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An asymptotic study to explain the role of active transport in

models with countercurrent exchangers

Magali Tournus ∗†‡

November 9, 2011

Abstract

We study a solute concentrating mechanism that can be represented by coupled transport equa-

tions with specific boundary conditions. Our motivation for considering this system is urine concen-

trating mechanism in nephrons. The model consists in 3 tubes arranged in a countercurrent manner.

Our equations describe a countercurrent exchanger, with a parameter V which quantifies the active

transport. In order to understand the role of active transport in the mechanism, we consider the

limit V −→ ∞. We prove that when V goes to infinity, the system converges to a profile which

stays uniformly bounded in V and which presents a boundary layer at the border of the domain.

The effect is that the solute is concentrated at a specific point in the tubes. When considering urine

concentration, this is physilogically optimal because the composition of final urine is determined at

this point.

Mathematics Subject Classification : 34B18, 34E99, 92C30
Key-words : Countercurrent, active transport, asymptotic analysis, boundary layer, urine concentration,
kidney physiology.

1 Introduction

Many problems occurring in biology or physiology [14, 9] can be described by transport equations with
different propagation velocities that combine together to produce specific effects. For instance, typical
cases are propagation of particules waves in neurones [5], or diphasic propagation arising in chemical
engineering, which can describe chromatography or distillation [7]. Usually, the stationary states are of
interest and their study constitute a classical field of analysis (see for instance [13] and the references
therein).

Here, we study a model of a countercurrent exchanger combined with an active transport pump
[6]. Countercurrent exchanges accross parallel tubes can be used for building up concentration or heat
gradient. Our equations come from the modelisation of kidney nephrons, in which a concentration gradient
is amplified by an active transport pump [16], which plays a fundamental role for urine concentration
[11]. In this particular study, we investigate the effects of active transport using a limiting case.

The model consists in a fluid circulating at a constant velocity in 3 tubes arranged in a countercurrent
architecture. The 3 tubes are bathing in a common bath in which no solute can accumulate. Each tube
can exchange solute with the bath and solute transport accross tubes wall is driven by diffusion in all
tubes and by an active pump in tube 3. This active pump extracts solute from tube 3 and carries it into
the bath and is assumed to follow Michaelis-Menten kinetics. We call V the maximum rate achieved by
the pump at saturating concentrations. We call Ci(x) the solute concentration in tube i at depth x. The

nonlinearity V
C3

V

1 + C3
V

represents the effect of active pumps along tube 3. The fluid enters tube 1 with a

concentration value C1
0 and tube 2 with a concentration value C2

0 . The outlet of tubes 1 and 3 are open
at x = L and we have C2(L) = C3(L). See Figure 1 for a drawing of the system. The stationary state is
of particular interest in renal physiology, given that the kidney acts to preserve homeostasis.

∗Email: magali.tournus@ann.jussieu.fr
†UPMC Univ Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris
‡INSERM UMRS872, and CNRS ERL7226, Laboratoire de génomique, physiologie et physiopathologie rénales, Centre

de Recherche des Cordeliers, 75006, Paris, France;
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Tube 1 Tube  2 Tube 3

 Fluid flow

Solute movements across the wall

x=0

x=L

Active pump

C1
0 C2

0

C3(L) = C2(L)

Figure 1: Representation of the 3-tube architecture in which the fluid circulates. Tubes are water-
impermeable but can exchange solutes with the bath.

The differential system satisfied by C1, C2, C3 is written as


















































dC1(x)

dx
=

1

3

[

C1(x) + C2(x) + C3(x) + V
C3(x)

1 + C3(x)

]

− C1(x),

dC2(x)

dx
=

1

3

[

C1(x) + C2(x) + C3(x) + V
C3(x)

1 + C3(x)

]

− C2(x),

−
dC3(x)

dx
=

1

3

[

C1(x) + C2(x) + C3(x) + V
C3(x)

1 + C3(x)

]

− C3(x) − V
C3(x)

1 + C3(x)
,

C1(0) = C1
0 , C2(0) = C2

0 , C3(L) = C2(L).

