----'-'---'-'----'-'--­.Y, {x,.x,} (x,) {x,} {x,l {} 

FD Jault OK OK OK Jault 

~ o 
;z. 

Fig. 8. Example for state estimation and fault detection. 
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Fig. 7. FDIscheme with the NDMO. 



I/O vectors by determining the state trajectory X3, X4. When the last 
I/O vector is observed, the resulting evolution set {lOt_a} cannot be 
produced by leaving state X4. The only evolution set that can be 
generated by leaving X4 is {lOt_O, 102_0} which differs from the 
observed one. Hence the state estimation from line 2 in Algorithm 1 
results in an empty set which leads to fault detection. During the 
initial phase of the observation a fault is detected until the state 
estimation becomes unambiguous. This can be avoided if an initial 
NOMO state Xo is given and the start of the diagnosis process and 
the closed-loop OES are synchronized. 

4.3. Definition of the residuals 

After a fault has been detected, the next step is to determine 
which sensor, actuator or hardware part of the plant is possibly 
affected. Since sensors and actuators are directly connected to 
controller l/Os, it is helpful to give a certain number of I/Os that 
could be related to the fault. In the following two subsections four 
residuals will be introduced that formalize generic fault symp­
toms. The idea of the residuals follows the definition of Isermann 
and Balle (1997) where they are defined as fault indicators based 
on a deviation between measurements and model-based computa­
tion (see Section 2). In order to calculate the residuals the state 
estimation before a fault was detected is supposed to be unam­
biguous IXt-tl = 1. Hence, only one NOMO state was formerly 
considered as possible current state. If this condition does not 
hold, the residuals are not calculated. 

4.3.1. Unexpected behavior 

The first class of residuals has the aim to localize faults that led 
to an observed behavior that was unexpected in the given 
context. The current context is defined by the last estimated 
actual state x in the automaton. The first residual is 

Res1(x,u(t)) = ES(A,(x),u(t))\ U ES(A,(x),A,(x')). (2) 
'Ix' ef(x) 

With ES(A,(x),u(t)) the rising and falling edges are determined that 
are observed when comparing the I/O vector of the last estimated 
current state and the I/O vector that led to fault detection. This set 
represents what actually happened when the fault was detected 
and refers to the notion measurements in the residual definition. 
Uvx' ef(x)ES(A,(X),A,(x')) represents the union of the sets of rising and 
falling edges when the last estimated current state and each of its 
direct successor states are considered. It represents the expected 
behavior. This refers to the model-based computation in the 
residual definition. The set difference of the observed (ES(A,(x), 

u(t))) and the expected (Uvx'ef(xlES(A,(x),A,(x'))) behavior is built in 
the residual equation and thus represents the unexpected beha­
vior. In Res1, the expected behavior is given by the union of each 
possible following behavior of the last estimated current state. 
A stricter formulation of the expected behavior is used in the 
second residual: 

Res2(X,u(t)) = ES(A,(x),u(t))\ n ES(A,(x),A,(x')). (3) 
Vx' ef(x) 

Instead of a union over the expected behavior of the possible 
following states, an intersection is used. The intersection delivers 
the I/O edges that must be observed no matter which following 
state in the model is taken. It is obvious that Res1 c;;Res2 since 
Uvx'eflX)ES(A,(X),A,(x')) ;2 flvx' ef(x)ES(A,(x),A,(x')). 

Example. Fig. 9 shows an example for unexpected behavior that 
led to fault detection (instead ofthe I/O vectors only the I/O edges 
between two states are given): from the estimated actual NOMO 
state Xt it is not possible to take a transition that has exactly the 
observed falling edges 103_°and 104_°.Hence a fault is detected. 
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Fig. 9. Example for an unexpected behavior. 

The result of Res1 (with x= Xt ) is 

Res1(x,u(t)) = {I03_0,104_0}\({I0t_O,102_1,104_0} U {I0t_O,102_1}) 

= {I03_0}. 

