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A FINITE-VOLUME SCHEME FOR A KIDNEY NEPHRON MODEL

Aurélie Edwards1, Nicolas Seguin2 and Magali Tournus3

Abstract. We present a finite volume type scheme to solve a transport nephron model. The model

consists in a system of transport equations with specific boundary conditions. The transport velocity

is driven by another equation that can undergo sign changes during the transient regime. This is the

main difficulty for the numerical resolution. The scheme we propose is based on an explicit resolution

and is stable under a CFL condition which does not depend on the stiffness of source terms.

Résumé. Nous présentons un schéma numérique de type volume fini que l’on applique à un modèle

de transport dans le néphron. Ce modèle consiste en un système d’équations de transport, avec des

conditions aux bords spécifiques. La vitesse du transport est la solution d’un autre système d’équation

et peut changer de signe au cours du régime transitoire. Ceci constitue la principale difficulté pour

la résolution numérique. Le schéma proposé, basé sur une résolution explicite, est stable sous une

condition CFL non restrictive.

Introduction

The mechanisms by which the kidney can produce very concentrated urine remain partly unclear. Mathe-
matical models have been useful in elucidating the role that the specific renal architecture and the permeability
properties of the kidney tubules and blood vessels play in the urine concentrating mechanism. Few of these
models account for dynamic changes; in this study, we develop a robust method to solve a dynamic model of fluid
and solute transport along nephrons, which are the functional units of the kidney. The nephron is represented
as a series of tubes arranged in a counter-current manner, along which water and solutes are exchanged with
the interstitium. Transport is driven by convection, diffusion, and energy-consuming pumps, the parameters
for which are taken to be time-independent.

We present here a finite volume resolution [2] for a 5-tube dynamic model associated with the stationary
model[3] of nephron transport. Our results indicate that this scheme is stable and robust, and that the algorithm
relaxes toward a unique stationary state which does not depend on initial conditions. We prove that it preserves
the positivity under an explicit CFL condition and ensures mass conservation at equilibrium. We describe the
algorithm for a 2-tube model with one solute but it can easily be extended to 5 tubes and to more solutes.
Numerical simulation results are shown for the 5-tube model, with one solute.
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1. Description of the model

A minimal representation of a functional kidney unit includes 5 tubes, 3 of which depict one nephron and
the other 2 adjacent counter-current blood vessels. In these tubes, fluid circulates with a flow F , and solutes
are present in concentration Ci, i = 1..I.
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Figure 1. Representation of the nephron model. It consists in 5 tubes bathing in a common interstitium.

1.1. Parameters and variables

We assume that all parameter values depend only on the depth x ∈ [0, L] and that the variables depend on x
and time t. In that sense, our model is one dimensional. Physical parameters are summarized in table 1. The

Table 1. Parameters depending on x, (0 ≤ x ≤ L).

Parameter Description Unit
Rj Radius of tube j m

Lj
PRT Water permeability of tube j m4.s−1.mol−1

P j
i Permeability to solute i of tube j m.s−1

σj
i Reflection coefficient of tube j to solute i no unit

V j
m Rate of active transport across tube j mol.m−2.s−1

physical variables of the model are as follows:

• F j(t, x) (m3.s−1) is the water flow in tube j at depth x and time t. It represents the volume of water
passing through the area centered in x in 1 second.
• Jj

V (t, x) (m
2.s−1) is the water flux across the wall of tube j. It represents the signed surface of water

entering tube j at depth x in 1 second.
• Cj

i (t, x)(mol.m−3) is the concentration of solute i in tube j (j = 1..5 or j = int). The product

F j(t, x)Cj
i (t, x)(mol.s−1) represents the number of moles of solute i passing through the area centered

in x in 1 second.
• Jj

i (t, x)(mol.m−1.s−1) is the flux of solute i entering tube j (j = 1..5, int). It represents the number
of moles entering tube j at depth x in 1 second.
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1.2. The system

These variables are related by the equations of water conservation and solute conservation in the tubes and
in the interstitium for 0 ≤ x ≤ L



























∂

∂x
F j
V (t, x) = Jj

V (t, x), j = 1, ..., 5,

π(Rj)2
∂

∂t
Cj

i (t, x) +
∂

∂x

(

F j
V (t, x)C

j
i (t, x)

)

= Jj
i (t, x), j = 1, ..., 5, i = 1, ..., I,

π(Rint)2
∂

∂t
Cint

i (t, x) = J int
i (t, x), i = 1, ..., I

(1)

with water fluxes given by

Jj
V (t, x) = 2πRj(x)Lj

P (x)RT

I
∑

i=1

σj
i (x)

(

Cj
i (t, x)− Cint

i (t, x)
)

