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Abstract We study the dynamic behaviour of 1D spring-
block models of friction when the external loading is ap-
plied from a side, and not on all blocks like in the classical
Burridge-Knopoff-likemodels. Such a change in the loading
yields specific difficulties, both from numerical and phys-
ical viewpoints. To address some of these difficulties and
clarify the precise role of a series of model parameters, we
start with the minimalistic model by Maegawaet al. (Tri-
bol. Lett. 38 313, 2010) which was proposed to reproduce
their experiments about precursors to frictional sliding in
the stick-slip regime. By successively adding (i) an internal
viscosity, (ii) an interfacial stiffness and (iii) an initial tan-
gential force distribution at the interface, we manage to (i)
avoid the model’s unphysical stress fluctuations, (ii) avoid
its unphysical dependence on the spatial resolution and (iii)
improve its agreement with the experimental results, respec-
tively. Based on the behaviour of this improved 1D model,
we develop an analytical prediction for the length of pre-
cursors as a function of the applied tangential load. We also
discuss the relationship between the microscopic and macro-
scopic friction coefficients in the model.
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1 Introduction

The dynamics of frictional interfaces are crucial to many sit-
uations in mechanical engineering [1, 2], geosciences [3] or
biology [4, 5]. Today, after decades of studies, the scienceof
contacts under time-invariant loading conditions,e.g. static
contacts or steady sliding contacts [6–8], has reached a high
level of advancement which, in many instances, enables quan-
titative reproduction of global [8, 9] or local [4, 10, 11]
measurements. In contrast, the dynamics of contacts under
rapidly evolving loads or during fast unstable motion like
stick-slip [12–14] is far less understood. In particular, recent
experiments on the transition from static to kinetic friction
of side-driven poly(methyl methacrylate) (PMMA) rough
samples forming line contacts with a rough PMMA sub-
strate have revealed unexpected features [15–18]. The tran-
sition occurs through the fast (comparable to the speed of
sound) propagation of micro-slip fronts through the con-
tact [15, 18]. It can also be preceded by a series of fronts
that arrest before having ruptured the whole contact, thus
denoted as precursors [16, 17].

These results, which may have important implications
for e.g. the study of earthquakes, have triggered an active
modelling activity. Braunet al. [19], using a one-dimensional
(1D) spring-block model with a complex time-dependent
friction law, produced three types of micro-slip front veloci-
ties, analogous to that observed in [15]. Maegawaet al. [17],
using a 1D spring-block model with a simple Amontons-
Coulomb (AC) friction law, showed that the length of pre-
cursors is modified when the external normal load is made
asymmetric. Scheibert and Dysthe [20], using a quasi-static
1D model with AC friction, showed how the increasing tan-
gential load itself induces an increasing pressure asymmetry
which influences the precursors’ series. Due to the intrin-
sic limitations of 1D models, all these studies yielded onlya
qualitative agreement with experiments. Very recently, Trømborg
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et al. demonstrated, using a 2D spring-block model with
AC friction, that quantitative agreement with the kinemat-
ics (i.e. the properties of the states in which no micro-slip
front is propagating) of the experiments requires an accu-
rate description of the interfacial stresses, and therefore the
use of realistic boundary conditions on the sample [21].

Compared to such a 2D model, the strongest advantage
of 1D models is that their results are much easier to analyse
and understand, so that they provide opportunities for the-
oretical approaches. They also require simpler implementa-
tion and lower computational power. In most situations, in
which very accurate results are not needed and/or a thor-
ough qualitative understanding of the behaviour of the sys-
tem is desired, 1D models are preferable. From the pioneer-
ing work of Burridge and Knopoff [22],spring-block mod-
els of friction have been extensively studied (seee.g. [23–
26]). These models have mainly been used to describe the
statistical properties of the series of earthquakes at a seis-
mic fault. Inertial blocks are connected in series via internal
springs that model the crust’s elasticity. A homogeneous tec-
tonic loading is modelled by coupling, via loading springs,
all individual blocks to the same rigid driving body. Such
statistical analysis of homogeneously driven systems con-
trast with the recent 1D studies by Braunet al. [19] and Mae-
gawaet al. [17], in which the time evolution of side-driven
systems is analysed deterministically, in order to produce
data comparable to the experimental measurements. The two
models by Braunet al. and Maegawaet al. are actually
very different. Both consider an array of blocks connected
by internal springs, but the model by Braunet al. [19] also
considers viscous dissipation and a complex time-dependent
friction law emerging from the collective behaviour of in-
terfacial springs with random stiffness, breaking threshold
and reattachment time. In contrast the model by Maegawa
et al. [17], which only considers blocks and springs and the
minimalistic AC friction law, is probably the simplest possi-
ble model.

On the one hand, we will see that, due to its extreme
simplicity, the model by Maegawaet al. [17] yields results
that are strongly resolution dependent, which prevents ro-
bust comparison with experiments. On the other hand, it is
difficult to disentangle the respective roles of the many pa-
rameters of the model by Braunet al. [19]. The scope of this
article is therefore to (i) construct, step by step, a minimal
1D side-driven spring-block model, the results of which are
essentially resolution independent and (ii) qualify the capa-
bilities of this model to reproduce the main qualitative fea-
tures of recent experimental observations.

This Letter is organised as follows. In section 2, we de-
scribe the model by Maegawaet al. [17] and show its limi-
tations. In section 3, we improve this model by introducing
successively an internal viscosity, an interfacial stiffness and
an initial tangential force distribution. In section 4, we de-

scribe an analytic prediction for the length of precursors in
both Maegawaet al.’s and our improved model.

