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This paper deals with the problem of global parameter estimation in the Cox-Ingersoll-Ross (CIR) model (X t ) t≥0 . This model is frequently used in finance for example to model the evolution of short-term interest rates or as a dynamic of the volatility in the Heston model. In continuity with a recent work by Ben Alaya and Kebaier [1], we establish new asymptotic results on the maximum likelihood estimator (MLE) associated to the global estimation of the drift parameters of (X t ) t≥0 . To do so, we need to study first the asymptotic behavior of the quadruplet (log X t , X t , t 0 X s ds, t 0 ds Xs ). This allows us to obtain various and original limit theorems on our MLE, with different rates and different types of limit distributions. Our results are obtained for both cases : ergodic and nonergodic diffusion.

Introduction

The Cox-Ingersoll-Ross (CIR) process is widely used in mathematical finance to model the evolution of short-term interest rates. It is also used in the valuation of interest rate derivatives.

It was introduced by Cox, Ingersoll and Ross [START_REF] Cox | A theory of the term structure of interest rates[END_REF] as solution to the stochastic differential equation (SDE) dX t = (a -bX t )dt + 2σ|X t |dW t ,

where X 0 = x > 0, a > 0, b ∈ R, σ > 0 and (W t ) t≥0 is a standard Brownian motion. Under the above assumption on the parameters that we will suppose valid through all the paper, this SDE has a unique non-negative strong solution (X t ) t≥0 (see Ikeda and Watanabe [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF], p. 221).

In the particular case b = 0 and σ = 2, we recover the square of a a-dimensional Bessel process starting at x. For extensive studies on Bessel processes we refer to Revuz and Yor [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF] and Pitman and Yor [START_REF] Pitman | Bessel processes and infinitely divisible laws[END_REF] and [START_REF] Pitman | A decomposition of Bessel bridges[END_REF]. The behavior of the CIR process X mainly depends on the sign of b. Indeed, in the case b > 0 there exists a unique stationary distribution, say π, of X and the stationary CIR processes enjoy the ergodic property that is: for all h ∈ L 1 (π), 1 t t 0 h(X s )ds converges almost surely to R h(x)π(dx). In the case a ≥ σ, the CIR process X stays strictly positive; for 0 < a < σ, it hits 0 with probability p ∈]0, 1[ if b < 0 and almost surely if b ≥ 0, the state 0 is instantaneously reflecting (see e.g. Göing-Jaeschke and Yor [START_REF] Göing | A survey and some generalizations of Bessel processes[END_REF] for more details).

During the past decades, inference for diffusion models has become one of the core areas in statistical sciences. The basic results concerning the problem of estimating the drift parameters when a diffusion process was observed continuously are well-summarized in the books by Lipster and Shiryayev [START_REF] Liptser | Statistics of random processes[END_REF] and Kutoyants [START_REF] Yury | Statistical inference for ergodic diffusion processes[END_REF]. This approach is rather theoretical, since the real data are discrete time observations. Nevertheless, if the error due to discretization is negligible then the statistical results obtained for the continuous time model are valid for discrete time observations too. Most of these results concern the case of ergodic diffusions with coefficients satisfying the Lipschitz and linearity growth conditions. In the literature, only few results can be found for nonergodic diffusions or diffusions with nonregular coefficients such as the CIR. To our knowledge, one of the first papers having studied the problem of global parameter estimation in the CIR model is that of Fournié and Talay [START_REF] Fournié | Application de la statistique des diffusions à un modèle de taux d'intérêt[END_REF]. They have obtained a nice explicit formula of the maximum likelihood estimator (MLE) of the drift parameters θ := (a, b) and have established its asymptotic normality only in the case b > 0 and a > σ by using the classical martingale central limit theorem. Otherwise, for cases b ≤ 0 or a ≤ σ this argument is no more valid. Note that, in practice, the parameter σ is usually assumed to be known and one can estimate it separately using the quadratic variation of the process X.

In a recent work Ben Alaya and Kebaier [START_REF] Ben | Parameter Estimation for the Square-root Diffusions : Ergodic and Nonergodic Cases[END_REF] use a new approach, based on Laplace transform technics, to study the asymptotic behavior of the MLE associated to one of the drift parameters in the CIR model, given that the other one is known, for a range of values (a, b, σ) covering ergodic and nonergodic situations. More precisely, they prove that • First case: when a is supposed to be known the MLE of θ = b is given by bT = aT + x -X T T 0 X s ds .

If b > 0, the asymptotic theorem on the error bTb is obtained with a rate equal to √ T and the limit distribution is Gaussian. However, for b < 0 and b = 0, when the diffusion (X t ) t≥0 is not ergodic, the rate of convergence are respectively equal to e -bT /2 and T and the obtained limit distributions are not guassians (for more details see Theorem 1 of [START_REF] Ben | Parameter Estimation for the Square-root Diffusions : Ergodic and Nonergodic Cases[END_REF])

• Second case: when b is supposed to be known, the MLE of θ = a, given by âT = log X Tlog x + bT + σ T 0 ds Xs T 0 ds Xs , is well defined only for a ≥ σ. When a > σ, the asymptotic theorem on the error âTa is obtained with a rate equal to √ T if b > 0 and with a rate equal to √ log T if b = 0 and the limit distribution is Gaussian in both cases. When a = σ, the asymptotic theorem on the error âTa is obtained with a rate equal to T if b > 0 and with a rate equal to log T if b = 0 and the corresponding limit distributions are not guassians. However, for the case b < 0 the MLE estimator âT is not consistent (for more details see Theorem 2 of [START_REF] Ben | Parameter Estimation for the Square-root Diffusions : Ergodic and Nonergodic Cases[END_REF]). Note that for the case b ≤ 0, when the diffusion (X t ) t≥0 is not ergodic, and even in the case b > 0 and a = σ, when the diffision is ergodic, the quantity

1 t t 0 1
Xs ds goes to infinity as t tends to infinity and consequently the classical technics based on central limt theorem for martingales fail.

In order to pove the first case results, Ben Alaya and Kebaier [START_REF] Ben | Parameter Estimation for the Square-root Diffusions : Ergodic and Nonergodic Cases[END_REF] use the explicit Laplace transform of the couple (X T , T 0 X s ds) which is well known (see e.g. Lamberton and Lapeyre [START_REF] Lamberton | Introduction au calcul stochastique appliqué à la finance[END_REF], p. 127), in view to study its asymptotic behavior (see Theorem 1). However, for the second case, they only use the explicit Laplace transform of T 0 ds Xs based on a recent work of Craddock and Lennox [START_REF] Craddock | The calculation of expectations for classes of diffusion processes by Lie symmetry methods[END_REF] to deduce its asymptotic behavior too (see Theorem 3).

