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We

 

developed

 

a

 

way

 

to

 

predict

 

the

 

solubility

 

limit

 

of

 

solute

 

atoms

 

in

 

a

 

binary

 

alloy

 

using

 

a

 

Kinetic

 

Monte

 

Carlo

 

algorithm.

 

The

 

idea

 

is

 

to

 

use

 

the

 

interface

 

energies

 

calculated

 

by

 

first-principles

 

calculations

 

to

 

parameterize

 

the

 

pair

 

interaction

 

energies

 

used

 

in

 

the

 

Kinetic

 

Monte

 

Carlo

 

algorithm.

 

In

 

order

 

to

 

validate

 

this

 

method,

 

it

 

was

 

tested

 

on

 

a

 

very

 

well

 

known

 

case:

 

the

 

Ni-Al

 

alloy.

 

We

 

found

 

that

 

the

 

calculations

 

are

 

in

 

very

 

good

 

agreement

 

with

 

the

 

previously

 

calculated

 

phase

 

diagrams.

1. Introduction

In the last two decades, considerable efforts have been devoted

to develop methods for calculating composition-temperature

phase diagrams from first principles calculations. These methods

have been developed as an alternative to laboratory experimen-

tation, where phase diagrams could be very difficult to determine,

especially for multi-component systems. The first few studies were

devoted to only consider substitutional effects, which were good

enough to reproduce the topology of most phase diagrams. How-

ever, better accuracies with experimental data have now been

achieved which take into the account of electronic excitations

[1] as well as lattice vibrations [2–4]. Such excitations could play

important roles in determining the relative stability of the different

relevant phases.

In this study, we developed a method to predict the solubility

limit of solute atoms in a binary alloy using a kinetic Monte Carlo

(KMC) approach. The idea is to use the interface energies calculated

by first-principles calculations to parameterize pair interaction

energies used in a KMC algorithm.

In order to validate this method, it was tested on a very well

known case: the Ni–Al alloy. The richest Ni intermediate phase

in the Ni–Al phase diagram is Ni3Al. This compound has an L12

structure with four atoms per unit cell [5]. The solubility limit of
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Al in Ni is very high, the maximum solubility being 21 at.% at about

1643 K. Kaufman and Nesor [6] were the first to calculate the phase

diagram of the Al–Ni system. They considered the B2 phase to be

disordered with a body-centered cubic-A2 structure. The phases

Ni3Al, AlNi, and Al3Ni were all assumed to be stoichiometric. The

cluster variation method developed by Kikuchi et al. [7,8] has also

been extensively used [9–13] to calculate a part of or the entire

phase diagram for non-stoichiometric phases. Du and Clavaguera

[14] calculated the Al–Ni phase diagram, but did not consider the

ordering in the face-centered cubic (FCC) phase, and they used the

associated model to describe the thermodynamic properties of the

liquid phase [15–17]. More recently, different phase diagrams have

been calculated combining calorimetry, and Calphad, which stands

for a calculation of phase diagrams [18,19]. Only one experimen-

tal phase diagram has been reported experimentally for Ni–Al [20].

The comparison with our calculated solubility limit is chosen to be

based on the data in Ref. [18].

In the next section, we present the thermodynamic and the

kinetic set of parameters used here to determine the phase dia-

gram. The thermodynamic parameters have been determined by

first-principles calculations. The cohesive energies of each single

phase (e.g. the Ni and Al FCC phase), and the enthalpy of formation

of the Ni3Al precipitate have been calculated, as well as the [1 0 0]

interface energy between the Ni matrix and the Ni3Al precipitate.

The kinetic parameters have been fit to reproduce the experimen-

tal results of self and impurity diffusion coefficients. Solubility

limits obtained from the KMC method are presented. Finally, the

geometrical shape of the Ni3Al precipitate is determined by KMC
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Table 1

Cohesive energies (eV/at.%) obtained by first-principles calculations and compared

with experimental data [29,30].

FCC phase Cohesive energies (eV/at.%)

DFT (GGA) Experiment

Ni 4.32 4.44 [29]

Al 3.62 3.43 [30]

simulations and is compared with the Wulff Shape [21] calculated

with the Wullfman program [22]. The comparison demonstrates

good agreement between both precipitate shapes. The accurate

shape as well as the correct solubility limit obtained by the KMC

algorithm emphasizes on the idea that the interface energies could

contain the thermodynamic information that is needed to describe

a physical system.

2. Parameterization

Thermodynamic parameters depend on order energies ω(n) =
ε(n)

NiAl
− (1/2)ε

(n)
NiNi

− (1/2)ε
(n)
AlAl

, where ε
(n)
XY are the pair interaction

energies between two atoms, which include the nth nearest-

neighbor interaction energies. In this study, order energies up to

n = 2 are considered to be sufficient to adequately reproduce the

thermodynamics of the system.