2 The model by Maegawaet al. and its limitations

2.1 The model by Maegawaet al. [17]

In the model developed by Maegawaet al. [17], the slider is
modelled as a chain of blocks connected by springs (Fig. 1),
with material spring constantk and block massm = M/N,
whereM is the total mass of the slider andN is the num-
ber of blocks. In experiments, the base (also called track) is
fixed on a very stiff support, and it is therefore modelled as a
rigid surface for simplicity. The tangential force is applied at
the trailing edge of the system through a loading spring with
stiffnessK. One end of this spring is attached to the trail-
ing edge block (block 1), while the other end of the spring
moves at a constant velocityV . The normal forcepi is im-
posed on each block, satisfying the criterion∑N

i=1 pi = FN ,
whereFN is the total applied normal force.

f1 f2 fN
mm

kK

m

V

x p2 pNp1

Fig. 1 Schematics of the model system. The sample is modeled byN
blocks of massm connected in series through springs of stiffnessk. The
trailing edge of the system (block 1) is slowly driven through a loading
spring of stiffnessK. Each block is also submitted to a normal forcepi

and to a friction forcefi.

The equations of motion are given by

mün =







k(u2− u1)+FT + f1 , n =1
k(un+1 −2un + un−1)+ fn, 2≤ n ≤ N −1
k(uN−1 − uN)+ fN , n = N,

(1 )

whereun = un(t) is the position of blockn as a function
of time relative to its equilibrium position and ¨denotes the
double derivative with respect tot. FT = FT (t) is the driving
force (or tangential force/load) given by

FT = K(Vt − u1). (2)

A local friction law giving the friction forcesfn is im-
posed between the blocks and the base. AC friction is used
with local kinetic and static friction coefficientsµk andµs,
respectively. The resulting global friction coefficients are
similarly denoted byµK andµS. The friction force on block
n, fn, is then given by

fn =

{

≤ µs pn, u̇n = 0
−sgn(u̇n)µk pn, u̇n 6= 0,

(3)
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where, when ˙un = 0, equilibrium of blockn imposes thatfn

balances all other forces acting on blockn.
The material spring constantk is chosen such that the

elastic deformation of the model is similar to that of a linear
elastic medium with Young’s modulusE, which yields:

k = (N −1)ES/L, (4)

whereS andL are the cross-section area and the length of
the slider, respectively.

In the experiments by Maegawaet al. [17], an asymmet-
ric normal loading was used, leading to the following linear
model forpn:

pn =
FN

N

(

1 − 2n−N−1
N −1

θ
)

, (5)

whereθ ∈ [−1,1] is a measure of the non-uniformity in the
normal loading.

The values of the parameters are chosen to be in agree-
ment with their respective values in the experiments by Mae-
gawaet al. [17], which are:K = 0.8 MN/m,V = 0.1 mm/s,
FN = 400 N, M = 0.012 kg,L = 100 mm,S = 100 mm2,
E = 2.5 GPa,µs = 0.7 andµk = 0.45.

2.2 Results and limitations of the model by Maegawaet al.

We have implemented the model by Maegawaet al. and
tested our code by comparing it to (i) two other similar codes
and (ii) the analytical solution of the equation of motion for a
one-block system. The simulation starts with each spring at
its equilibrium length,i.e. un = 0 for all blocks. Fromt = 0,
the force from the driving spring on block 1 is increased.
Figure 2a shows that the resulting time evolution ofFT (t)
exhibits stick-slip behaviour. Each time a drop in the driv-
ing force is observed, some part of the slider moves relative
to the base. We call the short time intervals during which
movement occursevents.

Between events, no block is moving. Since the driving
force is applied only at the trailing edge block, only block
1 is loaded and eventually reaches its static friction thresh-
old, so that all events must nucleate at the trailing edge. The
movement of block1 then loads block 2, which itself reaches
its threshold and so on. This succession of blocks starting to
move defines a micro-slip front, which propagates towards
the leading edge, in analogy with the fronts observed in ex-
periments [15, 17]. The distance from the trailing edge to
the micro-slip front as a function of time,x f (t), is shown in
Fig. 2b. If this front reaches the leading edge, the event is a
global event, and the whole slider moves relative to the base.

From Fig. 2 it is evident that not all events are global:
smaller events are observed between global events. In addi-
tion, a series of events with increasing maxima ofx f (t) is
seen to precede the first global event. These events occur for
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Fig. 2 Time evolution ofFT (a) andx f (b) in the model by Maegawaet
al. usingN =10 (as in [17]) andθ = 0. Before macroscopic stick-slip
(reached whent ≈ 2.8 s), the loading curve is punctuated by partial
relaxations associated with precursors to sliding,i.e. micro-slip fronts
spanning a length smaller thanL.

FT well below the macroscopic static friction threshold, and
are calledprecursors [16,17]. The maximum ofx f(t) during
a precursor event,i.e. the length of a precursor, is denoted by
Lp.

To perform a quantitative comparison between their ex-
perimental and numerical results, Maegawaet al. focused
on the relationship between the normalized lengthLp/L of
the series of precursors (Fig. 2b) and the normalized tangen-
tial forceFT/FN at which they are triggered (Fig. 2a). To do
this, they discarded all simulated precursors having a length
smaller than any of the previous events, with the justification
that no such smaller event was observed in the experiments.
Note that 2D models produce series of precursors of mono-
tonically increasing length, so that practically no event has
to be discarded [21].

Figure 3 shows the tangential forceτ normalised by the
normal forcep on each block at the time of initiation and ar-
rest of a precursor of lengthLp = 0.6L. The tangential force
is here defined as the total force on a block excepting the
friction force. Each event is initiated when the tangential
force on block 1 reaches the local static friction threshold.
As block1 moves, the tangential force on block 2 increases,
eventually reaching the local static friction threshold, and
starts to move. The precursor event arrests when the tangen-
tial force built on a block by its left neighbour is not suffi-
cient to make it reach its static friction threshold. The slow
loading of block 1 continues, and will eventually trigger a
new event nucleating at the trailing edge.

