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Abstract: The purpose of this paper is to show how one can extend some

results on disorder relevance obtained for the random pinning model with

i.i.d disorder to the model with finite range correlated disorder. In a pre-

vious work, the annealed critical curve of the latter model was computed,

and equality of quenched and annealed critical points, as well as exponents,

was proved under some conditions on the return exponent of the interar-

rival times. Here we complete this work by looking at the disorder relevant

regime, where annealed and quenched critical points differ. All these re-

sults show that the Harris criterion, which was proved to be correct in

the i.i.d case, remains valid in our setup. We strongly use Markov renewal

constructions that were introduced in the solving of the annealed model.

1. Introduction

Let τ = (τn)n≥0 be a recurrent renewal process starting at τ0 = 0 with interar-
rival distribution

K(n) = P (τ1 = n) = L(n)n−(1+α) (1)

with L(·) a slowly varying function. By recurrent we mean that
∑

n≥1 K(n) = 1.
The interarrival times, or stretches, are the random variables Tk = τk − τk−1,
k ≥ 1. For all n ≥ 0, δn will denote the indicator function of the event {n ∈ τ}
and sometimes we will use the notation

ıN =

N
∑

n=1

δn. (2)

Independently of τ , let ω = (ωn)n∈Z be a gaussian process with 0 mean and vari-
ance 1. We assume that there exists an integer q ≥ 1 such that ρn = 0 as soon
as n > q, where ρn = Cov(ω0, ωn) (finite range correlations assumption). Its law
will be denoted by P. The hamiltonian of the system at size n ≥ 1, parameters
(β, h) in (R+,R) and pinning potential ω is Hn =

∑n
k=1(βωk +h)δk. The corre-

sponding (quenched) partition function is the quantity Zn,β,h,ω = E(exp(Hn)δn)
and the annealed partition function is Za

n,β,h = EZn,β,h,ω. The (infinite vol-
ume) quenched and annealed free energy functions are defined respectively as
F (β, h) = lim(1/n) logZn,β,h,ω ≥ 0 (in the almost sure and L1(P) sense) and
F a(β, h) = lim(1/n) logZa

n,β,h ≥ 0. The localized (resp. delocalized) phase is
the region of parameters for which the quenched free energy is positive (resp.
null). Both phases are separated from each other by a concave critical curve
hc(β) = sup{h ∈ R : F (β, h) = 0}. If one defines the annealed critical curve
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as ha
c (β) = sup{h ∈ R : F a(β, h) = 0}, then the following inequality holds:

hc(β) ≥ ha
c (β). Disorder will be said relevant if the previous inequality is strict,

and irrelevant otherwise.
The case q = 0, which is the case of i.i.d disorder, is the most studied one. In

this setup, the annealed model reduces to the homogeneous model (the β = 0
case), which is fully solvable (see [9]), so all annealed features are known. In
particular, ha

c (β) = −β2/2. A lot has been done lately on the issue of disorder
relevance/irrelevance. For α = 0, disorder is always irrelevant (see [4, 6]). If
α ∈ (0, 1

2 ) or α = 1
2 and

∑

n≥1
1

nL(n)2 < ∞ then there exists a critical value

βc > 0 such that disorder is irrelevant for β ≤ βc (and in this case quenched and
annealed critical exponents are the same) and relevant otherwise (see [2, 12, 16,
6, 13]). If α > 1

2 then disorder is always relevant (i.e βc = 0) and we know the
order of the difference between quenched and annealed critical curves for small
β (see [16, 2, 3, 7]). All these results have proved that the value α = 1

2 is critical
regarding disorder relevance, a fact that corresponds in physics literature to the
Harris criterion. The controversial case α = 1

2 , with L(·) not subject to the
previous condition, is probably the most delicate. For this we refer to the works
[7, 11, 10] and references therein. We also mention the recent work [5] where
the quenched critical point and exponent are given for a particular environment
(based on a renewal sequence) with long-range correlations.

Part of the theory has been extended to the case q ≥ 1 in [14], where the
motivation is to study the effect of disorder correlations on the model. More
precisely, the following has been proved:

Theorem 1.1. For all β ≥ 0, ha
c (β) = −β2

2 − logλ(β) where λ(·) is defined in

(3). Moreover, ha
c (β)

βց0∼ −β2

2 (1 + 2
∑q

n=1 ρnP (n ∈ τ)).