The aim of this paper is to study the global MLE estimator of parameter θ = (a, b) for a range of values (a, b, σ) covering ergodic and nonergodic situations. Indeed, it turns out that the MLE of θ = (a, b) is defined only when a ≥ σ and the associated estimation error is given by θT

-θ =                    âT -a = log X T -log x + (σ -a) T 0 ds Xs T 0 X s ds -T (X T -x -aT ) T 0 ds Xs T 0 X s ds -T 2 bT -b = T log X T -log x + bT + σ T 0 ds Xs -X T -x + b T 0 X s ds T 0 ds Xs T 0 ds Xs T 0 X s ds -T 2 .
Hence, the results obtained by [START_REF] Ben | Parameter Estimation for the Square-root Diffusions : Ergodic and Nonergodic Cases[END_REF] are no longer sufficient for our proposed study, since we need a precise description of the asymptotic behavior of the quadruplet (log X T , X T , T 0 X s ds, T 0 ds Xs ) appearing in the above error estimation. For this purpose, we use once again the recent work of [START_REF] Craddock | The calculation of expectations for classes of diffusion processes by Lie symmetry methods[END_REF]. The obtained results are stated in the second section.

Then in the third section, we take advantage of this study to establish new asymptotic theorems on the error estimation θTθ with different rates of convergence and different types of limit distributions that vary according to assumptions made on the parameters a, b and σ. More precisely, we prove that when a > σ, the asymptotic theorem on the error θTθ is obtained with a rate equal to √ T if b > 0 and with a rate equal to diag( √ log T , T ) if b = 0 and the limit distribution is Gaussian only for the first case. When a = σ, the asymptotic theorem on the error θTθ is obtained with a rate equal to diag(T, √ T ) if b > 0 and with a rate equal to diag(log T, T ) if b = 0 and the corresponding limit distributions are not guassians. For b < 0 the MLE estimator θT is not consistent. Our results cover both cases : ergodic and nonergodic situations and are summarized in Theorems 5, 6 and 7.

In the last section we study the problem of parameter estimation from discrete observations. These observations consist of a discrete sample (X t k ) 0≤k≤n of the CIR diffusion at deterministic and equidistant instants (t k = k∆ n ) 0≤k≤n . Our aim is to study a new estimator θ∆n tn := (â ∆n tn , b∆n tn ), for θ = (a, b) based on discrete observations, under the conditions of high frequency, ∆ n → 0, and infinite horizon, n∆ n → ∞. Several authors have studied this estimation problem by basing the inference on a discretization of the continuous likelihood ratio, see Genon-Catalot [START_REF] Genon-Catalot | Maximum contrast estimation for diffusion processes from discrete observations[END_REF] and Yoshida [START_REF] Yoshida | Estimation for diffusion processes from discrete observation[END_REF]. In our approach, we proceed in a slightly different way, we discretize the continuous time MLE instead of considering the maximum argument of the discretized likelihood. We give sufficient conditions on the stepsize ∆ n under which the error θ∆n tn -θtn correctly normalized tends to zero, so that the limit theorems obtained in the continuous time observations for θtn can be easily carried out for the discrete one θ ∆n tn . It turns out that, for a > 2σ, these limit theorems are satisfied if n 2 ∆ n → 0, when b > 0, or max n 2 ∆ n , n∆ → 0, when b = 0 (see Theorems 8 and 9). The case 0 ≤ a ≤ 2σ, seems to be much more harder to treat and requires a specific and more detailed analysis see the last Remark of section 4. For b > 0, the condition n 2 ∆ n → 0 is consistent with those of papers in the litterature dealing with the same problem for ergodic diffusions with regular coefficients (see Yoshida [START_REF] Yoshida | Estimation for diffusion processes from discrete observation[END_REF] and its references). However, for b = 0, the condition max n 2 ∆ n , n∆ → 0 seems to be quite original since it concerns a nonergodic case.

2 Asymptotic behavior of the triplet (X t , t 0 X s ds, t 0 ds X s )

Let us recall that (X t ) t≥0 denotes a CIR process solution to [START_REF] Ben | Parameter Estimation for the Square-root Diffusions : Ergodic and Nonergodic Cases[END_REF]. It is relevant to consider separately the cases b = 0 and b = 0, since the process (X t ) t≥0 behaves differently.

Case b = 0

In this section, we consider the Cox-Ingersoll-Ross CIR process (X t ) t≥0 with b = 0. In this particular case, (X t ) t≥0 satisfies the SDE

dX t = adt + 2σX t dW t . (2) 
Note that for σ = 2, we recover the square of a a-dimensional Bessel process starting at x and denoted by BESQ a x . This process has been attracting considerably the attention of several studies (see Revuz and Yor [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF]). Recently, Ben Alaya and Kebaier study the seperate asymptotic behavior of (X t , t 0 X s ds) and t 0 ds Xs (see Propositions 1 and 2 of [START_REF] Ben | Parameter Estimation for the Square-root Diffusions : Ergodic and Nonergodic Cases[END_REF]) and prove the following result Theorem 1 Let (X t ) t≥0 be a CIR process solution to (2), we have 

:= inf{t > 0 : W t = 1 √ 2σ }.
In the following, we study the asymptotic behavior of the triplet (X t , t 0 X s ds, t 0 ds Xs ) which makes sense only and olny if a ≥ σ and we prove the following result.

Theorem 2 Let (X t ) t≥0 be a CIR process solution to (2), we have

1. If a > σ then ( X t t , 1 t 2 t 0 X s ds, 1 log t t 0 ds X s ) law -→ (R 1 , I 1 , 1 a -σ
) as t tends to infinity.

2. If a = σ then

( X t t , 1 t 2 t 0 X s ds, 1 (log t) 2 t 0 ds X s ) law -→ (R 1 , I 1 , τ 1 )
as t tends to infinity.

Here, (R t ) t≥0 denotes the CIR process starting from 0, solution to (2), I t = t 0 R s ds, and τ 1 is the hitting time associated with Brownian motion τ 1 := inf{t > 0 : W t = 1 √ 2σ }. Moreover, The couple (R 1 , I 1 ) and the random time τ 1 are independent.

In order to prove this proposition, we choose to compute the Laplace transform of the quadruplet (log X t , X t , t 0 X s ds, t 0 ds Xs ). Here is the obtained result.