The spatial resolution used in the above results,i.e. N =

10 as used by Maegawaet al. [17], is rather low. This is es-
pecially evident in Fig. 3, which only contains10 data points
for τ/p. We expected to improve these results by simply in-
creasing the resolution toN =100. The corresponding load-
ing and front position curves,FT(t) andx f(t), are shown in
Fig. 4.
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Fig. 3 Tangential force distribution at initiation of a microslip-event
(◦). Block 1 has reached its slip threshold (τ/p = µs). The event in-
volves all blocks from 1 to 6 (i.e. a precursor of lengthLp/L = 0.6),
leading to a modified tangential force distribution at arrest (�). Results
obtained usingN =10 (as in [17]) andθ = 0.
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Fig. 4 Time evolution ofFT (a) andx f (b) in the model by Maegawaet
al. usingN =100 andθ = 0. Comparison with Fig. 2 shows a drastic
increase in the time-frequency of micro-slip events.

One of the limitations of the model by Maegawaet al.
is now clearly evident. By only changing the spatial reso-
lution, the loading and front position curves are changed
significantly. Some aspects are unchanged: precursors pre-
cede the first global event and then stick-slip behaviour is
observed. The final average level ofFT/FN also appears to
be conserved. However, the amplitude of the drops in the
loading curve is reduced, while the number of events, both
global and precursory, is seen to increase significantly.

To illustrate this scaling with respect to the model reso-
lution, we have plotted in Fig. 5 the evolution withN of (i)
the total number of events and the number of global events
(Fig. 5a), and (ii) the total number of precursors and the
number of precursors longer than any previous ones (Fig. 5b).
An approximately linear increasing trend is observed in all
four curves. This behaviour is problematic as soon as one
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Fig. 5 Number of different kinds of events as a function ofN, us-
ing θ = 0. (a) Number of global events (solid line) fort ∈ [5 s,20 s]
and total number of events (dashed line). (b) Number of precursors
longer than any previous one (solid line) and total number ofprecur-
sors (dashed line). All curves are stongly increasing functions of N,
indicating unphysical resolution-dependence of the model’s results.

wants to compare to experiments, in which the size of the
drops inFT/FN and the number of events are well-defined
experimental measurements. Maegawaet al. [17] usedN =
10, which produced a number of precursors similar to that
observed in their experiments, but this agreement appears
to be casual. A robust model should produce almost identi-
cal numbers of events whatever the spatial discretization of
the slider. In this respect, note that 2D models do produce a
resolution-independent number of events [21].

Another problematic behaviour of the model affects the
tangential force spatial distribution, as shown in Fig. 6. The
tangential force has been plotted at three different times:at
t = 0.5 s,t = 3 s, and at the arrest of the precursor of length
Lp/L = 0.7. Strong oscillations are observed, with a half
spatial period of the order of the lattice spacing, whatever
the number of blocksN used. Again this unphysical depen-
dence on the model resolution impedes a robust comparison
with experimental measurements of the tangential stress dis-
tributionτ(x), like e.g. those of [18].

In their quantitative comparison between model and ex-
perimental results, Maegawaet al. [17] focused on the length
of precursorsLp as a function of the tangential loadFT ,
Lp(FT). This relationship has also been studied experimen-
tally by Rubinsteinet al. [16]. While similar behaviours are
found, we will only compare our model results to the exper-
imental results of Maegawaet al..

The experimental setup by Maegawaet al. allowed for
non-uniformities in the normal loading, and they studied its
consequences on the length of precursors. The non-uniformity
in the normal loading is modelled as an asymmetric distri-
bution of the normal loadspn by using Eq. (5). The value of
the parameterθ =±0.833 is chosen to be in agreement with
its corresponding experimental value.

The length of precursorsLp is plotted as a function of
the tangential forceFT at event arrest in Fig. 7. Three dif-
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Fig. 6 Tangential force distributionτn normalised by the normal force
pn on each block, at three different times: att = 0.5 s,t = 3 s, and at the
arrest of the precursor of lengthLp/L = 0.7 usingN = 100 andθ =
0. Unwanted large oscillations with a half-period equal to the lattice
spacing appear.

L
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Fig. 7 Length of precursorsLp normalised by the system lengthL as a
function of the tangential loadFT at event arrest normalised by the nor-
mal loadFN for N=10 andθ = 0.833 (©), θ = 0 (�) andθ = −0.833
(♦), andN = 100 andθ = 0.833 (∗), θ = 0 (×) andθ = −0.833 (+).
Solid lines are the analytical predictions described in Sec. 4.

ferent values ofθ are used, and the results for bothN = 10
andN = 100 are included. As discussed above, the number
of precursors increases withN. However, the shape of the
curves does not change significantly withN, thus enabling
comparison with the shape of the experimental curves.

The qualitative behaviour ofLp as a function ofFT is
in agreement with experiments. Forθ = 0.833, the normal
force on the trailing edge is reduced, leading to longer pre-
cursors for the same tangential load compared toθ = 0.
On the other hand,θ = −0.833 leads to an increased nor-
mal load on the trailing edge, and precursors are shorter
for a givenFT . All curves converge to the same point at
Lp/L= 1, meaning that theglobal static friction threshold
µS (the value ofFT/FN when the first global event occurs)

is independent of the normal loadingdistribution. The value
of µS appears to be approximately 0.45, which incidentally
is the value of the local kinetic friction coefficientµk. The
reason for this will become clear in Sec. 4. A quantitative
comparison between the experimental results in [17] and
the model results in Fig. 7, however, reveals large discrepan-
cies: all three experimental curves are found way below their
simulated counterpart, meaning that the simulation strongly
overestimatesLp for any givenFT ; the rapid increase in pre-
cursor length afterLp/L ≈ 0.5 that is observed experimen-
tally has no equivalent in the model.