This result means that 103_°was an unexpected event which 
implies that the system operator should check the sensor or 
actuator that is connected with 103 • However, it is possible that 
the fault cannot be found at this component. If this is the case, 
Res2 should be calculated in order to use a stricter formulation of 
the expected behavior. In Res1 each possible following behavior is 
subtracted from the observation. Using Res2 only the behavior 
that must occur no matter which regular following behavior is 
considered: 

Res2(x,u(t)) = {I03_0,104_0}\({I0t_O,102_1,104_0} n (lOt _O,102_1}) 

= {I°3_0,104_O} 

This result implies that the occurrence of a change in value of 104 is 
not always expected and thus another possible fault localization. 

4.3.2. Missed behavior 
In contrast to an observed but unexpected behavior it is also 

possible that a fault can be localized by determining a missed event. 
Set operations that help to localize an expected but unobserved 
behavior are given by the third and the fourth residual: 

Res3(x,u(t)) = n ES(A,(x),A,(x'))\ES(A,(x),U(t)). (4) 
v« ef(x) 

Res3 is the set difference of the I/O edges that are expected no 
matter which following state is taken (flvx' ef(x)ES(A,(x),A,(x'))) and 
the I/O edges that have been observed (ES(A,(x),u(t))). Each rising or 
falling edge that must occur when the estimated actual state is left 
but has not been observed is part of Res3. The expected behavior is 
represented by the intersection of each possible following behavior. 
It is also possible to give a less strict formulation of the expected 
behavior by using the union operation instead of the intersection: 

Res4(x,u(t)) = U ES(A,(x),A,(x'))\ES(A,(x),u(t)). (5) 
Vx' ef(x) 

Since Res3 c;;Res4, the result of Res4 is usually less restrictive than 
Res3, it contains more elements. 

Example. The situation in Fig. lOis considered to iIlustrate Res3 

and Res4. The observation of the edge 103_° leads to fault detection 
with Xt as estimated actual NOMO state. Applying the residuals 
results in Res3={/Ot_O} and Res4={lOt_OJ02_1}. The same proce­
dure as explained for Res1 and Res2 should be started: First, the 
component connected with lOt should be checked. If the system 
operator does not find a fault at this component, he should proceed 
with checking 102 which is additionally part of Res4. 

Especially if production systems with many I/Os are consid­
ered, the residuals can help to get a relatively small set of I/Os 
that could be related to the fault. A maintenance operator can 
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Fig. 10. Example for a missed behavior. 

then check the possibly faulty sensors or the related actuators. 
Actuators are related to a sensor if their activation or deactivation 
can have an influence on the sensor value. 

4.4. Reduction of the residual sets 

Once a fault has been detected. the four residuals are available 
to localize controller I/Os that are related with the fault. It has 
been explained that the residuals analyze two different generic 
fault symptoms: missed and unexpected behavior. In general. it is 
not a priori possible to tell if a fault was caused by missed or by 
unexpected behavior. Hence. all residuals must be calculated 
which results in a set of possible fault candidates. The system 
operator has to check each of the I/Os according to the priority 
explained before. This operation can be supported by the infor­
mation if the considered I/O is suspected to have shown a missed 
or an unexpected behavior. In order to give a more precise 
estimation of which I/O is possibly affected, it is possible to take 
further I/O vectors into account that follow the vector that led to 
fault detection. Of course. this approach is only possible if the 
system does not immediately have to be stopped after fault 
detection like for fault tolerant systems. The reduction of the 
fault candidate set is based on the following heuristic: 

After a fault has been detected it is possible to delete a fault 
candidate from the candidate list if it shows a following 
behavior that can reasonably be considered as fault-free. 

To decide if the following behavior of a possibly affected I/O can 
reasonably be considered as fault-free. a special state estimation 
algorithm is proposed. The idea of this algorithm is to mask out 
the possibly faulty part of the I/O vector and to perform state 
estimation only based on the 'healthy' I/Os. This state estimation 
results in a set of states that represent possible descriptions for the 
non-faulty part of the current system state. If a possibly affected I/O 
has the same value in each of these states and in the currently 
observed I/Ovector, it is assumed that this can be considered as the 
result of a fault-free I/O behavior. The I/O showed a behavior that is 
completely explicable with fault free system states which have been 
determined without considering the I/O itself. Hence this I/O can be 
deleted from the fault candidate list. 