All the free energy calculations are performed using first-

principles density functional theory. They have been carried out

using the ab initio total-energy and the molecular-dynamics pro-

gram VASP (Vienna ab initio simulation package) [23,24] employing

ultrasoft pseudopotentials [25] and an expansion of the electronic

wave functions in plane waves with a kinetic-energy cutoff of

281 eV. All calculated results were derived employing the gener-

alized gradient approximation (GGA) due to Perdew and Wang

[26]. Brillouin-zone integrations were performed using Monkhorst

and Pack [27] k-point meshes, and the Methfessel and Paxton [28]

technique with a 0.1 eV smearing of the electronic levels. The sim-

ulations used 400 k-points in the irreducible Brillouin zone meshes

to ensure the absolute convergence of the total energy to within a

precision of better than 2.5 meV/atom. Spin polarization was used

since nickel is magnetic.

The first nearest neighbor pair interaction energies ε(1)
NiNi

and

ε
(1)
AlAl

were derived from cohesive energies (which is the difference

between the energy per atom of a system of free atoms at rest far

apart from each other, and the energy of the solid) of the nickel and

the aluminium FCC structures according to:

Ecoh(X) =
z1

2
ε(1)

XX (1)

where z1 is the number of atoms in first neighbor positions. The first

nearest neighbor pair interaction energy ε
(1)
NiAl

was determined from

these first nearest neighbor pair interaction energies ε
(1)
NiNi

and ε(1)
AlAl

,

and the relation �E(Ni3Al) = 3ω(1), which is the enthalpy of forma-

tion of the Ni3Al intermetallic phase (i.e., the change of enthalpy

that accompanies the formation of 1 mol of a substance in its stan-

dard state from its constituent elements in their standard states).

The results of the cohesive energies and of the enthalpy of forma-

tion of Ni3Al precipitate are listed in Tables 1 and 2. We note that

for all these values, there is very good agreement between the cal-

culated values and the experimental data [29–31]. The calculated

values for ε(1)
XY are given in Table 3.

In order to determine the second nearest neighbor pair inter-

action energies, it is needed to find out the order energy ω(2) (i.e.

the difference between the 〈1 1 0〉 bond energy of a Ni–Al pair of

atoms and half sum of the 〈1 1 0〉 bond energies of Ni–Ni and Al–Al

pairs of atoms), which can be expressed in terms of the interface

Table 2

Enthalpy of formation (eV/at.%) obtained by first-principles calculations and com-

pared with experimental data [31].

Phase Free enthalpy of formation (eV/at.%)

DFT (GGA) Experiment

Ni (FCC) 0. 0.

Al (FCC) 0. 0.

Ni3Al (L12) −0.44 −0.41 [31]

Table 3

Pair interaction energies (in eV) of the NiAl system on a FCC lattice.

X–Y interactions ε(1)

XY
(eV) ε(2)

XY
(eV)

Ni–Ni −0.72 0

Al–Al −0.60 0

Ni–Al −0.80 0.0317

Ni–V −0.2208 0

Al–V −0.2227 0

V–V −0.2000 0.3200

energy through Eq. (2) for the specific case of Ni3Al precipitate in

the Ni matrix. The interface energies between the solid solution is

supposed to be in equilibrium and the L12 precipitates calculated

for the [1 0 0] direction of the interface. If the structures Ni/Ni3Al

are stoichiometric, a simple broken bond calculation [32–34] leads

to:

ω(2) = a2�1 0 0 (2)

where a is the lattice constant of Ni, and �1 0 0 is the interface energy

for the [1 0 0] interface. ω(2) is given by:

ω(2) = ε
(2)
NiAl

−
1

2
ε

(2)
NiNi

−
1

2
ε

(2)
AlAl

(3)

where ε(2)
XY are the pair interaction energies between two atoms

(X and Y), which include the second nearest-neighbor interaction

energy.

In Eq. (2), it is necessary to consider for the [1 0 0] direction a

periodic system having two interfaces as shown in Fig. 1, where

the L12 structure consists of an alternation of a pure Ni plane and

a mixed plane containing Ni and Al atoms. In this configuration,

we have to determine the reference state for the Ni plane located

at the interface. Since the L12 structure is stoichiometric, one of

these planes belongs to the compound Ni3Al and the second plane

belongs to the pure FCC Ni phase.