Proposition 1 For ρ ≥ 0, λ ≥ 0, µ > 0 and η ∈] -k -ν 2 -1 2 , +∞[, we have E x X η t e -ρXt-λ R t 0 Xsds-µ R t 0 ds Xs = Γ(η + k + ν 2 + 1 2 ) Γ(ν + 1) x η exp - √ σλx σ coth( √ σλt) × √ σλx σ sinh( √ σλt) ν 2 + 1 2 -k-η ( √ σρ/ √ λ) sinh( √ σλt) + cosh( √ σλt) -ν 2 -1 2 -k-η × 1 F 1   η + k + ν 2 + 1 2 , ν + 1, √ σλx σ sinh( √ σλt) ( √ σρ/ √ λ) sinh( √ σλt) + cosh( √ σλt)   (3) 
where k =

a 2σ , ν = 1 σ (a -σ) 2 + 4µσ and 1 F 1 is the confluent hypergeometric function defined by 1 F 1 (u, v, z) = ∞ n=0 un vn z n n! , with u 0 = v 0 = 1, and for n ≥ 1, u n = n-1 k=0 (u + k) and v n = n-1 k=0 (v + k).
Consequently, the Laplace transform of the triplet (X t , t 0 X s ds, t 0 ds Xs ) is obtained by taking η = 0 in relation (3) and we have the following result.

Corollary 1 For ρ ≥ 0, λ ≥ 0 and µ > 0, we have

E x e -ρXt-λ R t 0 Xsds-µ R t 0 ds Xs = Γ(k + ν 2 + 1 2 ) Γ(ν + 1) exp - √ σλx σ coth( √ σλt) × √ σλx σ sinh( √ σλt) ν 2 + 1 2 -k ( √ σρ/ √ λ) sinh( √ σλt) + cosh( √ σλt) -ν 2 -1 2 -k × 1 F 1   k + ν 2 + 1 2 , ν + 1, √ σλx σ sinh( √ σλt) ( √ σρ/ √ λ) sinh( √ σλt) + cosh( √ σλt)   (4) 
where

k = a 2σ , ν = 1 σ (a -σ) 2 + 4µσ.
Proof of Proposition 1: We apply Theorem 5.10 in [START_REF] Craddock | The calculation of expectations for classes of diffusion processes by Lie symmetry methods[END_REF] to our process. We have just to be careful with the misprint in formula (5.24) of [START_REF] Craddock | The calculation of expectations for classes of diffusion processes by Lie symmetry methods[END_REF]. More precisely, we have to replace √ Axy, in the numerator of the first term in the right hand side of this formula, by Ax/y.

Hence, for a > 0 and σ > 0, we obtain the so called fundamental solution of the PDE

u t = σxu xx + au x -( µ x + λx)u, λ > 0, µ > 0 : p(t, x, y) = √ σλ σ sinh( √ σλt) y x k-1/2 exp - √ σλ(x + y) σ tanh( √ σλt) I ν 2 √ σλ √ xy σ sinh( √ σλt) , (5) 
where I ν is the modified Bessel function of the first kind. This yields the Laplace transform of the quadruplet (log

X t , X t , t 0 X s ds, t 0 ds Xs ), since E x X η t e -ρXt-λ R t 0 Xsds-µ R t 0 ds Xs = ∞ 0
y η e -ρy p(t, x, y)dy.

Evaluation of this integral is routine, see formula 2 of section 6.643 in [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF]. Therefore, we get

E x X η t e -ρXt-λ R t 0 Xsds-µ R t 0 ds Xs = Γ(η + k + ν 2 + 1 2 ) Γ(ν + 1) x -k exp - √ σλx σ coth( √ σλt) ×   σ sinh( √ σλt) √ σλ ( √ σρ/ √ λ) sinh( √ σλt) + cosh( √ σλt)   η+k × exp   √ σλx 2σ sinh( √ σλt) ( √ σρ/ √ λ) sinh( √ σλt) + cosh( √ σλt)   × M -η-k, ν 2   √ σλx σ sinh( √ σλt) ( √ σρ/ √ λ) sinh( √ σλt) + cosh( √ σλt)   , (6) 
where M s,r (z) is the Whittaker function of the first kind given by

M s,r (z) = z r+ 1 2 e -z 2 1 F 1 (r -s + 1 2 , 2r + 1, z). (7) 
See [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF] for more details about those special functions. We complete the proof by inserting relation [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF] in [START_REF] Göing | A survey and some generalizations of Bessel processes[END_REF].

Proof of Theorem 2 :

The first assertion is straightforward from Theorem 1. For the last assertion and under notations ofthe above corollary, it is easy to check that

lim t→∞ E x e -ρ t Xt-λ t 2 R t 0 Xsds-µ (logt) 2 R t 0 ds Xs = lim t→∞ exp √ µ √ σ log t log √ σλx tσ sinh( √ σλ) ( √ σρ/ √ λ) sinh( √ σλ) + cosh( √ σλ) = exp √ µ √ σ ( √ σρ/ √ λ) sinh( √ σλ) + cosh( √ σλ) = E x e -ρR 1 -λI 1 E x e -µτ 1 .
Which completes the proof.

We now turn to the case b = 0.

Case b = 0

Let us resume the general model of the CIR given by relation ( 1) with b = 0, namely

dX t = (a -bX t )dt + 2σX t dW t , (8) 
where

X 0 = x > 0, a > 0, b ∈ R * , σ > 0.
Note that this process may be represented in terms of a square Bessel process through the relation X t = e -bt Y σ 2b (e bt -1) , where Y denotes a BESQ 2a σ

x . This relation results from simple properties of square Bessel processes (see e.g. Göing-Jaeschke and Yor [START_REF] Göing | A survey and some generalizations of Bessel processes[END_REF] and Revuz and Yor [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften[END_REF]). In the same manner as for the case b = 0, Ben Alaya and Kebaier study the seperate asymptotic behavior of (X t , t 0 X s ds) and t 0 ds Xs (see propositions 3 and 4 of [START_REF] Ben | Parameter Estimation for the Square-root Diffusions : Ergodic and Nonergodic Cases[END_REF]) and prove the following result Theorem 3 Let (X t ) t≥0 be a CIR process solution to [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] and (R t ) t≥0 is the CIR process, starting from x, solution to (2).

:= inf{t > 0 : W t = b σ √ 2 }.
According to the third assertion of the above theorem our next result makes sense if and only if a ≥ σ and we have.