The candidate set of all I/O edges that are reported by the 
residuals is given by 

Resu(x.u(t)) = ES(l(x).u(t)) u U ES(l(x).l(x'»). (6) 
VI( eN') 

It is obvious that Res., = Res1 URes2URes3URes4. In order to get 
the controller I/Os that have edges in the candidate set the 
following function is applied: 

JOUst = (JOdOOi_1 v JOj_O) E Resu}.	 (7) 

This JOUstcontains the part of the system I/O vector that is possibly 
influenced by the fault based on the result of the residuals. The 
possibly faulty I/Os from JOList can create the following edges: 

CandEdges = {JOj_1,JOi_0 E EIJOj E 10List}.	 (8) 

Since the state estimation algorithm will work on the basis of the 
non-affected part of the I/O vector. this part has to be calculated by 
an I/O vector projection: 

Definition 9 (I/O vector projection). The I/O vector projection of 
an I/O vector u to a list of I/Os (JOUst) that is to be masked out is 
defined as 

uri] if JOi¢JOUst, 
JOPIOLisr(u)[zl = { * if JO; E JOList 

vi = 1, ....m (with m denoting the number of controller I/Os in 
vector u). 

~OPIOLjSr(U)[l] 

10PIOList(U) = : 
{ 

JOPIOList(u)[m] 

applies the function to the entire vector. JOPIOLisrtU) contains for 
each I/O that has to be masked out (i.e. an I/O in the JOList) the do 
not care symbol *. For each I/O that has to be considered, 
JOPIOList(U) has the according I/O value in vector u. 

Algorithm 2. State estimation and candidate set reduction. 

Require JOUst. CandEdges. X 
{Initialization} 

1:	 Xt _ 1 <-X 

{State estimation} 
2:	 Wait for the next observed I/O vector denoted as u(t) 

3:	 Xt <-(x EXt_I IJOPIOList(l(x)) = JOPIOList(U(t))} 

4:	 Xt<-XtU{x'EX 13x EXt_1 :x'Ef(x)AlOP,oList(l(x'))
 
= JOPIOList(U(t))}
 

5:	 XReach <-(x(i+n) E XI3(x(i)..... x(i+n») :
 

x(i) E Xt /\ vi ~j ~ i +n : (x(j+ 1) Ef(x(j))/\ES(l(x(J)).
 
l(x(j+ 1))) s; CandEdges)}
 

6:	 Xt<-X t UXReach 

7:	 X t-1 <-Xt 
{Candidate set reduction} 

8:	 for all JOj E JOUst do 
9: if IX r I> 0/\ VXEXt: l(X)[ll = u(t)[ll holds then 
10: JOUst<-JOList\lOj 
11: end if 
12:	 end for
 

{recalculate CandEdges}
 
13:	 CandEdges= {JOj_l,lOj_OE EI/OiE JOList}
 

{Analyze result}
 

14:	 if IXtl > 0 and IJOUst( = 0 then 
15:	 (probably) false alert --+ end algorithm and
 

start Algorithm 1 with Resl-4={} and Xt- 1 =Xt
 
16:	 end if 
17:	 if IXtl > 1 and IJOUstl > 0 then 
18: go back to line 2 
19:	 end if 
20:	 if IXtl = 0 then 
21: no state estimation possible 
22:	 end if 

With these sets it is possible to perform Algorithm 2 instead 
of Algorithm 1 in order to estimate the current system state. Since 
the algorithm starts with considering the first I/O vector after 
fault detection, the former state estimate is empty and must be 
reinitialized. Each NDAAO state must be considered as possible 
estimate (line 1). When the next I/O vector is observed it is 
checked which NDAAO state of the former estimate is still con­
form with the 'healthy' part of the new I/O vector (line 3). Possibly 



affected [/Os do not contribute any information to determine the 
new estimate Xt • After this, NOMO states are determined which can 
be reached starting in the former estimate Xt - 1 by considering the 
I/O vector projection of the new I/O vector. Each following state of 
the former estimate (x' E!(x)lx EXt - 1 ) that has the same 'healthy' 
part of the [/0 vector as output as it has been observed is added to 
the new estimate (line 4). Since the state estimation should only be 
restricted with the non-affected part of the I/O vector, the set XReach 

is calculated in line 5. It contains each NOMO state that can be 
reached starting in the current estimation Xt if during the state 
trajetory only possibly affected I/Oedges occur (CandEdges). This set 
is added to the current estimate. This ensures that the state 
estimation is not blocked by I/Os that are possibly related to the 
fault. In line 7, the set Xt-1 for the analysis of the next I/O vector is 
prepared. 