(1)

The specific boundary conditions relate the solutions at different points and make this system not a
mere ordinary differential equation. We call CV = (C1

V , C
2
V , C

3
V ) the solution of (1). We wish to explain

through the analysis of the system for large values of V , why this combination of active pump and
boundary conditions (tube arrangement) is performing well the task of concentrating the solute at x = L,
where the composition of final urine is determined. We already know [18] that each Ci

V is continuous
and nonnegative on [0, L]. The question we want to answer is : How do the solutions of (1) behave when
V tends to ∞?

Other asymptotic studies have been done for similar systems in the context of hyperbolic relaxation
where a parameter is assumed to be small in comparison to the typical size of the problem [12, 8, 7]. This
appraoch comes from the concept of mean free path in Boltzmann equation [3]. For example, in [5], the
length of the domain is large, and they establish the asymtotic behavior of the solution in the limiting
case of an infinite domain.

In our case, for answering our question, we prove that CV converges toward a limit C = (C1, C2, C3)
that we calculate. Our analysis uses only direct a priori estimates and weak limits obtained by compact
injections which do not use the specific smooth form of the non-linearity and makes it very general. We
identify completely the limit as V −→ ∞ including boundary layers. Compact injections give us the
convergence of some particular subsequences, but as we point out that the limit only depends on the
problem data, we are able to prove that the whole sequence converges. The boundary layers are coming
from the particular boundary conditions in the model, which can be seen as reflection conditions and
make the problem specific and interesting.

We state our main results in next section. Section 3 and 4 are devoted to the proofs of the asymptotic
results. Numerical illustrations are given in section 5.

2 Main results

It is possible to identify completely the profiles of the limiting values for the solutions C1, C2, C3 almost
everywhere as V −→ ∞. This is stated in the
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Theorem 1 (Asymptotics). Solutions to (1) satisfy

C1
V −→

V−→+∞

C1, C2
V −→

V−→+∞

C2, C3
V −→

V −→+∞

0, Lp(1 ≤ p < ∞), a.e., (2)

with

C1(x) =
C1

0 + C2
0

2
+

C1
0 − C2

0

2
e−x, C2(x) =

C1
0 + C2

0

2
+

C2
0 − C1

0

2
e−x, C3(x) = 0 a.e. (3)

This result is somewhat sharp since we will see that a boundary layer occurs and thus the convergence
does not hold in L∞. To state our next result, we need to define the quantity

M = ess inf{
1

C3
V (x)

;x ∈ [0, L], V ∈ R
+}. (4)

We prove in the next section that M > 0. The second result is more accurate and states that C3 decreases
exponentially fast to zero. We describe also the boundary layer that appears at x = L.

Theorem 2 (The boundary layer). The limits of the boundary values are

C1
V (L) −→

V −→+∞

C1
0 + C2

0

C2
V (L) = C3

V (L) −→
V −→+∞

C1
0 + C2

0 + (C2
0 − C1

0 )e
−L

(5)

The behavior of C3
V for x ≃ L is given by the inequalities

C3
V (x) ≤ C3

V (L) exp
(

−
2

3
VM(L− x)

)

+
K

V

[

1− exp
(

−
2

3
VM(L− x)

)]

(6)

C3
V (x) ≥ C3

V (L) exp
(

−
2

3
V (L− x)

)

+
K

V

[

1− exp
(

−
2

3
V (L− x)

)]

(7)

The next section is dedicated to the proof of these results.

3 Proof of the asymptotic results(Theorem 1)

First step: Uniform bounds on the solution.

Lemma 1. There is a constant K depending only on C1
0 , C

2
0 but not on V such that

C1
V (L) ≤ K, C3

V (0) ≤ C1
0 + C2

0 , (8)
∫ L

0

Ci
V (x)dx ≤ K; V

∫ L

0

C3
V (x)dx ≤ K;

∫ L

0

|
dC3

V

dx
(x)|dx ≤ K; 0 ≤ Ci

V ≤ K. (9)

Proof. To prove (8), we sum the three lines of (1), and we obtain a quantity which does not depend on
x,

C1
V (x) + C2

V (x) − C3
V (x) =: K(V ). (10)

Using the boundary values, we find uniform bounds on K(V )

K(V ) = C1
0 + C2

0 − C3
V (0) ≤ C1

0 + C2
0 , K(V ) = C1

V (L) + C2
V (L)− C3

V (L) = C1
V (L) ≥ 0, (11)

and thus
0 ≤ K(V ) ≤ C1

0 + C2
0 . (12)

The combination of (11) and (12) proves (8).
Then, we prove the first two bounds in (9). The first equation can be written

dC1
V (x)

dx
+ C1

V (x) = QV (x) ≥ 0, (13)
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with

QV (x) =
1

3

[

C1(x) + C2(x) + C3(x) + V
C3(x)

1 + C3(x)

]

.