Theorem 4 Let (X t ) t≥0 be a CIR process solution to (8), we have

1. If b > 0 and a > σ then 1 t t 0 X s ds, 1 t t 0 ds X s P -→ a b , b a -σ as t tends to infinity. 2. If b > 0 and a = σ then 1 t t 0 X s ds, 1 t 2 t 0 ds X s law -→ a b
, τ 2 as t tends to infinity, where τ 2 is the hitting time associated with Brownian motion τ 2 := inf{t > 0 :

W t = b √ 2σ }. 3. If b < 0 and a ≥ σ then e bt X t , e bt t 0 X s ds, t 0 ds X s law -→ (R t 0 , t 0 R t 0 , I t 0 ), as t tends to
infinity, where t 0 = -1/b, (R t ) t≥0 is the CIR process, starting from x solution to (2), and

I t 0 := t 0 0 R s ds.
Proof of Theorem The two first assertions are straightforward consequence from Theorem 3. For the case b < 0 and a ≥ σ, we have only to note that ( t 0 ds Xs ) t≥0 is an increasing process converging to a random variable with the same law as I t 0 . The result follows by assertion 2 of Proposition 3 of [START_REF] Ben | Parameter Estimation for the Square-root Diffusions : Ergodic and Nonergodic Cases[END_REF].

Nevertheless, the above theorem is not sufficient to prove all the asymptotic results we manage to establish in our next section. Therefore, we need to prove in extra the following result.

Proposition 2 For ρ ≥ 0, λ ≥ 0 and µ > 0, we have

E x e -ρXt-λ R t 0 Xsds-µ R t 0 ds Xs = Γ(k + ν 2 + 1 2 ) Γ(ν + 1) exp b 2σ (at + x) - Ax 2σ coth(At/2) × Ax 2σ sinh(At/2) ν 2 + 1 2 -k 2σρ + b A sinh(At/2) + cosh(At/2) -ν 2 -1 2 -k × 1 F 1 k + ν 2 + 1 2 , ν + 1, A 2 x 2σ sinh(At/2) ((2σρ + b) sinh(At/2) + A cosh(At/2)) (9) 
where

k = a 2σ , A = √ b 2 + 4σλ and ν = 1 σ (a -σ) 2 + 4µσ.
Proof We apply Theorem 5.10 of [START_REF] Craddock | The calculation of expectations for classes of diffusion processes by Lie symmetry methods[END_REF], for b = 0. We obtain the fundamental solution of the PDE u t = σxu xx + (abx)u x -(λx + µ x )u, µ > 0 and λ > 0 :

p(t, x, y) = A 2σ sinh(At/2) y x a/(2σ)-1/2 × exp b 2σ [at + (x -y)] - A(x + y) 2σ tanh(At/2) I ν A √ xy σ sinh(At/2) . ( 10 
) Since E x e -ρXt-λ R t 0 Xsds-µ R t 0 ds Xs

=

∞ 0 e -ρy p(t, x, y)dy, we deduce the Laplace transform of the triplet (X t , t 0 X s ds, t 0 ds Xs ). In the same manner as in the proof of Proposition 3, formula 2 of section 6.643 in [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF] gives us

E x e -ρXt-λ R t 0 Xsds-µ R t 0 ds Xs = Γ(k + ν 2 + 1 2 ) Γ(ν + 1) x -k exp b 2σ (at + x) - Ax 2σ coth(At/2) × 2σ sinh(At/2) (2σρ + b) sinh(At/2) + A cosh(At/2) k × exp A 2 x 4σ sinh(At/2) ((2σρ + b) sinh(At/2) + A cosh(At/2)) × M -k, ν 2 A 2 x 2σ sinh(At/2) ((2σρ + b) sinh(At/2) + A cosh(At/2)) . (11) 
Finally, by inserting relation [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF] in [START_REF] Yury | Statistical inference for ergodic diffusion processes[END_REF] we obtain the announced result.

Estimation of the CIR diffusion from continuous observations

Let us first recall some basic notions on the construction of the maximum likelihood estimator (MLE). Suppose that the one dimensional diffusion process (X t ) t≥0 satisfies

dX t = b(θ, X t )dt + σ(X t )dW t , X 0 = x 0 ,
where the parameter θ ∈ Θ ⊂ R p , p ≥ 1, is to be estimated. The coefficients b and σ are two functions satisfying conditions that guarantee the existence and uniqueness of the SDE for each θ ∈ Θ. We denote by P θ the probability measure induced by the solution of the equation on the canonical space C(R + , R) with the natural filtration F t := σ(W s , s ≤ t), and let P θ,t := P θ |F t be the restriction of P θ to F t . If the integrals in the next formula below make sense then the measures P θ,t and P θ 0 ,t , for any θ, θ 0 ∈ Θ, t > 0, are equivalent (see Jacod [START_REF] Jacod | Inference for stochastic process[END_REF] and Lipster and Shirayev [START_REF] Liptser | Statistics of random processes[END_REF]) and we are able to introduce the so called likelihood ratio

L θ,θ 0 t := dP θ,t dP θ 0 ,t = exp t 0 b(θ, X s ) -b(θ 0 , X s ) σ 2 (X s ) dX s - 1 2 t 0 b 2 (θ, X s ) -b 2 (θ 0 , X s ) σ 2 (X s ) ds . ( 12 
)
The process L θ,θ 0 t t≥0

is an F t -martingale.

In the present section, we observe the process X T = (X t ) 0≤t≤T as a parametric model solution to equation (1), namely

dX t = (a -bX t )dt + 2σX t dW t ,
where X 0 = x > 0, a > 0, b ∈ R, σ > 0. The unknown parameter, say θ, is involved only in the drift part of the diffusion and we consider the case θ = (a, b).

Parameter estimation θ = (a, b)

According to relation [START_REF] Lamberton | Introduction au calcul stochastique appliqué à la finance[END_REF], the appropriate likelihood ratio, evaluated at time T with θ 0 = (0, 0), makes sense when P θ ( T 0 ds Xs < ∞) = 1 and is given by

L T (θ) = L T (a, b) := L θ,θ 0 T = exp 1 2σ T 0 a -bX s X s dX s - 1 4σ T 0 (a -bX s ) 2 X s ds .
Hence, for a ≥ σ, the MLE θT = (â T , bT ) of θ = (a, b) that maximizes L T (a, b) is well defined and we have

               âT = T 0 X s ds T 0 dXs Xs -T (X T -x) T 0 ds Xs T 0 X s ds -T 2 bT = T T 0 dXs Xs -(X T -x) T 0 ds Xs T 0 ds Xs T 0 X s ds -T 2
Hence, the error is given by

                 âT -a = √ 2σ T 0 X s ds T 0 dWs √ Xs -T T 0 √ X s dW s T 0 ds Xs T 0 X s ds -T 2 bT -b = √ 2σ T T 0 dWs √ Xs - T 0 ds Xs T 0 √ X s dW s T 0 ds Xs T 0 X s ds -T 2
The above error is obviously of the form

θT -θ = √ 2σ M -1 T M T , with M T =    T 0 dWs √ Xs - T 0 √ X s dW s    (13) 
and ( M t ) t≥0 is the quadratic variation of the Brownian martingale (M t ) t≥0 . If this quadratic variation, correctly normalized, converges in probability then the classical martingale central limit theorem can be applied. Here and in the following =⇒ means the convergence in distribution under P θ .