After the state estimation part is finished, the candidate 
reduction starts. For each I/O in the /oUst it is checked if it has 
the same value in each state of the estimate and in the currently 
observed I/O vector. If this is true, the I/O gets removed from the 
JOUst since the currently observed I/O value is explicable with 
each estimated NOMO state. Since the estimated states were 
determined only using the 'healthy' part of the I/O vector, it is 
assumed that it is highly probable that the considered I/O is not 
faulty as it fits well in each fault-free interpretation of the current 
system state. After the JOUst has been updated, the CandEdges set 
must also be recalculated. Then, the calculated sets are inter­
preted. If the /oUst is empty, the fault detection was probably 
a false alert since the current observation can perfectly be 
explained by the estimated fault-free model states. Most often, 
in this case IXt! = 1 also holds. Hence, the normal observation can 
go on (Algorithm 1). If at least one I/O is left in the /oUst and Xt is 
not empty, the algorithm loops back and waits for the next I/O 
vector. If it was not possible to determine a state estimation, the 
algorithm cannot proceed and stops. The operator must check the 
remaining I/Os. Note that the number of candidates in JOUst is 

typically much smaller than the number of I/Os in the system: 
Before the algorithm is started, JOUst is calculated according to 
Eq. (7) as the union of l/Os contained in the residuals. Processing 
further I/O vectors, JOUst can only be reduced in the algorithm as 
can be seen from line 8 to 12. 

The algorithm only calculates a new state estimation and an 
updated candidate set if a new I/O vector is observed. The time to 
recalculate these two sets depends thus on the time between the 
observation of the new I/O vectors and cannot be calculated a 
priori. Since the algorithm has to compare each value of an [/0 in 
an observed vector with the according I/O in the model states, the 
complexity of the algorithm with respect to the number of I/Os is 
linear. 

5. case study 

5.1. System description 

In order to demonstrate the relevance of the proposed method 
for existing closed-loop DES, a case study is presented in this section. 
The considered system is a laboratory facility at the Institute of 
Automatic Control, University of Kaiserslautem. The purpose of the 
system depicted in Fig. 11 is to treat work pieces that are stored in 
the feeder (left most station) with three machine tools. The system 
is controlled using a Siemens S300 PLC (Programmable Logic 
Controller) with 14 inputs and 15 outputs. The controller inputs 
and the corresponding sensors can be seen in Fig.11. Inputs that are 
written in italic are connected to sensors with a specific technology 
that delivers a logical 0 if they detect something and a logical 1 if 
they do not detecting anything. All sensors except of those for work 
piece positions have this technology. The outputs are given in 
Table 1. If they are set to 1, the according actuator is activated. In 
order to make the I/O names easier to read they are not labeled 10; 

11.3: Station! 11.2: Stationl 12.2: Station2 12.3: Station2 13.2: Station3 13.3:Station3 
bottom position top position top position bottom position 

conveyor conveyor conveyor conveyor 
position left position center position left position center 

Station I: drilling station Station 2: vertical milling station 

Fig. 11. Lab system. 

Table 1
 
Controller outputs of the case study.
 

11.4: Stationl U.S: Stationl 12.4: Station2 12.5:Station2 

top position bottom position 

13.0: Station3 
back position 

13.1: Station3 
front position 

13.4: Station3 
conveyor 

13,5: Station3 
conveyor 

position left position center 

Station 3: horizontal milling station 

I/O Description I/O Description 

01.2 Drilling machine motor up 02.2 Vertical milling machine motor up 
01.3 Drilling machine motor down 02.3 Vertical milling machine motor down 
01.4 Drilling machine drilling motor 02.4 Vertical milling milling motor 
01.5 Drilling machine conveyor on 02.5 Vertical milling machine conveyor on 

02.7 Change milling head 
03.0 Horizontal milling machine motor back 03.1 Horizontal milling machine motor front 
03.2 Horizontal milling machine motor up 03.3 Horizontal milling machine motor down 
03.4 Horizontal milling machine milling motor 03.5 Horizontal milling machine conveyor on 



but with 11.2 etc. to indicate the second input that belongs to the 
first machine and 02.4 for the fourth output of the second station. 