Interface energy calculations have been performed in the

present work using first-principles methodologies. From these cal-

culations, the [1 0 0] interface energy between the L12 structure and

the FCC Ni phase is found to be equal to 41 mJ m−2. The [1 0 0] inter-

face energy is in good agreement with data found in the literature,

which give a wide range of energies between 0.9 and 90 mJ m−2

Fig. 1. The periodic system used to calculate the interface energy between the L12

structure Ni3Al and the FCC nickel phase in the [1 0 0] direction. White spheres are

Ni atoms and black spheres are Al atoms.
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Table 4

Attempt frequencies (in s−1) and saddle-point binding energies of X atoms (in eV).

Ni Al

�0
X

(s−1) 1.1 × 1016 1.1 × 1016

eSP
X

(eV) (in the bulk) −9.75 −9.22
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Fig. 2. Solubility limits of aluminium in nickel determined from first principles cal-

culations coupled with a mean field approximation or a kinetic Monte Carlo method

and compared to the data of Ohtani et al. [18].

[35–38]. If we assume that ε(2)
NiNi

= ε(2)
AlAl

= 0 eV, one then obtains

ε
(2)
NiAl

= 0.0317 eV from our calculations. This value is very close

to the estimation given by Abinandanan obtained from the phase

diagram [39], which gives a value of 0.032 eV.

With the calculated set of parameters, the ratio (ω(1)/ω(2)) < 0

was found, with ω(1) = − 0.146 eV and ω(2) = 0.037 eV. This ensures

the formation of an ordered structure Ni3Al.

The pair interaction energies between atoms and vacancies in

first neighbor positions, and between two vacancies have also been

determined by first-principles calculations. They are here recalled

in Table 3.

3. Kinetic Monte Carlo simulations

We use a KMC simulation method developed in Ref. [42], which

is based on the description of the atomic diffusion mechanisms

that control precipitation. Thus, in addition to the thermodynamic

parameters determined in Section 2, we also need kinetic param-

eters, which include the saddle-point binding energies, and the

attempt frequencies. They have been determined in Refs. [42,44],

and are recalled here in Table 4. This set of parameters has been used

to estimate the solubility limit of Ni3Al in nickel and the equilibrium

shape of the precipitates.

3.1. Solubility limit calculations

The simulation boxes used in our calculations consist of

200 × 200 × 200 FCC unit cells with full periodic boundary con-

ditions. The solubility limit has been estimated using a canonical

ensemble. In a simulation box, a large precipitate of Ni3Al has been

embedded in the nickel matrix. To avoid Gibbs–Thomson effects,

the precipitate has planar interfaces. Through the mechanism of

diffusion by a vacancy jump [42] between the two phases Ni and

Ni3Al at constant temperature, we determine the concentration in

aluminium within the nickel phase at equilibrium. In order to make

a good estimation of the concentration of aluminium in the solid

solution for a biphasic precipitate/matrix equilibrium situation, the

model system calculation has to explore enough configurations

(e.g. 105 steps). This method thus gives a good approximation for

the solubility limit of the precipitated phase at a temperature T in

the host material.

As seen in Fig. 2, the agreement between the calculation of

Ohtani et al. [18] and our KMC calculation is quite accurate over

the temperature range 300–1300 K. Even though the parameters

come from the calculation of the interface energy calculated at 0 K,

the KMC results give very satisfactory quantitative agreement with

previous calculations since the KMC is a method that naturally takes

into account the entropic effects linked to the temperature.

Thus, in the KMC calculations, the thermodynamic information

(namely the ordered structure and the solubility limit) is contained

within the pair interaction energies determined from the inter-

face energy. It is an easy task calculating the interface energies by

first-principles calculations since the ground state of each phase is

well-known. Another way to calculate the pair interaction energies

could be to estimate them directly from first-principles calcula-

tions without determining the interface energies. However, there

are a large amount of configurations in such systems, which make

irrelevant the choice of the configuration which will accurately

reproduce the thermodynamic information.

Finally, from a similar calculation detailed in Ref. [40] and based

on the Bragg–Williams approximation [41], the solubility limit ceq

of an A3B phase only depends on the second nearest-neighbor order

energy ω(2):

ceq = exp

(

−
6 × ω(2)

kT

)

(4)

where k is the Boltzmann constant and T is the temperature.

The Bragg–Williams approximation is a mean field approximation.