Therefore we also have
d

dx

(

C1
V (x)e

x
)

= QV (x)e
x.

By integration over [0, L], we obtain

∫ L

0

QV (x)dx ≤

∫ L

0

QV (x)e
xdx = C1

V (L)e
L − C1

0 ≤ (C1
0 + C2

0 )e
L. (14)

We conclude that

∫ L

0

V
C3

V (x)

1 + C3
V (x)

dx,

∫ L

0

Ci
V (x)dx, i = 1, 2, 3, are uniformly bounded by (C1

0 + C2
0 )e

L. (15)

Then, by injecting equation (14) in (13) and because the Ci
V are positive, we have

∫

L

0

|
dC i

V

dx
(s)|ds ≤ (C1

0 + C2
0)e

L i = 1, 2, 3. (16)

We finally prove that the functions
(

Ci
V (x)

)

V
are uniformly bounded in V . We write

|Ci
V (x)| = |Ci

V (0) +

∫ x

0

dCi
V

dx
(s)ds| ≤ |Ci

V (0)|+

∫ L

0

|
dCi

V

dx
(s)|ds.

Thanks to (16) and (8), we conclude

‖Ci
V ‖∞ ≤ (C1

0 + C2
0 )(e

L + 1). (17)

The upper bound (17) on C3
V gives us that M > 0.

Second step: The behaviour of Ci
V when V −→ ∞

Lemma 2. After extraction of a subsequence,

C1
V −→

V−→+∞

C1, C2
V −→

V−→+∞

C2, C3
V −→

V −→+∞

0, Lp(1 ≤ p < ∞), a.e., (18)

and C1 + C2 = K0 for some constant K0.

Proof. We know from Lemma 1 that
(

Ci
V

)

V
is bounded in BV , then, using the Rellich-Kondrachov

compact injection [4]

Ci
V −→

V −→+∞

Ci, in Lp(1 ≤ p < ∞) and a.e. (19)

On the other hand, we have thanks to (15),

∫ L

0

C3
V (x)

1 + C3
V (x)

dx −→
V−→+∞

0,

and thus
C3 ≡ 0 a.e. (20)

Combining (10) with (20), we have C1 + C2 = K0 for some constant K0.

Third step : The behavior of
dC3

V

dx
. We define M1[0, L] the set of Radon measures on [0, L], taken

with the weak convergence of measures.
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Lemma 3. After extraction,

C3
V (L) −→

V−→+∞

B,
dC3

V

dx
−→

V −→+∞

Bδx=L in M1[0, L],

Proof. The information (16) implies that
(dC3

V

dx

)

V
is bounded in L1[0, L], then [2] there exists µ ∈

M1[0, L] a Radon measure so that, after extraction,

dC3
V

dx
−→

V−→+∞

µ in the sense of measures. (21)

For all functions φ ∈ C1[0, L] such as φ(0) = φ(L) = 0, we have using (18)

∫ L

0

φ(x)
dC3

V

dx
(x)dx =

∫ L

0

C3
V (x)

dφ

dx
(x)dx −→

V −→+∞

0, (22)

which means,
µ = 0 on ]0, L[. (23)

Therefore, we can write in the sense of measures

dC3
V

dx
−→

V −→+∞

βδx=L + αδx=0. (24)

It remains to compute α and β. To do so, we notice that
(

C3
V (L)

)

V
and

(

C3
V (0)

)

V
are both real value

bounded sequences, so, there are two nonnegative real numbers A,B such that, after extraction,

lim
V →∞

C3
V (L) = B ≥ 0, lim

V →∞

C3
V (0) = A ≥ 0. (25)

For φ ∈ C1

(

[0, L]
)

, we compute

∫ L

0

φ(x)
dC3

V

dx
(x)dx = C3

V (L)φ(L)− C3
V (0)φ(0)−

∫ L

0

C3
V (x)

dφ

dx
(x)dx −→

V−→+∞

Bφ(L)− Aφ(0),

which means
dC3

V

dx
−→

V −→+∞

Bδx=L −Aδx=0 in the sense of measures. (26)

We still have to prove A = 0. To do so we use the system of equations (1) which gives us

dC3
V

dx
≥ −

1

3
(C1

V + C2
V ).