A production cycle (or system evolution in terms of Section 3) 
consists of the treatment of two work pieces that are stored in the 
feeder. At the beginning of a system evolution the feeder pushes 
the first work piece to the conveyor. Then it is transported to the 
drilling station (station 1). In the drilling station the work piece is 
stopped and two holes are drilled. After this, the work piece is 
transported to the vertical milling machine (station 2) and the 
next piece is taken from the feeder and transported to station 1. 
The first work piece gets treated by the vertical milling machine 
(each of its three milling tools is applied to the piece) and the 
second work piece by the drilling station. After the treatment at 
the vertical milling machine has finished the according work 
piece is transported to the horizontal milling station (station 3). 
The second work piece moves from the drilling station to the 
vertical milling machine. When the work piece has been treated 
in the horizontal milling machine, it is stored in the storage at the 
right side in Fig. 11. This process continues until both work pieces 
have been treated by each of the three stations. 

5.2. Data collection for identification and online diagnosis 

As explained in Section 2, the proposed method works on the 
basis of signals exchanged between controller and plant (see 
also Fig. 3). The data collection method that was chosen for the 
case study works with a standard communication processor that is 
part of the PLC. When controlling the system evolution, the PLC 
performs the following three steps cyclically: reading the inputs, 
executing the program in order to determine the new output setting 
and finally writing the outputs. The transfer of the I/O vector to the 
diagnosis computer takes place at the end of the second step 
(program execution). At the same time when the newly determined 
outputs are transfered to the output card of the PLC, the new I/O 
vector is sent to a standard PC using the communication processor 
via a UDP-connection. Since the I/O vectors are captured at the end 
of the PLC cycle and are thus sampled, it is possible to have different 
I/Os changing their value between two I/O vectors. This method can 
be applied to each system with a controller that is able to send data 
via an Ethernet data link which is a common feature of almost all 
industrial controllers today. 

For the application of the proposed diagnosis method it is 
necessary to have a model that describes the fault-free behavior of 
the considered closed-loop system. For the case study system such a 
model has been identified using the method outlined in Section 3. 
The data base for the identification consists of 60 fault-free system 
evolutions (60 treatments of two work pieces) that have been 
observed using the data link described above. The evolution of the 
according observed languages (sets of I/O vector sequences of 
varying length) are shown in Fig. 4 in Section 3.3. It has been 
explained that with k=2 a model can be identified which is not 
expected to deliver false alerts during online diagnosis. The identi­
fied automaton has 121 states and 162 transitions. Fault-free and 
faulty system behavior can be distinguished since behavior that has 
not been seen during the model learning phase is considered as a 
fault symptom. Parts ofthe identified NDMO can be seen in Figs. 12 
and 13. Since the state output ),(x) is too large to be depicted (I/O 
vector with 29 I/Os), only the evolution set that is obtained when 
comparing the I/O vectors of two connected states is shown. 

5.3. Fault localization examples 

The first example is a fault at the sensor connected with 
controller input 13.3. During normal operation, this controller input 
changes its value from 1 to °when the head of the horizontal 

Fig. 12. Example for a fault at 13.3. 