It only considers the interactions between different sites of the lat-

tice through their average occupancies and neglects all correlation

effects between these occupancies. Consequently, there is no short

range ordering effect introduced into this model in the homoge-

neous phase and it is not possible to quantify the influence of ω(1)

on the solubility limit. However, the KMC simulations developed in

Ref. [42], which are based on a description of the atomic diffusion

mechanisms that control precipitation, do not make such assump-

tions. For example, a change of 10% in ω(1) gives a change of 0.23%

(in absolute value) on the solubility limit calculated by the KMC

method at 600 K. This is mainly due to the anti-site defect concen-

tration, which may vary as a function of ω(1). Thus, a change of

ω(1) only induces a slight change on the solubility limit. Despite its

weak influence on the solubility limit, it is important to have a good

approximation of ω(1), in particular for concentrated alloys. Indeed,

neglecting this point, for instance taking ω(1) infinite (in absolute

value), the only possible choice in mesoscopic models like Clus-

ter Dynamics [43], systematically leads to a solubility limit smaller

than the values obtained with a correct approximation for ω(1). For

solubility limits in the range 5–10 at.%, the shift can be of the order

of 1 at.%.

To conclude, the complete parameterization of the KMC model

as done here can be simplified as long as only thermodynamic

properties are concerned, e.g. the solubility limit. Indeed, in the

present case it is widely accepted that thermodynamics properties

depend only on ω(2) in first order and on ω(1) or alternatively on

ω(1)/ω(2) in second order. This feature allows for a rapid evaluation

of KMC input data when its use is restricted to the exploration of

thermodynamic properties as performed in Ref. [43].

3.2. Shape of the precipitates

To emphasize the idea that the interface energies could con-

tain enough thermodynamic information that is needed to describe

a physical system, the equilibrium shape of the precipitates has

been investigated by KMC simulations at 400 K and the result thus

obtained was compared with the Wulff construction [21] imple-

mented in the Wulffman program [22]. In the Wulff model, the

equilibrium crystal shape of a particle of a given volume embed-

ded within another homogeneous phase results from a geometric

3



Fig. 3. (a) Wulff construction [21] of the shape of a Ni3Al precipitate in a nickel matrix determined from the Wulffman program [22]. Interface energies are: �1 0 0 = 41 mJ m−2 ,

�1 1 0 = 58 mJ m−2 , �1 1 1 = 71 mJ m−2 . (b) Shape of a Ni3Al precipitate in a nickel matrix obtained by Monte Carlo calculations at 400 K with the set of parameters given in

Table 3. Ni atoms are in black and Al atoms are in grey.

construction that is derived from minimizing the total interfacial

energy of a particle of fixed volume through the integral
∫

�(n̂)dA,

where �(n̂) describes the interface energy as a function of the sur-

face normal n̂ [21]. Thus, this model requires the calculation of

many interface energies in different directions.

In the present study, we have determined two additional free

interface energies to calculate the Wulff construction. Specifically,

from the [1 0 0] interface energy, we have determined the inter-

face energies for the [1 1 0] and [1 1 1] directions. If the structures

Ni/Ni3Al are stochiometric, the broken bond model [32–34] gives

the following relations:

�1 0 0 =
1

√
2

�1 1 0 =
1

√
3

�1 1 1 (5)

where �1 1 0, and �1 1 1 are the interface energies in the [1 1 0] direc-

tion, and the [111] direction, respectively. The interface energies

[1 0 0], [1 1 0], and [1 1 1] are thus found to be equal to 41, 58,

71 mJ m−2, respectively.

Introducing the interface energies calculated from Eq. (5) into

the Wulffman program [22] based on the Wulff construction [21],

we have obtained the shape of the precipitate as shown in Fig. 3a.

Only the two lowest interface energies [1 1 0] and [1 0 0] are

observed in our calculations. The orientated face [1 1 1], having

an interface energy considerably greater than the other two, dis-

appears when calculating the minimum energy shape. The shape

obtained for a Ni3Al precipitate in the bulk of the material is thus

the polyhedron containing the [1 1 0] and [1 0 0] interface orienta-

tions as represented in Fig. 3a. The Ni3Al precipitate, determined by

the KMC simulation, thus adopts a morphology very close to that

predicted by the Wulff construction, i.e. the cluster shape is basi-

cally a cube dominated by large [1 0 0] faces while edges tend to

exhibit [1 1 0] facets (Fig. 3b). Comparisons of the calculated shape

with experimental shapes give satisfactory agreement [45].

4. Conclusion

To conclude, in order to determine the solubility limit of

aluminium in nickel, we use the interface energy calculated by first-

principles calculations to parameterize pair interaction energies

used in the Kinetic Monte Carlo algorithm. Thus first-principles cal-

culations combined with a KMC method provide very powerful and

easy-to-use tools to calculate the solubility limit. For further study,

this method could be extended to calculate solubility limits that are

difficult to estimate directly from experiments in multi-component

systems and with atoms located in substitutional or/and interstitial

positions.
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