As we know from Lemma 1 that Ci
V is uniformly bounded from above by K, we also have,

dC3
V

dx
≥ −

2

3
K,

which implies A = 0.

Fourth step: The limiting equation.

Lemma 4. In the limit V −→ ∞, we have

C1(x) + C2(x) = C1
0 + C2

0 , V
C3

V

1 + C3
V

−
C1

V + C2
V

2
−→

3

2
BδL in the sense of measures.
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Proof. We deduce from (19) and (26), by injecting in the third line of (1) that

V
C3

V

1 + C3
V

−
C1

V + C2
V

2
−

3

2
BδL −→ 0 in the sense of measures. (27)

Reinjecting in the first lines of (1), we find the limit equations on C1 et C2























dC1

dx
= −

1

2
C1 +

1

2
C2 +

1

2
BδL,

dC2

dx
= −

1

2
C2 +

1

2
C1 +

1

2
BδL,

C1(0) = C1
0 , C2(0) = C2

0 .

(28)

Then, summing the two lines,







d(C2 + C1)

dx
= BδL,

(C1 + C2)(0) = C1
0 + C2

0 .

(29)

By integrating this differential equation, we deduce [15] that

C1(x) + C2(x) = C1
0 + C2

0 a.e.

Indeed, the weak formulation of (29) is

∀φ ∈ C1[0, L],

∫ L

0

dφ

dx
(x)[C1 + C2](x)dx + φ(0)[C1

0 + C2
0 ] = 0. (30)

By choosing φ such as φ(0) = 0, we obtain C1 +C2 ≡ α a.e., for some constant α. and then, by choosing
any φ ∈ C1[0, L], we have that α = C1

0 + C2
0 .

The limit equation on Ci then becomes






dCi

dx
(x) = −Ci(x) +

C1
0 + C2

0

2
+

1

2
BδL(x), i = 1, 2,

Ci(0) = Ci
0.

Fifth step: Explicit solution for the limit Using the variation of parameters, we compute easily C1

and C2. We find

C1(x) =
C1

0 + C2
0

2
+

C1
0 − C2

0

2
e−x, C2(x) =

C1
0 + C2

0

2
+

C2
0 − C1

0

2
e−x. (31)

In particular, (C1, C2, C3) are C∞ functions.

4 Proof of theorem 2

The limiting profiles are C∞ in [0, L], nevertheless, the Dirac mass at x = L indicates a boundary layer.
The derivatives of the profiles for V = ∞ are given by































dC1

dx
=

1

2

[

(C2
0 − C1

0 )e
−x +BδL

]

,

dC2

dx
=

1

2

[

(C1
0 − C2

0 )e
−x +BδL

]

, in the sense of measures,

dC3

dx
= BδL.

(32)

First Step: The limiting values of C at x = L

Lemma 5.
C1

V (L) −→
V−→+∞

C1
0 + C2

0 ,

C2
V (L) = C3

V (L) −→
V−→+∞

C1
0 + C2

0 + (C2
0 − C1

0 )e
−L.

(33)
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Proof. We already have defined in Lemma 3

B = lim
V→∞

C2
V (L) = lim

V →∞

C3
V (L).

We know that the Ci
V (L) are bounded real numbers, then we define

B′ = lim
V →∞

C1
V (L).

Our first task is to determine B. We compute for all φ ∈ C1[0, L]

∫ L

0

φ(x)
dC2

V (x)

dx
(x)dx = φ(L)C2

V (L)− φ(0)C2
V (0)−

∫ L

0

φ

dx
(x)C2

V (x)dx

which converges when V −→ +∞ toward

Bφ(L)− C2
0φ(0)−

∫ L

0

φ

dx
(x)[

C1
0 + C2

0

2
+

C2
0 − C1

0

2
e−x]dx

= Bφ(L)− C2
0φ(0)−

C1
0 + C2

0

2
φ(L) +

C1
0 + C2

0

2
φ(0)−

C2
0 − C1

0

2

[

e−Lφ(L)− φ(0) +

∫ L

0

e−xφ(x)
]