Summing up, three main limitations of the model by
Maegawaet al. have been identified: (i) the tangential force
shows large oscillations, the wavelength of which is con-
trolled by the lattice spacing, (ii) the number of all kinds of
events is an increasing function ofN and (iii) the quantitative
agreement with theLp(FT)-curve between model and ex-
periments is poor. In the following section, we propose im-
provements of the model that contribute to overcome these
limitations.

3 Improvements of the model by Maegawaet al.

3.1 Introducing a relative viscous damping

Resolution dependent oscillations are known to occur in Burridge-
Knopoff-like models and more generally in dynamic rupture
models involving AC friction at the interface between dis-
similar elastic media [27]. Classical ways to reduce them
significantly are either to regularize the AC friction law (see
e.g. [28] and references therein) or to introduce a viscous
damping in the system [19, 21, 29–31].Both are physically
sound, but we choose toadopt the second approach. Phys-
ically, such viscosity is a way to model the energy dissipa-
tion that any material undergoes during deformation. After
Knopoff and Ni [31], we consider the following form for the
viscous forceFη

n :

Fη
n =







η( u̇2− u̇1) , n= 1
η( u̇n+1 −2u̇n + u̇n−1) , 2≤ n ≤ N −1
η( u̇N−1 − u̇N) , n= N,

(6)

which is a damping on the relative motion of neighbouring
blocks.As in e.g. [17, 21], we assume that energy dissipa-
tion due to the motion of a block relative to the substrate is
satisfactorily included infn, and therefore do not, in contrast
to e.g. [19, 32], include any viscous damping at the interface
in our system. This also serves to keep the model as simple
as possible.The equations of motion are then given by

mün =







k(u2− u1) +FT +Fη
1 + f1, n= 1

k(un+1 −2un + un−1) +Fη
n + fn, 2≤ n ≤ N −1

k(uN−1 − uN) +Fη
N + fN , n= N.

(7)
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Fig. 8 The tangential forceτ normalised by the normal forcep on
each block is plotted at three different times: att = 0.5 s,t = 3 s, and
at the arrest of the precursor of lengthLp/L = 0.7 from a simulation
including the relative viscous damping and usingN = 100,θ = 0 and
η =

√
0.1

√
km. Comparison with Fig. 6 shows that lattice-controlled

fluctuations have disappeared.

The tangential forceτn is still defined as the sum of all
forces on a block excepting the friction force,i.e. now in-
cludingFη

n . It remains to choose a reasonable value of the
damping coefficientη .

In App. A, the value ofη for critical damping of waves
of wavelengthλ = 2a, corresponding to the cut-off wave-
length, is calculated. The result isηc=

√
km. It is alsoshown

that the values ofη corresponding to critical damping of
higher wavelength oscillations are always larger than

√
km.

We want to damp out oscillations of wavelengthλ = 2a,
and usingη =

√
km is then a possibility. However, waves

of other wavelengths close toλ = 2a will also be highly
damped, causing significant changes to the dynamics. Since
this is an undesirable effect, a compromise has to be made.
As suggested in [31], the value

η =
√

0.1
√

km ≈ 0.32
√

km (8)

is used in the following. Note that sincek ∝ N −1 andm ∝
1/N, η is N-independent forN ≫1.

Figure 8 shows the tangential force distribution obtained
when relative viscous damping is included. The improve-
ment with respect to Fig. 6 is clear: the short wavelength
oscillations have almost disappeared, resulting in a physi-
cally reasonable smooth tangential force profile.τ/p also
appears to be on average approximately equal toµk in rup-
tured regions, a fact that will be utilised below to predict the
precursor lengths.

Some small one- or two-node spikes remain. They have
a different origin, as they are mainly caused by the discrete-
ness of the friction law: at the tip of the rupture, one block is
moving and therefore increasing the force on its neighbour,
which is still stationary. The region beyond this stationary

block is therefore not affected by the approaching rupture
front, and a spike will therefore appear at the rupture front.
Spikes may also appear as an event arrests, also caused by
one part of the interface slipping while another part is stuck.

In all the following, the viscous damping introduced in
this section will be used.

3.2 Introducing a tangential stiffness of the interface

As discussed above, the model by Maegawaet al. exhibits
an unphysical scaling withN. It is possible to understand
this scaling by considering how the system is tangentially
loaded. As stated above, the driving force only acts on block
1. In order for an event to nucleate, this block has to reach its
static friction threshold, which is proportional to the normal
force: µs p1 ∝ p1 ∝ 1/N. Since the added driving force per
time is independent ofN, the time between two events will
be proportional to 1/N, and the frequency of events con-
sequently scales asN, an argument which is fully consis-
tent with Fig. 5. The origin of the oddN-dependenceof the
model by Maegawaet al. is therefore the decreasing size of
the loading region asN is increased.

In a physical system, like in the experiments by Mae-
gawaet al., the loading region has a well defined spatial ex-
tension, which is a combination of various effects. First, the
tangential loading is applied at the trailing edge of the slider
at some effective heighth above the interface. As discussed
experimentally in [16] and modelled in [21], such a loading
condition makes the tangential stress very high in the region
near the trailing edge, the extension of which is of orderh.
Second, the interface between slider and base is not rigid.
Both surfaces are rough and the multi-contact layer between
them has a finite tangential stiffness associated to the tan-
gential deformation of the microasperities involved in the
contact. Such stiffness can be measured experimentally [33]
and is found much smaller than the slider’s bulk stiffness.
Such a low interfacial stiffness can be responsible for devia-
tions with respect to AC friction in static contacts [34]. The
interfacial stiffness also results in a physical finite sizeof the
loading region, since a localized tangential force at the inter-
face will induce tangential strains within the rough layer not
only at the loaded point but also in its neighbourhood.