Theorem 1.2. If α ∈ (0, 1
2 ) or α = 1

2 and
∑

n≥1
1

nL(n)2 < ∞ then there exists

βc > 0 such that for all β ≤ βc, hc(β) = ha
c (β) and limǫց0

logF (β,hc(β)+ǫ)
log ǫ = 1

α .

Theorem 1.1 shows that correlations can modify the critical curves in a quan-
titative way, even at the leading order in β whereas Theorem 1.2 suggests that
the Harris criterion remains valid. Moreover, it is shown in [14] that the an-
nealed critical exponent remains the same as the homogeneous case (the proof
is done for 0 ≤ α ≤ 1/2 but it is straightforward to adapt it to α > 1/2).
The idea in [14] is to exhibit a Markov renewal structure to solve the annealed
model (by solve we mean find critical points and exponents). The purpose of
this paper is to show how one can also use this construction to generalize to our
case the results of disorder relevance obtained in the case of i.i.d disorder. This
complements our study of the model with finite range correlated disorder.

We need to remind some definitions and notations from [14]. They are neces-
sary for the Markov renewal construction mentionned beforehand, and we will
need them in our proofs. First we define the following mapping: t ∈ N

∗ 7→ t∗ ∈
E := {1, . . . , q, ⋆} with t∗ = t if 1 ≤ t ≤ q and t∗ = ⋆ otherwise. Loosely speak-
ing, ⋆ is an abstract space refering to interarrival times greater than q, and it
obeys the following rule: for all z ∈ E, z+⋆ = ⋆+z = ⋆. Vectors of q consecutive
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interarrival times (resp. elements of E) will usually be denoted by t = (t1, . . . , tq)
(resp x = (x1, . . . , xq)). If (tn)n≥1 is a sequence of interarrival times, then we
use the notation tn = (tn, . . . , tn+q−1) and t

∗
n = (t∗n, . . . , t

∗
n+q−1). We also define

the consistency condition: s t (resp. s∗  t
∗
) if for all i ∈ {2, . . . , q}, si = ti−1

(resp. s∗i = t∗i−1).
A function G is defined on (N∗)q by G(t) = ρt1 + ρt1+t2 + . . .+ ρt1+...+tq , but

since G(s) = G(t) as soon as s∗ = t
∗
, we can as well define it on Eq by

G(x) = ρx1 + ρx1+x2 + . . .+ ρx1+...+xq

if we agree that ρ⋆ = 0. This reduction to a finite state space is helpful for the
resolution of the annealed model. Indeed, we can make the following transfer
matrix appear

Q∗
β(x, y) = eβ

2G(y)K(yq)1{x y}.

where K(⋆) :=
∑

n>q K(n), and we define

λ(β) = Perron-Frobenius eigenvalue of Q∗
β (3)

which is the quantity appearing in Theorem 1.1. To solve the annealed model,
a law Pβ is introduced in [14], that we recall here. Let r∗β = (r∗β(x))x∈Eq be a

positive right eigenvector of Q∗
β associated to λ(β). Define for all t in (N∗)q,

rβ(t) = r∗β(t
∗
) and Qβ the infinite matrix Qβ(s, t) = eβ

2G(t)K(tq)1{s t}. Then

the matrices Q̃β and Q̃∗
β respectively defined by

Q̃β(s, t) :=
Qβ(s, t)rβ(t)

λ(β)rβ(s)

and

Q̃∗
β(s

∗, t
∗
) :=

Q∗
β(s

∗, t
∗
)r∗β(t

∗
)

λ(β)r∗β(s
∗)

(4)

are Markov transition kernels (resp. on (N∗)q and Eq), see [14, Lemma 4.1]. The
law Pβ is then defined on the interarrival times (Tn)n≥1 by

Pβ(T1 = t1, . . . , Tq = tq) =

q
∏

k=1

K(tk)

and for all k ≥ 0,

Pβ(Tk+q+1 = tq+1|Tk+1 = t1, . . . , Tk+q = tq) = Q̃β(t1, t2).

Then one remarks ([14, Section 4.4]) that under Pβ , (τn)n≥0 is a delayed Markov

renewal process with modulating Markov chain (T
∗
k−q)k≥q+1, and with the fol-

lowing semi-Markov kernel: for all n ≥ 1, x, y ∈ Eq,

Pβ(Tk+q+1 = n, T
∗
k+2 = y|T ∗

k+1 = x) = Q̃∗
β(x, y)

K(n)

K(yq)
1{n∗=yq}.