, j = 1, 3, 4, 5, (2)

There is a specific difficulty for tube 2 because the water permeability of its wall is so large that it cannot be
measured (L2

P is unknown). Thus, we compute the water flux entering tube 2 using the hypothesis of a rigid
interstitium, which means that there is no water accumulation therein. Thus we determine J2

V by

5
∑

j=1

Jj
V (t, x) = 0 ∀t > 0, ∀x ∈ [0, L], (3)

and the solute fluxes are given by

Jj
i (t, x) = −2πRj(x)P j

i (x)
(

Cj
i (t, x) − Cint

i (t, x)
)

+ Jj
V (t, x)(1 − σj

i (x))C
α
i (t, x)− 2πRjV j

m

Cj
i

Kj
m + Cj

i

, (4)

with

Cα
i (t, x) =

{

Cint
i (t, x) for Jj

V (t, x) > 0,

Cj
i (t, x) for Jj

V (t, x) ≤ 0.
(5)

By conservation of each solute we have the relation

J int
i (t, x) = −

∑

j

Jj
i (t, x) ∀t > 0, ∀x ∈ [0, L]. (6)

1.3. The boundary conditions

The tube architecture and the water flow direction (see figure 1) enable us to impose the following boundary
conditions

{

F1(0) = F 0
1 , F2(L) = −F1(L), F3(0) = F 0

3 , F4(L) = −F3(L), F5(0) = −F4(0),

C1(0) = C0
1 , C2(L) = C1(L), C3(0) = C0

3 , C4(L) = C3(L), C5(0) = C4(0),

(7)
where F 0

1 , F
0
3 , C

0
1 , C

0
3 are four nonnegative given values. It has been proved [8]that a simplified model relaxes

toward a unique stationary state for any initial conditions. We expect this to also be the case for the model at
hand.
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2. Numerical resolution

Several numerical studies of similar dynamic systems have been published. A first issue was raised by Moore
and Marsh [7] concerning the instability of usual schemes for realistic parameter values. Indeed, the high
permeability to water in some tube segments can result in very large water movements across those segments.
If enough water is extracted from the tube, water flow can reverse direction during the dynamic process thereby
rendering the numerical method unstable. The method they were using did not deal with this problem and
forced them to consider lower values of the water permeability LP . To avoid numerical instabilities arising from
reversal of flow, new dynamic numerical methods were implemented, invoving computation of space derivatives
upwind along the flow direction. An explicit method for solving hyperbolic PDEs [5] [6] was adapted by Layton
and Pitman, but the CFL condition they obtained was tough. To deal with this problem, a semi lagrangian-semi
implicit (SLSI) method was implemented [1]. The drawback of this method is the lack of accuracy, thus it is
combined with a Newton-type solver, which uses the solution from the SLSI method as an initial guess. More
recently, a scheme based on the second order Godunov method was developed [4] for a 3-tube model whose
particularity is that the transmural solute flux contains no convective term.

We present here a scheme for the more extensive model, which deals with transient reversal flows and which
converges for any initial conditions and for realistic parameter values under an explicit CFL condition.

2.1. The numerical scheme

We propose here a finite-volume scheme, combined with a splitting method. To simplify the notations, we
write the scheme for only two tubes (tubes 1 and 2), but it is easy to infer the scheme for the 5 tubes. As
tube 2 plays a specific part, we keep it in our minimal scheme. With only two tubes, we could have simplified
the scheme, for example by directly imposing F 2,n

k = −F 1,n
k but this is not possible in the complete model and

thus we do not make this simplification. We also present the scheme with one solute (I = 1) but it is easily
generalized to I solutes, the only differences lying in the computation of water fluxes (which then contain one
more term).

For the initial condition, we define the cell averages

Cj,0
k =

1

∆x

∫

Qk

Cj(x, 0)dx, j = 1, 2, , k = 1, ..., N. (8)

We discretize the parameters P as

P j
k =

1

∆x

∫

Qk

P j(x)dx, j = 1, 2, , k = 1, ..., N. (9)

We use a mesh size ∆x = L/N where N is the number of cells Qk = (xk−1/2, xk+1/2), C
α,n
k , α = 1, 2, int

represents the value of the concentration in cell k after n iterations, and we impose at the outlet C1,n
0 =

C1(0, t), F 1,n
0 = F 1(0, t), C2,n

N+1 = C1,n
N and F 2,n

N+1 = −F 1,n
N . The outlet of tube 2 is open, we have to define the

values C2,n
0 and F 2,n

0 . We choose C2,n
0 = C2,n

1 and F 2,n
0 = F 2,n

1 , and we will so do for every open tube outlet in
the complete scheme. We first compute the discrete water fluxes and flows







J1,n
V,k = 2πR1

kL
1
p,kσ

1
k

(

C1,n
k − Cint,n

k

)

,

J2,n
V,k = −J1,n

V,k















F 1,n
k − F 1,n

k−1

∆x
= J1,n

V,k , F 2,n
N+1 = −F 1,n

N ,

F 2,n
k − F 2,n

k−1

∆x
= J2,n

V,k .