milling station reaches the bottom position. The fault that has been 
introduced artificially is a short circuit causing the sensor to switch 
its signal from 1 to 0. The fault has been produced when the first 
work piece was treated by the second machine (vertical milling). At 
the same time, the second work piece gets drilled in the first station. 
In this situation no work piece is in front of the horizontal milling 
station and its milling head is in its home position at the top. Hence, 
none of the inputs belonging to station 3 should change their value. 
The short circuit has been introduced when milling with the second 
of the three tools in station 2 started and the vertical milling head 
left the top position. This situation is depicted in Fig. 12. After the 
observation of 12.2_1 indicating that the milling head just left its 
home position, the evaluator algorithm delivers state XIS as single 
state estimate. Hence, no fault is detected. Then the falling edge 
13.3_0 is observed that occurs due to the fault. The evaluator 
algorithm does not find a following state of XIS that can be reached 
by this edge. Since Xt is empty, a fault is detected due to Eq. (1). 
Consequently the residuals are applied with x= XIS as the former 
unique estimate: 

Res1(x,u(t» = {13.3_0J, 

Res2(x,u(t» = {13.3_0}, 

Res3(x,u(t» = {}, 

Res4(x,u(t» = {J1.5_1,J2.3_0,Ol.3_1,Ol.4_1,Ol.5_1,02.2_1,02.3_0}. 

Res1 and Res2 both result in the same unexpected edge that is 
caused by the fault. Res3 results in an empty set and Res4 shows a 
union of the legal following behavior of state XIS. In this case, Res3 
and Res4 do not contribute to fault localization. Res1 and Res2 
provide the "right" candidate for fault localization. 

The second example is a fault at the sensor connected to 12.4. 
This sensor detects if a work piece is at the left most position of 
station 2 (12.4= 1). The artificially introduced fault prevents the 
sensor from switching back to °when the work piece has left the 
left most position. The fault was introduced when the first work 
piece gets transported from station 2 to station 3 and the second 
work piece from station 1 to station 2. Fig. 13 shows two parts of 
the identified NDMO. The lower part represents the described 
situation. The evaluation algorithm (Algorithm 1) determines X49 

as the actual estimate when the second work piece arrives at 
position 12.4 and produces the rising edge 12.4_1. Now, the fault 
prevents 12.4 from switching again to °when the work piece 
leaves the position due to the start of the conveyor (02.5_1). The 
fault is detected when the rising edge of 13.5 and its correspond­
ing output changes are observed before 12.4 changed back to 0. 
The residuals are calculated: 

Res1(x,u(t» = {13.5_1 ,03.3_1 ,03.4_1 ,03.5_0}, 

Res2(x,u(t» = {13.5_1 ,03.3_1 ,03.4_1 ,03.5_0}. 
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Fig. 13. Example for a fault at 12.4. 

In this case, Res1 and Res2 do not contribute to fault localization 
since they show the observed behavior that is not responsible for 
the fault. The controller input related to the blocked sensor is 
localized by both Res3 and Res4 since it is a missed behavior. 

A fault that leads to exactly the same symptoms is a defect at 
the motor of the conveyor in front of the vertical milling machine 
(02.5).lfthe conveyor motor does not start due to the motor fault, 
the symptoms are comparable: The sensor connected to /2.4 does 
not change its value since the conveyor does not transport the 
work piece away from the left most position of station 2. Hence, if 
Res3 or Res4 report a missing change in value at a sensor, it is 
reasonable to not only check the according sensor but also the 
actuators that have a direct influence to this sensor. 

In the second example, Res3 and Res4 contained the controller 
input that was connected to the faulty sensor or the sensor that did 
not change its value due to a fault at a related actuator. Additionally, 
the residuals contain controller outputs. These controller outputs are 
set if a controller input leads to a fulfilled logical condition in the 
control program and are usually not directly related to the fault. 
Nevertheless, they can be useful to decide if the fault candidates 
reported by Res1 and Res2 or the candidates of Res3 and Res4 
should be analyzed at first. If controller inputs appear in Res1 or 
Res2, they are supposed to be unexpected. Indeed, the fault-free 
system model did not expect their change in value at the time of its 
observation. Nevertheless, if a change in value of an input together 
with change in values of controller outputs is observed, it is possible 
that this was not completely unexpected: The controller program 
was in an internal state where it waited for the change in value of 
the input and thus triggered some outputs upon its observation. 

Given a situation like in the second example, this can help to decide 
that the observed change in value of 13.5 was not completely 
unexpected by the controller since it was in an internal state that 
allowed setting corresponding outputs. Hence, the candidates deliv­
ered by Res3 and Res4 should be checked first which delivers the 
right fault candidate. 