We define Eβ as the expectation with respect to Pβ .
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2. Results

The following results were first obtained in the case of i.i.d disorder. We show
that the also hold in our case.

Theorem 2.1. Let α ∈ (0, 12 ). There exists β0 < ∞ such that for all β > β0,
hc(β) > ha

c (β).

Theorem 2.1 is also true for α > 1
2 , but in this case we have stronger results:

Theorem 2.2. Let α ∈ (12 , 1). For all ǫ > 0, there exists a(ǫ) > 0 such that

hc(β) ≥ ha
c (β) + a(ǫ)β

2α
2α−1+ǫ for all β ≤ 1. Moreover, hc(β) > ha

c (β) for all
β > 0.

Theorem 2.3. Let α > 1. There exists a > 0 such that for all β ≤ 1, hc(β) ≥
ha
c (β) + aβ2. Moreover, hc(β) > ha

c (β) for all β > 0.

To put it simply, we need to adapt the proofs to the world of Markov re-
newal processes. At some places, the fact that the underlying Markov renewal
law at the annealed critical point depends on β requires extra work. Theorem
2.1, which was proved in [17] in the i.i.d case relies on a fractional moment
estimate technique. In a few words, this consists in bounding from above frac-
tional moments of the quenched partition functions to prove that the free en-
ergy is null for some values of the parameters. In the i.i.d case, an explicit value

of β0 can be given: β0 = inf{β ≥ 0 : β2

2 − h(K) > 0} =
√

2h(K), where
h(K) = −∑n≥1 K(n) logK(n) is the entropy of K(·). Our value of β0 is not
explicit, but it can still be implicitly defined as the first β for which the dif-
ference between an energetic term and an entropic term becomes positive (see
proof of Theorem 2.1). Theorems 2.3 and 2.2 go together because they both rely
on a refinement of the previous fractional moment technique. They were proved
in [7] in the i.i.d case.

3. Case α ∈ (0, 1

2
) and large β

In this section we prove Theorem 2.1. For all γ in ( 1
1+α , 1], for all x,y in Eq we

define

Q̂∗
β,γ(x, y) =







K(yq)
γ

λ(β)γ exp
{

β2

2 γ(γ − 1) + γ2β2G(y)
}

1{x y} if yq 6= ⋆,
∑

n>q K(n)γ

λ(β)γ exp
{

β2

2 γ(γ − 1) + γ2β2G(y)
}

1{x y} if yq = ⋆.

The condition α > 0 ensures that ( 1
1+α , 1] is nonempty. We denote by Λ(β, γ)

the Perron-Frobenius eigenvalue of Q̂∗
β,γ. We will use the following lemma:

Lemma 3.1. If Λ(β, γ) < 1 then there exists δ > 0 such that

lim
N→+∞

1

N
logEZγ

N,β,ha
c (β)+δ = 0.
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Proof of Lemma 3.1. We start by decomposing the partition function:

ZN =

N
∑

n=1

∑

t1,...,tn≥1
t1+...+tn=N

exp(

n
∑

i=1

(βωt1+...+ti + h))

n
∏

i=1

K(ti).

For all γ ∈ (0, 1) and nonnegative (ai)1≤i≤n, we have

(a1 + . . .+ an)
γ ≤ aγ1 + . . .+ aγn, (5)

hence

Zγ
N ≤

N
∑

n=1

∑

t1,...,tn≥1
t1+...+tn=N

exp(γ

n
∑

i=1

(βωt1+...+ti + h))

n
∏

i=1

K(ti)
γ .

Now we take γ in ( 1
1+α , 1]. Since the variance with respect to disorder of

∑N
n=1 ωnδn equals

∑N
n=1 δn + 2

∑

1≤i<j≤N ρj−iδiδj and

∣

∣

∣

∣

∣

∣

ıN
∑

n=1

G(T n)−
∑

1≤i<j≤N

ρj−iδiδj

∣

∣

∣

∣

∣

∣

≤ c

(ıN has been defined in (2)) where the constant c only depends on q and the
ρn’s (see [14, Lemma 4.3]), we get:

E(Zγ
N,β,ha

c(β)+δ) ≤ C(β, δ)
N
∑

n=1

∑

t1,...tn
t1+...+tn=N

K(t1)
γ . . .K(tq)

γ
n−1
∏

k=1

eδQ̂β,γ(ti, ti+1)

(6)
where

Q̂β,γ(s, t) :=
K(tq)

γ

λ(β)γ
exp

{

β2

2
γ(γ − 1) + γ2β2G(t)

}

1{s t}.