(10)

We then define the numerical flux of water between meshes k and k + 1 as

F j,n

k+ 1

2

=
1

2

(

F j,n
k + F j,n

k+1

)

(11)
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Other interpolations at the cells interfaces are possible but we observe experimentally that the choice of F j,n

k+ 1

2

does not affect the numerical solution.
The concentration in each mesh is updated with a splitting method in two steps:

First step A provisional concentration is obtained using the axial convection part of the equation, then,
the provisional concentration is updated thanks to the transmural solute fluxes. To compute the provisional
concentration, we write the scheme under a conservative form

(Rj
k)

2C
j,n+ 1

2

k − Cj,n
k

∆t
+

1

∆x

(

gj,n
k+ 1

2

− gj,n
k− 1

2

)

= 0, j = 1, 2, (12)

where gi,n
k− 1

2

is the numerical flux from the mesh k − 1 to the mesh k in tube i after n iterations. We upwind

the numerical fluxes as

gi,n
k+ 1

2

=

{

F j,n

k+ 1

2

Cj,n
k if F j,n

k+ 1

2

> 0

F j,n

k+ 1

2

Cj,n
k+1 otherwise

(13)

This definition ensures mass-conservation from the mesh N of tube 1 to the mesh N of tube 2.
Second step To compute the definitive value of the concentration, we use a semi-implicit scheme so as to avoid
limitations on the CFL condition,

(Rj
k)

2C
j,n+1
k − C

j,n+ 1

2

k

∆t
= Jj,n

i,k , (14)

with

Jj,n
i,k =























−2πRj
kP

j
k (C

j,n+1
k − Cint,n

k ) + Jn
V,k(1− σj

k)C
int,n
k − V j

m,kR
j
k

Cj,n+1
k

1 + C
j,n+ 1

2

k

if Jj,n
V,k > 0

−2πRj
kPk(C

j,n+1
k − Cint,n

k ) + Jj,n
V,k(1− σj

k)C
j,n+1
k − V j

m,kR
j
k

Cj,n+1
k

1 + C
j,n+ 1

2

k

if Jj,n
V,k < 0

(15)

We can easily invert this implicit formulation and express Cj,n+1
k in function of C

n+ 1

2

k and Cint,n
k . Then we

calculate

J int,n
k = −J1,n

k − J2,n
k , (16)

(Rint
k )2

Cint,n+1
k − Cint,n

k

∆t
= J int,n

k . (17)

2.2. Properties of the numerical scheme

The scheme preserves the positivity under the CFL condition We want to guarantee the property

(

Cj,n
k

)

k∈[1,N ]
≥ 0 =⇒

(

Cj,n+1
k

)

k∈[1,N ]
≥ 0.

In equation 12, by distinguishing 4 cases depending on the sign of F j,n
k and F j,n

k−1, we show that the CFL
condition can be written

∆t ≤ min
j=1,2

{∆x

2

min
k

(Rj
k)

2

max
k

|F j
k |

}

(18)

There is no extra CFL condition coming from the treatment of source terms because we use an implicit scheme.
To accelerate the convergence, we compute a new optimal ∆t at each time step.
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At equilibrium, there is mass conservation At equilibrium, the quantity
∑2

j=1 g
j,n

k+ 1

2

does not depend

on k. This property represents the mass conservation at a discrete level and can be used as a criterium to
determine when the system has reached equilibrium.

2.3. Numerical illustrations

We are interested in the profiles of flows and concentrations at equilibrium for the 5-tube model. We run

the algorithm until
∑5

j=1 g
j,n

k+ 1

2

< 10−12 which corresponds to T = 200. For the numerical simulation, we use

realistic parameters and boundary conditions as found in [3].
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Figure 2. Profiles of water flows (on the right) and concentrations (on the left) at equilibrium.
We chose C1

0 = C2
0 = 5, F 1

0 = 1.2, F 3
0 = 1.7. The profiles do not depend on the initial condition.

We observe that solute concentration increases on
[

0,
L

2

]

and remains approximately constant on
[L

2
, L

]

,

This profile is to be expected physiologically because Vm(x) (i.e the active pumping of solute) is almost equal

to zero everywhere except in tube 4 between 0 and
L

2
.
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