Apart from using this strategy to decide which candidate 
should be analyzed first, the candidate set reduction algorithm 
presented in Section 4.4 can be applied. As explained before, it 
must be possible to run the system even if a fault was detected. 
This is a scenario that is often possible in industrial system like 
e.g. the system in Supavatanakul, Lunze, Puig, and Quevedo 
(2006). As an example to illustrate Algorithm 2 we consider the 
fault of the second example (12.4does not switch back to 0). Based 
on the residuals calculated before, the combined set Resu can be 
determined to 

Resu (x, u(t)) = {/3.5_1,/2.4_0,03.3_1,03.4_1,03.5_0,O1.5_0} 

according to Eq. (6). 
Algorithm 2 is started to reduce the candidate set and to 

estimate the current system state using the next observed I/O 
vector following fault detection. In line 1, the complete NDMO 
state space is assigned to the former estimate. The I/O vector that 
is observed after fault detection leads to the evolution set {12.5_1, 
02.3_1,02.4_1, 02.5_0} when compared to the former I/O vector. 
The I/O vector projection of the current vector and the state 
outputs of the former estimate (Iine3) leads to the following 
estimated states: X17 (upper part of Fig. B), XS1, X93, X113 and X118. 

This estimate remains unchanged in line 4. XReach representing the 



states that can be reached starting in one of the states of the 
current estimate and only producing edges of possibly affected 
I/Os is determined to state X113. Starting from XSI it is possible to 
reach X113 only producing possibly affected I/Os. Since X113 is 
already part of the current estimate it does not change in line 6. 
Comparing the observed values of the possibly affected l/Os with 
the values in each ofthe estimated states reveals that none ofthe 
I/Os can yet be erased from JOUst. Since IX tI > 1 and IJOUstl > 0 
the algorithm loops back to line 2. 

The next observed I/O vector leads to the edge 13.2_1 when 
compared with its predecessor. Since 13.2 is not part of the possibly 
affected l/Os, it does not have the observed value 1 in one of the 
states from the former estimate. Hence, Xt becomes an empty set in 
line 3. As state XlOS has the same I/O vector projection as the 
currently observed I/O vector and XlOS E!(X93) (X93 was part of the 
former estimate), the current estimate is determined to {XlOS} in line 
4. The operation of line 5 results in an empty set. Hence, the current 
estimate consists only of one state. The candidate set reduction from 
line 8 to 12 reveals that only the I/Os 12.4 and 01.5 differ in the 
observed vector and in the estimated state. The other fault candi­
dates can thus be removed from /oUst since they showed a behavior 
that can be considered as normal. Since IX tI > 1 and IJOList I> 0 the 
algorithm loops back to line 2 but has reduced the number of fault 
candidates. Hence the fault must be searched at the sensor that is 
connected to 12.4 which corresponds to the artificially introduced 
fault. 

6. Conclusions and outlook 

In this paper a fault localization technique working on the basis 
of a fault-free nominal system model has been presented. The 
concept of residuals known from fault diagnosis in continuous 
systems has has been introduced to solve the fault localization 
problem in DES. It has been shown how an identified model can be 
used for fault detection and fault localization. Results from a case 
study that represents typical characteristics of industrial production 
systems show that the residual approach is able to deliver a small 
subset of controller I/Os possibly related to a detected fault. Using a 
special candidate set reduction algorithm it is possible to reduce this 
set of fault candidates. The presented approach was developed for 
monolithic system models. In large applications, automata networks 
are often used for diagnosis purposes following a decentralized 
approach. After the development of an appropriate distributed 
identification approach in Roth, Jean-Jacques, and Litz (2010b), the 
fault localization approach will be extended for the application in 
automata networks in future works. 

Many faults are characterized by an altered timed behavior. 
Typical examples are actuator faults often leading to deadlocks. 
Analyzing the timed behavior for diagnosis purposes necessitates 
using timed models. Since the determination of timed models is 
very demanding, current work concentrates on identifying the 
timed behavior. After the development of appropriate identifica­
tion algorithms, future works aim at extending the residual 
approach for timed models. 
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