Theorem 5 For the case b > 0 and a > σ

L θ √ T ( θT -θ) =⇒ N R 2 0, 2σC -1 , with C = b a-σ -1 -1 a b .
Proof : Since for a > σ and b > 0 the CIR process is ergodic and the stationary distribution is a Gamma law with shape a/σ and scale σ/b, the ergodic theorem yields T M T =⇒ N R 2 (0, C). We complete the proof using identity [START_REF] Liptser | Statistics of random processes[END_REF].

In the following, it is relevant to rewrite, using Itô's formula, the MLE error as follows

                   âT -a = log X T -log x + (σ -a) T 0 ds Xs T 0 X s ds -T (X T -x -aT ) T 0 ds Xs T 0 X s ds -T 2 bT -b = T log X T -log x + bT + σ T 0 ds Xs -X T -x + b T 0 X s ds T 0 ds Xs T 0 ds Xs T 0 X s ds -T 2 . ( 14 
)
Consequently, the study of the vector (X T , T 0 X s , T 0 ds Xs ), done in the previous section, will be very helpful to investigate the limit law of the error. The asymptotic behavior of θTθ can be summarized as follows. 

θ diag(log T, T )( θT -θ) =⇒ 1 τ 1 , a -R 1 I 1
, where (R t ) is the CIR process, starting from 0, solution to (2), I t = t 0 R s ds, and τ 1 is the hitting time associated with Brownian motion τ 1 = inf{t > 0 : W t = 1 √ 2σ }. The couple (R 1 , I 1 ) and the random time τ 1 are independent.

2. Case b = 0 and a > σ :

L θ diag( log T , T )( θT -θ) =⇒ 2σ(a -σ)G, a -R 1 I 1 ,
where (R 1 , I 1 ) is defined in the previous case, G is a standard normal random variable indepedent of (R 1 , I 1 ).

Proof : For the case b = 0 and a = σ

diag(log T, T )( θT -θ) =                      log X T -log x log T × 1 T 2 T 0 X s ds -X T -x-aT T log T 1 (log T ) 2 T 0 ds Xs × 1 T 2 T 0 X s ds -1 (log T ) 2 log X T -log x (log T ) 2 + a (log T ) 2 T 0 ds Xs -X T -x T × 1 (log T ) 2 T 0 ds Xs 1 (log T ) 2 T 0 ds Xs × 1 T 2 T 0 X s ds -1 (log T ) 2
By a scaling argument the process (X 2t/a ) has the same distribution as a bidimensional square Bessel process, starting from x, BESQ 2

x . It follows that

X 2T /a law = B T + x 2 law = T B 1 + x/ √ T 2 ,
where (B t ) t≥0 denotes a standard bidimensional Brownian motion. Hence, log X T / log T converges in law to one and consequently in probability. We complete the proof of the first case using the second assertion of Theorem 2. For the case b = 0 and a > σ, we have

diag( log T , T )( θT -θ) =                      log X T -log x+(σ-a) R T 0 ds Xs √ log T × 1 T 2 T 0 X s ds -X T -x-aT T √ log T 1 log T T 0 ds Xs × 1 T 2 T 0 X s ds -1 log T log X T -log x+σ R T 0 ds Xs log T -X T -x T × 1 log T T 0 ds Xs 1 log T T 0 ds Xs × 1 T 2 T 0 X s ds -1 log T .
Note that for any u ∈ R, v > 0 and w > 0 we have

E x exp u log X T + (σ -a) T 0 ds Xs √ log T - v T 2 T 0 X s ds - w T X T = E x X η t exp -ρX T -λ T 0 X s ds -µ T 0 ds X s with η = u √ log T , ρ = w T , λ = v T 2 and µ = u(a-σ) √ log T .
The moment generating-Laplace transform in the right hand side of the above equality is given by relation (3) of Proposition 1 . Consequently, using standard evaluations, it is easy to prove that the limit of the last quantity, when T tends to infinity, is equal to

√ σv σw sinh( √ σv) + √ σµ cosh( √ σv) a σ × lim T →+∞ exp -log T 1 2σ (a -σ) 2 + 4uσ(a -σ) √ log T + σ -a 2σ - u √ log T = √ σv σw sinh( √ σv) + √ σµ cosh( √ σv) a σ exp σ a -σ u 2 .
It follows that log

X T + (σ -a) T 0 ds Xs √ log T , 1 T 2 T 0 X s ds, X T T law -→ 2σ a -σ G, I 1 , R 1 as T tends to infinity.
We complete the proof of the second assertion using that 1 log

T T 0 ds X s P -→ 1 a -σ
(see the first assertion of Theorem 2) and that log X T log T P -→ 1 which is a starightforward consequence of the above result, namely:

X T T law -→ R 1 .
Theorem 7 The MLE of θ = (a, b) is well defined for a ≥ σ and satisfies 1. Case b > 0 and a = σ :

L θ diag(T, √ T )( θT -θ) =⇒ b τ 2 , √ 2bG 
, where G is a standard normal random variable indepedent of τ 2 the hitting time associated with Brownian motion τ 2 = inf{t > 0 :

W t = b √ 2σ }.
2. Case b < 0 and a ≥ σ : the MLE estimator θT is not consistent.