= Bφ(L)−
C1

0 + C2
0

2
φ(L) +

C2
0 − C1

0

2
e−Lφ(L) +

C2
0 − C1

0

2

∫ L

0

e−xφ(x)dx. (34)

On the other hand, thanks to (32)

∫ L

0

φ(x)
dC2

V (x)

dx
(x)dx −→

V −→+∞

C2
0 − C1

0

2

∫ L

0

e−xφ(x)dx +
B

2
φ(L). (35)

By equalizing (34) and (35), we find

B = C1
0 + C2

0 + (C2
0 − C1

0 )e
−L, (36)

which is the unique limit of C2
V (L) and C3

V (L). In particular, B > 0. Our second task is to obtain B’.
We perform the same computation for C1

V . On the one hand, for all φ ∈ C1[0, L],

∫ L

0

φ(x)
dC1

V (x)

dx
(x)dx = φ(L)C1

V (L)− φ(0)C1
V (0)−

∫ L

0

φ

dx
(x)C1

V (x)dx

which converges when V −→ +∞ toward

= B′φ(L)−
C1

0 + C2
0

2
φ(L) +

C1
0 − C2

0

2
e−Lφ(L) +

C1
0 − C2

0

2

∫ L

0

e−xφ(x)dx, (37)

and on the other hand,
∫ L

0

φ(x)
dC1

V (x)

dx
(x)dx

converges toward
C2

0 − C1
0

2

∫ L

0

e−xφ(x)dx +
B

2
φ(L). (38)

This gives us
B′ = C1

0 + C2
0 , (39)

and ends the proof of Lemma 5.

We proved in passing that the limits of the subsequences we deal with are only determined by the
problem data and do not depend on the subsequence we choose. Thus, the whole sequences converge.

Second step: The boundary layer.
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Lemma 6. For all x ∈ [0, L] the inequalities hold

C3
V (x) ≤ C3

V (L)exp
(

−
2

3
VM(L− x)

)

+
K

V

[

1− exp
(

−
2

3
VM(L− x)

)]

, (40)

C3
V (x) ≥ C3

V (L)exp
(

−
2

3
V (L − x)

)

+
K

V

[

1− exp
(

−
2

3
V (L − x)

)]

, (41)

which means that C3
V (x) relaxes exponentially fast with V to zero, away from the boundary layer at

X = L.

Proof. We can write the third line of (1) as

−
dC3

V (x)

dx
+

2

3
V

C3
V (x)

1 + C3
V (x)

=
1

3

[

C1(x) + C2(x)− 2C3(x)
]

. (42)

We multiply this equation by the exponential factor

F (x) = exp
(

−
2

3
V

∫ x

L

1

1 + C3
V (s)

ds
)

, (43)

−
dC3

V (x)

dx
F (x) +

2

3
V

C3
V (x)

1 + C3
V (x)

F (x) =
1

3

[

C1
V (x) + C2

V (x)− 2C3
V (x)

]

F (x), (44)

and we obtain
d

dx

[

C3
V (x)F (x)

]

= −
1

3

[

C1
V (x) + C2

V (x)− 2C3
V (x)

]

F (x).

Integrating this equation between L and x, we find,

C3
V (x)F (x) − C3

V (L) = −

∫ x

L

1

3

[

C1
V (x) + C2

V (x)− 2C3
V (x)

]

exp
(

−
2

3
V

∫ u

L

1

1 + C3
V (s)

ds
)

du.

By Lemma 1, we have,

C3
V (x) exp

(

−
2

3
V

∫ x

L

1

1 + C3
V (s)

ds
)

≤ C3
V (L) +K ′

∫ L

x

exp
(

−
2

3
V

∫ u

L

1

1 + C3
V (s)

ds
)

du.

We can now complete our calculation. We estimate

C3
V (x) ≤C3

V (L) exp
(

−
2

3
V

∫ L

x

1

1 + C3
V (s)

ds
)

+K ′

[

∫ L

x

exp
(

−
2

3
V

∫ u

L

1

1 + C3
V (s)

ds
)

exp
(

−
2

3
V

∫ L

x

1

1 + C3
V (s)

ds
)]

du

=C3
V (L) exp

(

−
2

3
V

∫ L

x

1

1 + C3
V (s)

ds
)

+K ′

∫ L

x

exp
(

−
2

3
V

∫ u

x

1

1 + C3
V (s)

ds
)

du

≤C3
V (L) exp

(

−
2

3
V

∫ L

x

1

1 + C3
V (s)

ds
)

+K ′

∫ L

x

exp
(

−
2

3
VM(u− x)

)

du
(

using 0 < M <
1

1 + C3
V

)

=C3
V (L) exp

(

−
2

3
V

∫ L

x

1

1 + C3
V (s)

ds
)

+
K

V

[

1− exp
(

−
2

3
VM(L− x)

)]

.

and (40) is proved.
We can prove in the same way the second part of Lemma 6.