The first effect relates to the elastic coupling of points
of the interface through the slider’s bulk, which cannot be
accounted for explicitly by a 1D model like the one consid-
ered here. In contrast, the effect of the interfacial stiffness
can be introduced[32] in a 1D model in the following way.
Each block is initially attached to the track by a spring with
stiffnesskt as seen in Fig. 9a. The spring connecting block
n to the track has a breaking strengthµs pn (Fig. 9b). When
the spring to the track is detached the block is subject to the
kinetic friction force±µk pn (Fig. 9c). As the velocity of this
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a b

c d

kt

pn

m

µkpn

µspn

ustickn un

Fig. 9 Sketch of the behaviour of the spring between blockn and the
track. (a) The static friction force on blockn is exerted through a spring
of stiffnesskt attached to the track. (b) As the block is moving, the
spring is stretched until it reaches its breaking strengthµs pn. (c) When
the spring is broken, blockn is subject to the kinetic friction forceµk pn.
(d) As the block stops, the spring reattaches atx= ustick

n such that the
total force on the block is zero at the time of reattachment.

block reaches zero, the spring reattaches such that the total
force on the block is 0 at the time of reattachment (Fig. 9d).

The friction force is now given by

fn =

{

−kt
(

un − ustick
n

)

if attached,
−sign( u̇n) µk pn if detached,

(9)

whereustick
n is the attachment point of the spring between

blockn and the track. It is given by

ustick
n = un −

τn

kt
, (10)

whereun andτn are the position of and tangential force on
block n at the instant of its last reattachment to the track.
This causes the total force on blockn to be zero at the time
of reattachment. The spring then detaches at the time step in
which one finds
∣

∣

∣
−kt

(

un − ustick
n

)∣

∣

∣
> µs pn. (11)

The equations of motion are still given by Eqs. (7).
As the system is loaded tangentially, a finite region around

the driving point is affected. This is illustrated in Fig. 10
where the tangential force at the time of nucleation of the
first precursor is plotted. The length of this region depends
on the stiffnesskt of the springs between the blocks and the
track.

Assuming (i)N ≫1, (ii) the length of the loading region
to be much smaller thanL and (iii) slow loading compared
to the internal dynamics of the system, we calculate ana-
lytically in App. B the tangential force profile at the time
of nucleation of an event. No assumption is made for the
tangential force profile at the time of arrest of the previous
event, and the calculation is therefore valid for all events,
not only for the first precursor shown in Fig. 10. The result

1st precursor

µk

µs

τ
/
p

Block number, n

0 20 40 60 80 100
0

0.2

0.4

0.6

Fig. 10 Tangential forceτ normalised by the normal forcep at initi-
ation of the first precursor, when an interfacial stiffness is considered.
The first block has just reached it threshold for slip (τ/p = µs). The
tangential force decays exponentially according to Eq. (46). Results
obtained usingN =100,θ = 0 andkt =107 N/m.

is an exponential decay of the tangential force with a char-
acteristic lengthl0, which consequently is a measure of the
size of the loading region. From App. B,l0 is related tokt

by

l0=

√

ESL
Nkt

. (12)

In this expression, we recognizeNkt to be the total stiffness,
ktot

t , of the interface (N springs of individual stiffnesskt in
parallel), which is a measurable quantity in a given experi-
mental setup. We then obtain the relation

l0=
√

ESL/ktot
t , (13)

which shows that the sizel0 of the loading region is now
independent ofN, i.e. of the model’s spatial resolution.

In the model by Maegawaet al., the simple rigid-plastic-
like AC friction ruled the behaviour of the interface. Now
that the interfacial stiffness is introduced, the frictionlaw
is elasto-plastic-like, an improvement that has often been
defended as a necessary extension of AC [19, 33–36]. Our
model is the simplest improvement of the model by Mae-
gawaet al. that accounts for interfacial stiffness.

The envelopes of the time dependence of both the tan-
gential load and length of precursors in this improved model
are not changed significantly compared to those obtained us-
ing AC friction, as seen by comparing Figs. 2 and11. How-
ever, comparing Figs.11 to 4 shows a significant decrease in
the number of events and a consequent increase in the am-
plitude of the drops inFT/FN. The shear force profiles are
also very similar to that of Fig. 8, except that spikes now
decay exponentially with a characteristic lengthl0. We will
now check the model’s behaviour with respect to its scaling
with N. To do this, one has to choose the interfacial stiffness
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Fig. 11 Time evolution ofFT (a) andx f (b) in our improved model
including both a relative viscous damping and an interfacial stiffness,
usingN =100 andθ = 0. Comparison with Figs. 4 and 2 shows similar
envelopes but very different numbers of events and amplitudes of the
drops inFT /FN .

kt (or equivalently a loading zone sizel0). The value ofkt

could be calibrated using an experimental measurement of
the total interfacial stiffnessktot

t . Here, we do not have ac-
cess to such a measurement, so we rather exploit the fact
that the number of precursors longer than any previous one
is controlled bythe parameterl0. By trial and error, we found
that l0 = 5 mm, corresponding tokt = 107 N/m produced a
number of such events similar to that observed in the exper-
iments by Maegawaet al.. We will use this value ofl0 in the
following.

In Fig. 12 the number of events using the elasto-plastic
friction law is plotted in the same way as in Fig. 5 for AC
friction. Both the number of global events and the number
of precursors longer than any previous one are now seen to
be approximately constant. The total number of events and
the total number of precursors are, however, still increasing
with N. This is mainly due to events involving one block,i.e.
events in which no real front propagation occurs. In other
words, interfacial friction is found to satisfactorily solve the
resolution dependence of the model’s results, provided one
considers events that have a measurable length.