Proof : For the first case we have

diag(T, √ T )( θT -θ) =                      log X T -log x T × 1 T T 0 X s ds -X T -x-aT T 1 T 2 T 0 ds Xs × 1 T T 0 X s ds -1 T log X T -log x+bT T √ T - X T -x-aT +b R T 0 Xsds √ T × 1 T 2 T 0 ds Xs 1 T 2 T 0 ds Xs × 1 T T 0 X s ds -1 T
At first, note that the term X T T appearing in the first component of the above relation vanishes as T tends to infinity. This is straightforward by combining that

X T T = x + a T - b T T 0 X s ds + √ 2a T T 0 X s dW s ,
with the classical large law number property for continuous martingales which applies here, since 1 T T 0 X s ds P -→ a b (see assertion 2 of Theorem 4). Now, note that for any u ∈ R and v > 0, we have

E x exp u X T -aT + b T 0 X s ds √ T - v T 2 T 0 ds X s = e -au √ T E x exp -ρX T -λ T 0 X s ds -µ T 0 ds X s with ρ = -u √ T , λ = -ub √ T and µ = v T 2 .
The moment generating-Laplace transform in the right hand side of the above equality is given by relation ( 9) of Proposition 2 with a = σ. Using standard evaluations, it is easy to prove that the limit of the last quantity, when T tends to infinity, is equal to lim

T →∞ 1 2 exp bT 2 -au √ T sinh T 2 b 2 - 4aub √ T -2 √ v T √ σ -1 = lim T →∞ exp bT 2 -au √ T exp (- 2 √ v T √ σ -1) T 2 b 2 - 4aub √ T = exp σ 2 u 2 b - b √ u √ σ
Hence the couple

X T -aT +b R T 0 Xsds √ T , 1 T 2 T 0
ds Xs converges in law to 2 b σG, τ 2 when T tends to infinity. On the other hand, using that the CIR process (X t ) can be represented in terms of a BESQ 2

x as follows

X T law = e -bT BESQ 2 x ( a 2b (e bT -1))
and that log BESQ 2 x (T )/ log T converges in probability to one, we obtain that (log X Tlog x + bT )/T converges in probability to b and consequently we deduce log X T T P -→ 0. We complete the proof of the first assertion using that 1

T T 0 X s ds P -→ a b
(see assertion 2 of Theorem 4).

For the second case, b < 0 and a ≥ σ, we have

âT -a = √ 2σ T 0 X s ds T 0 dWs √ Xs -T T 0 √ X s dW s T 0 ds Xs T 0 X s ds -T 2 = √ 2σ T 0 dWs √ Xs - T e bT T 0 √ X s dW s e bT T 0 X s ds T 0 ds Xs - T 2 e bT e bT T 0 X s ds . Since t 0 ds Xs t≥0
is an increasing process converging to a finite random variable, we easily deduce the almost sure convergence of the Brownian martingale

t 0 dWs √ Xs t≥0
. Thanks to the convergence in law of the term e bT T 0 X s ds, we finish the proof using that

T 2 e 2bT E T 0 X s dW s 2 = T 2 e 2bT T 0 E(X s )ds = T 2 e 2bT T 0 a b + (x - a b )e -bs ds -→ T →∞ 0.

Estimation of the CIR diffusion from discrete observations

In this section, we consider rather a discrete sample (X t k ) 0≤k≤n of the CIR diffusion at deterministic and equidistant instants (t k = k∆ n ) 0≤k≤n . Our aim is to study a new estimator for θ = (a, b) based on discrete observations, under the conditions of high frequency, ∆ n → 0, and infinite horizon, n∆ n → ∞. A common way to do that is to consider a discretization of the logarithm likelihood (see [START_REF] Kessler | Estimation of an ergodic diffusion from discrete observations[END_REF] and references there). In our case this method yields the contrast

1 2σ n-1 k=0 a -bX t k X t k (X t k+1 -X t k ) - 1 4σ n-1 k=0 ∆ n (a -bX t k ) 2 X t k ,
Our approach is slightly different since we discretize the continuous time MLE, obtained in the previous section, instead of considering the maximum argument of the above contrast. Doing so, we take advantage from limit theorems obtained in the continuous time observations. Hence, thanks to relation [START_REF] Pitman | Bessel processes and infinitely divisible laws[END_REF], the discretized version of the MLE is given by

                   â∆n tn = log X tn -log x + σ n-1 k=0 ∆n Xt k n-1 k=0 ∆ n X t k -t n (X tn -x) n-1 k=0 ∆n Xt k n-1 k=0 ∆ n X t k -t 2 n b∆n tn = t n log X tn -log x + σ n-1 k=0 ∆n Xt k -(X tn -x) n-1 k=0 ∆n Xt k n-1 k=0 ∆n Xt k n-1 k=0 ∆ n X t k -t 2 n . (15) 
In order to prove limit theorems on the discrete estimator, θ∆n tn := (â ∆n tn , b∆n tn ), we need to control the errors

tn 0 X s ds -n-1 k=0 ∆ n X t k and tn 0 ds Xs -n-1 k=0 ∆n Xt k
and somme moments behavior on the increments of the CIR process are needed.

Moment properties of the CIR process

Let us first, yield some essential properties on moments of the CIR process.

Proposition 3 For all η ∈] -a σ , +∞[ we have 1. For b = 0, we have

E x (X η t )∼σ η Γ( a σ + η) Γ( a σ ) t η , as t → +∞,
and we have,

sup 0≤t≤1 E x (X η t ) < ∞ and sup t≥1 E x (X η t ) t η < ∞.
2. For b > 0, we have

E x (X η t )∼ σ 2 2b η Γ( a σ + η) Γ( a σ )
, as t → +∞, and we have, sup t≥0 E x (X η t ) < ∞.

Proof :

For the first assertion we take ρ = λ = 0 and let µ tend to 0 in relation (3) of Proposition 1, it follows that

E x (X η t ) = (σt) η Γ( a σ + η) Γ( a σ ) exp - x σt 1 F 1 a σ + η, a σ , x σt
and we get the result using that

lim t→∞ 1 F 1 a σ + η, a σ , x σt = 1.
The second assertion is immediate using the previous assertion and that, for b > 0, we have the relation

X t = e -bt Y σ 2b (e bt -1)
, where Y denotes a BESQ 2a σ

x . As the function t → E x (X η t ) is continuous we obtain the last result.

In the following, C denotes a positive constant that may change from line to line.

Proposition 4 In the case b > 0, let 0 ≤ s < t such that 0 < ts < 1 we have 1. For all q ≥ 1,

E x |X t -X s | q ≤ C(t -s) q 2 .
2. For all a > 2σ,

E x 1 X t - 1 X s ≤ C(t -s) 1 2 
.

Proof : First, note that by linearization technics we obtain d(e bt X t ) = ae bt dt + e bt 2σX t dW t .