5 Numerical results

The numerical algorithm. Numerical simulations illustrate the solute concentration mechanism at
x = L that is proved in the theoretical result. We obtain the numerical solution of (1) by using a
dynamic algorithm, as presented in [17], which is based on a finite volume method [1, 10]. This algorithm
solves efficiently the dynamic problem associated to (1) [18], and it has been proved [18] that this dynamic
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problem relaxes exponentially fast toward the stationary state described by the equations of (1). The
CFL condition is given by

∆t ≤
3∆x

3 + 2∆x(1 + V )
, (45)

which becomes a tough constraint on ∆t when we choose V large. The constraint on ∆x also depends on
V because it is function of the size of the boundary layer. For each V , to be accurate enough around the
boundary layer point L, we discretize the space in NV cells and we validate a posteriori that this number
of cells is high enough since we know from the analytical solution the behaviour of the solution for large
values of V .

Concentration profiles for different V . We present in figure 2 concentration profiles for V = 1, V =
10, V = 50 and V = 100.
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Figure 2: Concentration profiles for V = 1, 10, 50, 100, on a domain of length L = 4.

When the value of the rate V has the same order of magnitude as the parameters of (1), concentration
is hardly increasing in tubes 2 and 3, but decreasing in tube 1. It comes from the fact that we chose
C1

0 > C2
0 , but it would have been the contrary in the opposite case. With low values of V , the difusive part

of the system (1) is paramount and concentrations tend to homogenize along the tubes. If we increase the
pump rate by a factor 10, the concentration tends to approach zero in tube 3 and is abruptly increasing
from L = 3 and it achieves at L = 4 a value greater than max(C1

0 , C
2
0 ). We clearly observe the limit

profiles and the boundary layer appear for V ≥ 50.

Illustration of Theorem 2. We want to illustrate that the bounds from above and from below found
in Theorem 2 give an accurate descrition of the qualitative behavior of C3.
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Figure 3: Zoom on the interval [0.99L,L] of figure 2 for V = 1000.

1.99 1.991 1.992 1.993 1.994 1.995 1.996 1.997 1.998 1.999 2

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

C3
f
g

Figure 4: The curve in the middle represents C3
1000 on [0.99L,L]. The upper curve represents the

upperbound f for C3 found in Lemma 6 and the the lower curve represents g, the bound from below.

Figure 3 displays a zoom of the numerical aproximation of C3
1000(L) that we will denote C

3
num,1000(L).

This approximative value enables us to define Mnum =
1

C3
num,1000(L)

. To illustrate Lemma 6, we define

f(x) = C3
num,1000(L) exp

(

−
2× 1000

3
Mnum(L− x)

)

and

g(x) = C3
num,1000(L) exp

(

−
2

3
× 1000(L− x)

)

.

In Figure 4, we depict C3
1000 on the interval [

99L

100
, L] and the profiles of the two functions f and g

which control C3
1000. We observe that g ≤ C3

num,1000 ≤ f , as expected in theorem 2, and then that the
component C3

V decreases exponentially to zero.

6 Conclusion

Motivated by renal flows, we have studied a concentration mechanism with an active pump characterized
by a parameter V . As expected, for V large enough, a large axial solute concentration gradient appears
in all tubes. The result of our analysis is that the concentrations are uniformly bounded in V for all
x ∈ [0, L], and so are their derivatives, except at x = L. In the limit V = ∞, the concentration gradient
converges to a Dirac profile at x = L. We obtain a limit concentration profile in all tubes which presents
a boundary layer at x = L. In the urine concentrating model, we are mostly interested on the behaviour

10



at x = L, because it is at this depth that the composition of final urine is determined. Therefore, our
analysis explains why ctive transport plays a very specific role, which is to increase solute concentration
at x = L and only at x = L.
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