3.3 Introduction of an initial tangential force distribution

The introduction of an internal viscosity and an interfacial
stiffness in the model by Maegawaet al. allowed us to ob-
tain force distributons and numbers of micro-slip events that
were physically sound. However, the predictedLp vs. FT

curves still follow the same shapes as those shown in Fig. 7
which, as already mentioned, deviate significantly from those
obtained experimentally. In an effort to further improve the
1D model, we note that one of the main differences between
the model and the experiment is the initial tangential force

N
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Fig. 12 Number of different kinds of events as a function ofN, when
the interfacial stiffness in taken into account.θ = 0,η =

√
0.1

√
km and

l0 = 5 mm. (a) Number of global events fort ∈ [5 s,20 s] (solid line)
and total number of events (dashed line). (b) Number of precursors
longer than any previous one (solid line) and total number ofprecur-
sors (dashed line). Comparison with Fig. 5 shows that introduction of
an interfacial tangential stiffness suppresses the resolution dependence
of the numbers of global events and of precursors longer thanany pre-
vious one.

distribution (when no external tangential load has been yet
applied). In the model, such forces are assumed to be zero
all along the contact. However, in the experiments, both the
slider and the base undergo different expansion rates dur-
ing application of the normal loading. As discussed in [37],
the associated slip at the interface is impeded by friction,
thus yielding a significant tangential force distribution at the
interface. Such distributions have been measured to be anti-
symmetric [18], in agreement with basic contact mechanics
calculations [6], thus ensuringFT(0) = ∑N

n=1 τn(0) = 0. This
effect is again a bulk effect which is quantitatively repro-
duced in 2D models [21]. Here, in 1D, we will only study
the qualitative influence of an initial tangential force distri-
bution on the length of precursors. We consider the simple
linear distributions shown in Fig. 13a.

Implementation of an initial tangential force requires an
initial relative displacement of the blocks. The initial tan-
gential forces are given by

τn(0) =







k(u2(0)− u1(0)) +FT(0), n= 1
k(un+1(0)−2un(0) + un−1(0)), 2≤ n ≤ N −1
k(uN−1(0)− uN(0)), n= N,

(14)

and by choosingFT(0) = 0 andu1(0) = 0 the above equation
can be rewritten to

un(0) =







0, n= 1
u1 + τn/k, n= 2
2un−1 − un−2+ τn−1/k, n= 3,4, . . . ,N,

(15)

thus enabling calculation of the initial positions of all blocks
given τn. The initial attachment position of the interfacial
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Fig. 13 (a) Three different antisymmetric initial tangential force distri-
butions aimed at modelling the effect of friction-frustrated differential
Poisson expansion during normal loading.◦: homogeneous distribu-
tion.× and+: linear profiles of increasing slope (β = 0.225 and 0.45
in Eq. (52) respectively). (b) The length of precursors corresponding to
the three initial tangential force profiles shown in (a). Results obtained
usingN = 100,θ = 0, η =

√
0.1

√
km andl0 = 5 mm. Solid lines are

the analytical predictions of the precursor lengths discussed in Sec. 4.

springs is then calculated using Eq. (10), which ensures that
the total force on each block is zero att = 0.

The length of precursors corresponding to the three ini-
tial tangential force profiles shown in Fig. 13a is shown in
Fig.13b, usingθ = 0. With respect to a zero initial force dis-
tribution, the stronger the asymmetry the lower theLp vs. FT

curve,i.e. the shorter the precursors for the same tangential
force. Moreover, the slope of the curves is significantly in-
creased at large forces. Both effects lead to a significantly
improved qualitative agreement with the experimental re-
sults byboth Maegawaet al. and Rubinsteinet al. [16]. This
shows that the initial force distribution, which arises natu-
rally in 2D models [21], is a crucial parameter for the kine-
matics of precursors to sliding. Note that the number of pre-
cursors, which is closely related to the choice ofl0 (as men-
tioned in the previous subsection) is only weakly affected by
the introduction of an initial tangential force distribution.

4 Analytical prediction of precursor lengths

In order to complete this study we derive an analytic predic-
tion for the precursor length as a function of the tangential
force at event arrest,Lp vs. FT . We will first look at the sim-
pler case of the model by Maegawaet al., and then extend
the prediction to our improved model using both an interfa-
cial stiffness and an initial tangential force profile.

4.1 Prediction in the model by Maegawaet al.

Assume that a precursor has reached blocknp and has the
lengthLp = (np/N)L. We want to calculate the tangential
forceFT at the time of arrest of this event. At that time, all
blocks are stuck, so that

FT =
N

∑
n=1

τn. (16)

This means that, given the tangential force distribution at
event arrest, the corresponding tangential force is found us-
ing Eq. (16).

According to Figs. 6 and 8 the tangential force is ob-
served to be approximately equal to the kinetic friction level
from block1 tonp, and 0 elsewhere. Using this assumption,
Eq. (16) yields

FT = µk

np

∑
n=1

pn = µk
FN

N

np

∑
n=1

1− 2n− N−1
N−1

θ , (17)

where Eq. (5) has been inserted forpn. If N ≫1, the sum can
be approximated by an integral andn replaced byx= nL/N,
which yields

FT ≈ µk
FN

N
N
L

∫ Lp

0

[

1− 2(xN/L)− N−1
N−1

θ
]

dx, (18)

and approximatingN ±1 ≈ N yields

FT ≈ µk
FN

L

∫ Lp

0
[1− (2(x/L)−1)θ ] dx (19)

FT ≈ µkFN
Lp

L

[

1 +θ
(

1− Lp

L

)]

. (20)

As seen in Fig. 7, this prediction is in very good agree-
ment with our simulation results. The deviation between the
actual precursors and the analytical curve is the result of a
slightly incorrect assumed tangential force profile. Note that
a similar good prediction scheme, numerical rather than ana-
lytical, was previously developed in the 2D study by Trømborg
et al. [21].

According to Eq. (20) the global static friction coeffi-
cientµS (µS ≈ FT

FN
is easily evaluated forLp= L from Eq. (20))

is independent ofθ and almost equal to the local kinetic
friction coefficientµk. This is in agreement with the model
result in Fig. 7 and with the results of the 2D model by
Trømborget al. [21].
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4.2 Prediction in our improved model

Prediction of the precursor length in our improved model
including both an interfacial stiffness and an initial tangen-
tial force profile follows the same line as that for the model
by Maegawaet al.. However, blocks may now move even
though no event is occurring. Despite this, it is expected that
block accelerations are small when all track springs are at-
tached, which leads to the approximate validity of Eq. (16).