Hence,

X t -X s = a b -X s 1 -e -b(t-s) + t s e -b(t-u) 2σX u dW u . Let q ≥ 1, E x |X t -X s | q ≤ 2 q-1 1 -e -b(t-s) q E x a b -X s q + 2 q-1 E x t s e -b(t-u) 2σX u dW u q .
The first term in the right hand side is bounded by C(ts) q since 1e -x ≤ x, for x ≥ 0, and sup t≥0 E x (X q t ) < ∞ (see proposition 3). For the second term, the Burkholder-Davis-Gundy inequality yields

E x t s e -b(t-u) 2σX u dW u q ≤ E x t s 2σe -2b(t-u) X u du q 2
For q ≥ 2, we apply the Holder inequality on the integral to obtain

E x t s e -b(t-u) 2σX u dW u q ≤ C(t -s) q 2 -1 t s e -bq(t-u) E x (X q 2 u ) du ≤ C(t -s) q 2 ,
since the integrand is bounded using sup u≥0 E x (X q 2 u ) < ∞. For 1 ≤ q < 2, we apply the Holder inequality on the expectation and we obtain

E x t s e -b(t-u) 2σX u dW u q ≤ t s 2σe -2b(t-u) E x (X u )du q 2 ≤ C(t -s) q 2 ,
since the integrand is also bounded using once again sup u≥0 E x (X u ) < ∞. Combining these three upper bounds with 0 < ts < 1, we deduce the first assertion. Concerning the second assertion, we use the Holder inequality with 1 q + 2 p = 1 and 2 < p < a σ which ensures the boundedness of all the terms. We obtain

E x 1 X t - 1 X s ≤ X t -X s q X -1 t p X -1 s p ≤ C(t -s) 1 2 ,
since by Proposition 3 we have sup t≥0 E x (X -p t ) < ∞, for p < a σ , and

E x |X t -X s | q ≤ C(t -s) q 2 , for q ≥ 2.
Proposition 5 In the case b = 0, let 0 ≤ s < t such that 0 < ts < 1 we have

1. For all q ≥ 2, E x |X t -X s | q ≤ C(t -s) q 2 sup s≤u≤t E x (X q 2 
u ).

2. For all 1 ≤ q < 2,

E x |X t -X s | q ≤ C(at + x) q 2 (t -s) q 2 .
3. For all a > 2σ, there exists q ≥ 2 and 2 < p < a σ , such that

E x 1 X t - 1 X s ≤ C(t -s) 1 2 sup s≤u≤t E x (X q 2 u ) 1 q X -1 t p X -1 s p .
Proof : First, we have

X t -X s = a(t -s) + t s 2σX u dW u . Let q ≥ 1, E x |X t -X s | q ≤ 2 q-1 (a(t -s)) q + 2 q-1 E x t s 2σX u dW u q .
For the second term, the Burkholder-Davis-Gundy inequality yields

E x t s 2σX u dW u q ≤ E x t s 2σX u du q 2
For q ≥ 2, we apply the Holder inequality on the integral to obtain

E x t s 2σX u dW u q ≤ C(t -s) q 2 -1 t s E x (X q 2 u ) du ≤ C(t -s) q 2 sup s≤u≤t E x (X q 2 
u ), which completes the second assertion. For 1 ≤ q < 2, we apply the Holder inequality on the expectation and we obtain

E x t s 2σX u dW u q ≤ t s 2σE x (X u )du q 2 ≤ C(at + x) q 2 (t -s) q 2 , using E x (X u ) = au + x.
This completes the second assertion. Concerning the last one, we use the Holder inequality with 1 q + 2 p = 1 and 2 < p < a σ which ensures the boundedness of all the terms. We obtain

E x 1 X t - 1 X s ≤ X t -X s q X -1 t p X -1 s p ≤ C(t -s) 1 2 sup s≤u≤t E x (X q 2 u ) 1 q X -1 t p X -1 s p , since for q ≥ 2, E x |X t -X s | q is bounded by C(t -s) q 2 sup s≤u≤t E x (X q 2 
u ).

Parameter estimation of θ = (a, b)

The task now is to give sufficient conditions on the frequency ∆ n in order to get the same asymptotic results of Theorem 5 and Theorem 6, when we replace the continuous MLE estimator θtn := (â tn , btn ) by the discrete one θ∆n tn := (â ∆n tn , b∆n tn ). Theorem 8 Under the above notations, for b > 0 and a > 2σ, if n∆ 2 n → 0 then we have

√ t n 1 t n tn 0 X s ds - 1 t n n-1 k=0 ∆ n X t k -→ 0 and √ t n 1 t n tn 0 1 X s ds - 1 t n n-1 k=0 ∆ n X t k -→ 0, ( 17 
) in L 1 and in probability. Consequently L θ √ t n ( θ∆n tn -θ) =⇒ N R 2 0, 2σΓ -1 , with Γ = b a-σ -1 -1 a b .
Proof : For the first convergence in relation [START_REF] Yoshida | Estimation for diffusion processes from discrete observation[END_REF], thanks to the first assertion of Proposition 4, we consider the L 1 norm and we write

1 √ t n E x tn 0 X s ds - n-1 k=0 ∆ n X t k ≤ 1 √ t n n-1 k=0 t k+1 t k E x |X s -X t k | ds ≤ C √ t n n-1 k=0 t k+1 t k √ s -t k ds ≤ C √ t n n-1 k=0 ∆ 3 2 n = C √ n∆ n -→ 0,
since n∆ 2 n -→ 0. In the same manner, thanks to the second assertion of Propostion 4, we have where (R t ) is the CIR process, starting from 0, solution to (2), I t = t 0 R s ds, and G is a standard normal random variable indepedent of (R 1 , I 1 ).

1 √ t n E x tn 0 ds X s - n-1 k=0 ∆ n X t k ≤ 1 √ t n n-1 k=0 t k+1 t k E x 1 X s - 1 X t k ds ≤ C √ n∆ n -→ 0.

Remarks :

Proof : For the first convergence, thanks to the second assertion of Proposition 5, we consider the L 1 norm and we write 

E x (X q 2 u ) 1 q X -1
t k p X -1 s p ds, using the third assertion of Proposition 5. Thanks to the first assertion of Proposition 3, in one hand, for s < 1 the integrand is bounded, and in the other hand, for s ≥ 1, sup

t k ≤u≤s E x (X q 2 
u )

1 q ≤ Cs 1 2 , X -1 s p ≤ Cs -1 , and X -1

t k p ≤ Ct -1 k ≤ 2Cs -1 when ∆ n ≤ 1 2 .
It follows that for s ≥ 1, sup t k ≤u≤s E x (X 

q 2 u ) 1 q X -1 t k p X -

6 .R
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  θ a.s.. Therefore, by the martingale central limit theorem we get L θ 1 √

Theorem 6

 6 The MLE of θ = (a, b) is well defined for a ≥ σ and satisfies 1. Case b = 0 and a = σ : L

  (R 1 , I 1 ) as t tends to infinity, where (R t ) t≥0 is the CIR process starting from 0, solution to (2) and I t =

	1. ( Xt t , 1 t 2		t 0 X s ds)			t 0 R s ds.
	2. P x	0	t	ds X s	< ∞ = 1 if and only if a ≥ σ.
	3. If a > σ then	1 log t	0	t	ds X s	P -→	1 a -σ	as t tends to infinity.
	4. If a = σ then	1 (log t) 2	0	t	ds X s	law -→ τ 1 as t tends to infinity, where τ 1 is the hitting time
	associated with Brownian motion τ 1

law

-→

  (R t 0 , t 0 R t 0 ), as t tends to infinity, where t 0 = -1/b and (R t ) t≥0 is the CIR process, starting from x, solution to (2).