An approximate tangential force profile at the time of
arrest of an event (Fig. 14) has to be found for a givenLp.
Again, blocks in[0,Lp] are assumed to have a tangential
force equal to the kinetic friction level. Blocks in the in-
terval [Lp,L], however, now needs to be taken into account
for two reasons: both the initial tangential force profile and
the springs to the track lead to a non-zero tangential force
for x > Lp. The form of this profile in a static situation has
been calculated in App. B, and is given in Eq. (46), where
τ0(x) now is the initial tangential force profile. However, it
has to be modified to take into account that the loaded block
is not located atx= 0, but atx= Lp, and that this block does
not have to be loaded up to the static friction level, but may
take some other value, sayα pnp , with α a coefficient to be
defined. Our assumed tangential force profile at the arrest of
a precursor of lengthLp is therefore given by

τ(x) =

{

µk p(x), x ∈ [0,Lp]
(

α p(Lp)− τ0(x)
)

e
− x−Lp

l0 + τ0(x), x ∈ [Lp,L]

(21)

We have considered that all values of the amplitude of the
peak atx = Lp have the same probability to occur between
µk p and µs p, so that we have givenα its average value
α = (µs + µk)/2 in the predictions seen in Fig. 13b. Fig-
ure 14 shows the assumed tangential force profile and the
actual tangential force profile at the arrest of an event, and
the agreement is seen to be satisfactory.

From Eqs. (21), one can calculateFT(Lp) in the same
way as was done for the model by Maegawaet al. This cal-
culation is provided in Appendix C. As seen in Fig.13b, the
prediction scheme works well. Deviations between the ac-
tual precursors and the analytical curve have two contribu-
tions: incorrectly assumed tangential force profile and iner-
tial effects, where the former gives the largest contribution.
Again, the global static friction coefficientµS is seen to be
approximately equal to the local kinetic friction coefficient
µk. The prediction curves appear to bend slightly backwards
at FT/FN ∼ 0.45. In our continuous prediction scheme, this
corresponds to micro-slip fronts that are so close to the lead-
ing edge that all blocks atx > Lp have a tangential force
above the kinetic friction level, causingFT to get smaller
as the front moves further. In reality, however, no precursor

Pred.

Real

µk

µs

τ
/
p

Block number, n
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Fig. 14 The tangential force profile at the arrest of the 14th precursor
plotted in Fig.13 (red dots) and the predicted profile used inthe analyt-
ical prediction of precursor lengths (black drawn line) using N = 100,
θ = 0, η =

√
0.1

√
km, l0 = 5 mm andβ = 0.225 in Eq. (52).

ever arrests in such a state but propagates all the way to the
trailing edge.

5 Conclusion

Recent experimental results about the transition from static
to kinetic friction in line contacts have triggered the study
of the deterministic dynamics of 1D spring-block friction
models in which driving is applied at one extremity of the
chain of blocks. In this Letter, we have improved the sim-
plest of such models [17] in order to solve its intrinsic un-
physical resolution-dependence and to ameliorate its quali-
tative agreement with experimental results on the kinematics
of micro-slip fronts along the contact. In particular, the intro-
duction of a tangential stiffness of the interface, by introduc-
ing a new length scale in the model, practically suppresses
its resolution dependence and allows for reproduction of re-
alistic numbers of precursory micro-slip fronts. The addi-
tional introduction of an initial tangential force distribution
at the interface significantly improves the agreement with
the evolution of the precursor length with the external tan-
gential load obtained in experiments. Our improved model
is intented to serve as a framework for more complex fric-
tion models when robust comparisons with experiments are
desired.

We focused on1D models because they are simple enough
to enable deep insights into the qualitative effects of the
model’s parameters. However, it is known that 2D models [21]
are required to provide quantitative agreement with experi-
ments. In this respect, the improvements brought to the 1D
model are effective ways to account for intrinsically 2D ef-
fects: First, the length scale introduced through the interfa-
cial stiffness enables coupling between remote points along
the interface, analogous to the coupling through the slider’s
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bulk; Second, the initial tangential force distribution accounts
for the shear stress arising form the differential Poisson ex-
pansion of two bodies pressed together.

In analogy with 2D results we developed, based on the
well defined force distribution left by an arrested precursor,
an efficient analytical prediction for the precursors’ length
as a function of the external tangential load applied. We also
find that, like in 2D, the macroscopic static friction coeffi-
cient of a side-driven contact is approximately equal to its
microscopic kinematic friction coefficient.
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No. PIEF-GA-2009-237089). This article was supported by a Center
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A Relative viscous damping in a linear chain of blocks

If friction forces are ignored, the equation of motion for aninfinite
chain of blocks connected by springs is given by

mün = k(un+1−2un +un−1)+η(u̇n+1−2u̇n + u̇n−1). (22)

We then assume a solution of the form

un(t) = eζκ teiκna, (23)

whereζκ ∈ C andκ ∈ R. Inserting Eq. (23) into Eq. (22) yields the
relation

mζ 2
κ = k

(

eiκa −2+ e−iκa)+ηζκ
(

eiκa −2+ e−iκa) , (24)

which can be simplified to

mζ 2
κ +4η sin2

(κa
2

)

ζκ +4ksin2
(κa

2

)

= 0, (25)

since

eiκa −2+ e−iκa = −4sin2
(κa

2

)

. (26)

The complex parameterζκ is then given by

ζκ =
−4η sin2( κa

2

)

±
√

16η2 sin4( κa
2

)

−16kmsin2( κa
2

)

2m
(27)

The system is critically damped when Eq. (25) only has one solution
for ζκ , which occurs when the square root is zero:

η2 sin2
(κa

2

)

= km ⇒ η =

√
km

∣

∣sin
( κa

2

)
∣

∣

. (28)

The oscillations that are to be reduced have a wavelengthλ = 2a, i.e.
a wave numberκ = 2π/λ = π/a. Inserting this into Eq. (28) leads to

ηc =
√

km, (29)

which is the value of the damping coefficientη for which waves of
wavelengthλ = 2a are critically damped. Since the absolute value of
sin is always smaller than one, choosingη =

√
km will cause all other

waves to be under-damped.