									, we have
	1. If b > 0 then	1 t	0	t	X s ds	P -→	a b	as t tends to infinity.
									t
	2. If b < 0 then e bt X t , e bt	X s ds
									0
	3. P x	0	t	ds X t 0	ds X s	P -→	b a -σ	as t tends to infinity.
	5. If b > 0 and a = σ then	1 t 2	0	t	ds X s

law -→ s < ∞ = 1 if and only if a ≥ σ.

4. If b > 0 and a > σ then 1 t law -→ τ 2 as t tends to infinity, where τ 2 is the hitting time associated with Brownian motion τ 2

  -→ 0 in probability. This last convergence is easily obtained by standard arguments using the first part of the theorem. In fact, for instance to prove the convegence of the first compenent we write B∆n tn ) is simply the discretization version of the couple ( Âtn , Btn ). From the first part we have the convergence in probability of √ t n ( Â∆n tn -Âtn , B∆n tn -Btn ) towards zero and from Theorem 4 we have the convergence in probabilty of the couple ( Âtn , Btn ). Which completes the proof. Under the above notations, for b = 0 and a > 2σ, X t k -→ 0, in L 1 and in probability.
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	Theorem 9 1. if n∆ 2 n → 0 then we have				
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	t n	1 log t n	0	tn	1 X s	ds -	1 log t n	n-1 k=0	∆ n X t k	-→ 0, in L 1 and in probability.
											3
	3. Consequently, if n∆ 2 n → 0 and		n∆	2
	Finally, as sufficient to prove √ t n ( θ∆n tn -θ) = √ t n ( θ∆n	√ t n ( θ∆n tn -θtn ) +	√ t n ( θtn -θ) and thanks to Theorem 5, it is
		√	t n (â ∆n tn -âtn ) =	Btn	√ t n ( Â∆n tn -Âtn ) -Âtn B2 tn + Btn ( B∆n tn -Btn ) √ t n ( B∆n tn -Btn )	.
	where		Âtn = Btn =			log Xt n -log x tn 1 tn tn 0 ds Xs	+ σ tn 1 tn	tn 0 tn 0 X s ds -1, ds Xs 1 tn 0 X s ds -Xt n -x tn tn

tn -θtn ) tn , n log(n∆ n )

→ 0 then we have

L θ diag( log t n , t n )( θ∆n tnθ) =⇒ 2σ(aσ)G, a -R 1 I 1 ,

  -→ 0. In the same manner, thanks to the second assertion of Propostion 4, we have

	since n∆ 2 n t n log t n E x	0	tn	ds X s	-	n-1 k=0	∆ n X t k	≤ ≤ C log t n t n t n √ log t n n-1 k=0 ∆ n	t k+1 t k n-1 k=0 t k t k+1 E x	1 X s sup -t k ≤u≤s	1 X t k	ds
			1 t n	E x		0	tn	X s ds -	n-1 k=0	∆ n X t k ≤	1 t n	n-1 k=0	t k+1 t k	E x |X s -X t k | ds
													≤	C t n	n-1 k=0	t k+1 t k	√	as + x	√	s -t k ds
													≤ C ≤ C	∆ n 1 2 t n √ n∆ n -→ 0, tn √ as + xds 0

  √ log t n , t n )( θtnθ) and thanks to the second assertion of Theorem 6, it is sufficient to prove diag( √ log t n , t n )( θ∆n tn -θtn ) -→ 0 in probability. In order to show this convegence, a similar analysis to that in the previous proof can be done. Indeed, we rewrite the both compenents as follows log t n (â ∆n tnâtn ) = D∆n tn ) is simply the discretization version of the triplet ( Âtn , Btn , Dtn ). From the above assertions the rate of convergence in probability of ( Â∆n tn -Âtn , B∆n tn -Btn , D∆n tn -Dtn ) towards zero is t n , using Theorem 2 we have the convergence in distribution of the couple ( Âtn , Btn , Dtn ), and now it is easy to check that diag( √ log t n , t n )( θ∆n tn -θtn ) vanishes. Which completes the proof.

	large enough, we get									s	1	2 . Consequently, for n p ≤ Cs -3
			t n log t n	E x	0	tn	ds X s	-	n-1 k=0	∆ n X t k	≤ C ≤ C	t n log t n √ ∆ n t n √ ∆ n log t n	(1 + -→ 0, 1 √ t n	)
			3									
	since	n∆	2									
									Dtn log tn( Â∆n	
													,
	where		Âtn = Btn = Dtn =	log Xt n -log x t 2 n (log Xt n -log x+σ + σ t 2 n R tn 0 tn log tn 1 log tn tn 0 ds Xs 1 Xs ) tn 0 ds t 2 n tn Xs ds -Xt n -x 1 log tn t 2 n 0 X s ds -1 tn 0 X s ds -Xt n -x tn log tn 1 log tn tn 0 ds Xs log tn ,
	and ( Â∆n										

n log(n∆ n ) → 0. Finally, as diag( √ log t n , t n )( θ∆n tnθ) = diag( √ log t n , t n )( θ∆n tn -θtn ) + diag( tn -Âtn )-Âtn log tn( D∆n tn -Dtn ) D2 tn + Dtn ( D∆n tn -Dtn ) t n ( b∆n tn -btn ) = Dtn tn( B∆n tn -Btn )-Btn tn( D∆n tn -Dtn ) D2 tn + Dtn ( D∆n tn -Dtn ) tn , B∆n tn ,

We have investigate the asymptotic behavior of the MLE for square-root diffusions in ergodic and nonergodic cases. However these estimators does not make sense when a < σ and are not consistent when b < 0. One can wonder: how to overcome this problem by constructing, in these particular cases, new consistent estimators with explicit asymptotic behavior.
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