B Tangential force profiles and characteristic length
with a tangential stiffness of the interface

An analytical expression for the characteristic lengthl0 can be found.
In order to do so, the following assumptions are made:N ≫1, l0/L≪1
and slow loading compared to the internal dynamics of the system,
which enables a static analysis. The system is first placed ina static
state with an initial shear force profile given byτ0

n , and then loaded
slowly from the left. The equilibrium of all non-edge blockswrites

k (un+1−2un +un−1)− kt

(

un −ustick
n

)

= 0. (30)

We introduce a new variableu′n defined by

un = u′n +u0
n, (31)

whereu0
n is the initial position of blockn. Inserting Eq. (31) into Eq. (30)

yields

k
(

u′n+1−2u′n +u′n−1

)

− ktu
′
n + τ0

n − kt

(

u0
n −ustick

n

)

= 0, (32)

where

τ0
n = k

(

u0
n+1−2u0

n +u0
n−1

)

. (33)

The two termsτ0
n and−kt

(

u0
n −ustick

n

)

cancel in Eq. (32) since the
initial state is static, and thus

k
(

u′n+1−2u′n +u′n−1

)

− ktu
′
n = 0. (34)

The above equation can be rewritten to

ka2 u′n+1−2u′n +u′n−1

a2 − ktu
′
n = 0, (35)

wherea = L/(Nx − 1) is the lattice spacing. SinceN ≫ 1, the first
term in Eq. (35) can be replaced by the second spatial derivative, and
replacingu′n with u′(na) = u′(x) yields

ka2 ∂ 2u′(x)
∂ x2 − ktu

′(x) = 0, (36)

which has the general solution

u′(x) = Aex/l0 +Be−x/l0, l0=

√

k
kt

a. (37)

The shear force is given by

τn = k (un+1−2un +un−1) (38)

= k
(

u′n+1−2u′n +u′n−1

)

+ τ0
n . (39)

By replacing again finite differences with second order derivatives,

τ(x)= ka2 ∂ 2u′(x)
∂ x2 + τ0(x), (40)

and the general expression for the shear force profile can be found by
using Eq. (37), which yields

τ(x)=
ka2l2

0

L2

(

Aex/l0 +Be−x/l0
)

+ τ0(x). (41)

The system is loaded from the left, and at the beginning of an event
the shear force on block 1 is equal to the static friction thresholdµs p1.
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Providedl0/L≪ 1, the trailing edge will not be affected by the loading.
The latter of these two boundary conditions yields

τ(L) =
ka2l2

0

L2

(

AeL/l0 +Be−L/l0
)

+ τ0(L) (42)

≈ ka2l2
0

L2

(

AeL/l0
)

+ τ0(L) (43)

= τ0(L), (44)

i.e. A= 0. The first boundary condition yields

τ(0)=
ka2l2

0

L2 B+ τ0(L) = µs p1, (45)

and the shear force is therefore given by

τ(x) =
(

µs p1− τ0(x)
)

e−x/l0 + τ0(x). (46)

The characteristic lengthl0 is given by Eq. (37), and inserting for
k given by Eq. (4) anda yields

l0=

√

k
kt

a=

√

ELS
(N −1)kt

, (47)

and hence Eq. (12) forN >> 1.
Note that in a 3D situation, the exponential decay of the tangential

stress withx would be replaced by a power law [19, 38].

C Derivation of the prediction of precursor lengths in
our improved model

We start with Eq. (16) and use the assumed shear force profile in Eq. (21),
shown in Fig. 14. Again we go to the limitN → ∞, resulting in the sub-
stitution

N

∑
n=1

τn →
N
L

∫ L

0
τ(x)dx, n → xN/L. (48)

The tangential force after a precursor of lengthLp is then given by

FT =
N
L

[

∫ Lp

0
τ(x)dx+

∫ L

Lp

τ(x)dx

]

(49)

=
N
L

[

∫ Lp

0
µk p(x)dx+

∫ L

Lp

(

α p(Lp)− τ0(x)
)

e
− x−Lp

l0 + τ0(x)dx

]

.

(50)

We limit ourselves to predicting the precursors in Fig. 13b,i.e. using
a tangential interfacial stiffness and a linear initial shear forces as de-
picted in Fig. 13a, but withθ = 0. The normal and initial shear force
are then given by

p(x) = p = FN/N = constant, (51)

τ0(x) = β p
2(x−L/2)

L
, (52)

where the parameterβ determines the slope in the initial shear force
profile. Inserting Eqs. (51) and (52) into Eq. (50) yields

FT =
N
L

[

∫ Lp

0
µk pdx+

∫ L

Lp

(

α p−β p
2(x−L/2)

L

)

e
− x−Lp

l0 +β p
2(x−L/2)

L
dx

]

. (53)

The above integrals can be calculated easily, and the resultis the tan-
gential loadFT as a function of the precursor lengthLp:

FT (Lp) = FN

[

µk
Lp

L
+2β

l2
0

L2

(

e
− L−Lp

l0 −1

)

+β
(L−Lp)Lp

L2 +

l0
L

(

β
(

1+ e
− L−Lp

l0 −2
Lp

L

)

+α
(

1− e
− L−Lp

l0

))]

. (54)

We observe that againFT (L) = µkFN .
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