Let β and γ be such that Λ(β, γ) < 1. Let r∗ be a positive right eigenvector of
Q̂∗

β,γ, associated to Λ(β, γ). Define r on (N∗)q by r(s) = r∗(s∗). Then one can
observe that

∑

t∈(N∗)q

Q̂β,γ(s, t)r(t) = Λ(β, γ)r(s).

As a consequence, for all s and for δ > 0 small enough,

∑

t

eδQ̂β,γ(s, t)
r(t)

r(s)
= eδΛ(β, γ) ≤ 1.

This allows us to define a process with the following kernel: for all k ≥ 0

P̂ (Tk+q+1 = tq+1|Tk+1 = t1, . . . , Tk+q = tq) = Q̂β,γ(t1, t2)
r(t2)

r(t1)
eδ (7)
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and the possibly positive probability

P̂ (Tk+q+1 = +∞|Tk = s) = 1− eδΛ(β, γ),

with the initial conditions P̂ (T1 = t1, . . . , Tq = tq) = 1
c(γ)qK(t1)

γ . . .K(tq)
γ

where c(γ) =
∑

n≥1 K(n)γ . Notice that (7) tells how to sample an interarrival
time conditionally to the past, only if previous interarrival times are finite. As
soon as an interarrival time is infinite, all coming interarrival times coming after
are defined as +∞. Therefore, we may write

E(Zγ
N,β,ha

c (β)+δ) ≤ c(γ)qC(β, δ) max
x,y∈Eq

{r∗(y)/r∗(x)}P̂ (N ∈ τ)

and since E(Zγ
N,β,ha

c (β)+δ) ≥ C′K(N)γ (by restricting the partition function to

the event {τ1 = N}), we get the result.

Proof of Theorem 2.1. Suppose that β is such that there exists γ in ( 1
1+α , 1)

satisfying the condition of Lemma 3.1. Then, for δ > 0 small enough,

1

n
E logZn,β,ha

c(β)+δ =
1

γn
E logZγ

n,β,ha
c (β)+δ

(Jensen)
≤ 1

γn
logEZγ

n,β,ha
c (β)+δ

(Lemma 3.1)−→n→+∞ 0,

which implies F (β, ha
c (β) + δ) = 0, that is hc(β) > ha

c (β). Therefore, it is
sufficient to prove, since Λ(β, 1) = 1, that for β large enough,

∂γΛ(β, γ)|γ=1− > 0.

The first step is to compute ∂γQ̂
∗
β,γ |γ=1− . Straightforward computations yield

(we write Q̂∗
β instead of Q̂∗

β,1)

∂γQ̂
∗
β,γ|γ=1−(x, y) =

(

β2

2
− logλ(β) + 2β2G(y) + logK(yq)

)

Q̂∗
β(x, y) (8)

if yq 6= ⋆; and if yq = ⋆,

∂γQ̂
∗
β,γ |γ=1−(x, y) =

(

β2

2
− logλ(β) + 2β2G(y) + logK(⋆)

)

Q̂∗
β(x, y) (9)

+

(

∑

n>q

K(n)

K(⋆)
log

K(n)

K(⋆)

)

Q̂∗
β(x, y). (10)

Let us denote by l∗β (resp. r∗β) the left row (resp. right column) eigenvector of

Q̂∗
β associated to 1, normalized such that

l∗β · r∗β = 1.
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Then (see [9, A.8] for instance) we have

∂γΛ(β, γ)|
γ=1−

= l∗β · ∂γQ̂∗
β,γ |γ=1−r

∗
β . (11)

We denote by πβ the probability on Eq defined by

πβ(x) = l∗β(x)r
∗
β(x).

This probability is in fact the invariant probability of the Markov chain on Eq

with transition kernel:

Q̃∗
β(x, y) =

eβ
2G(y)K(yq)r

∗
β(y)

λ(β)r∗β(x)
1{x y}. (12)

In the sequel, X(n) = (X
(n)
1 , . . . , X

(n)
q ), n ≥ 0, will refer to a Markov chain on

Eq with kernel Q̃∗
β and initial law πβ . Its law will be denoted by Pπβ

and Eπβ

will be the expectation with respect to Pπβ
. Putting (8) and (9) in (11) we get

∂γΛ(β, γ)|
γ=1−

=
β2

2
− logλ(β) + 2β2Eπβ

(G(X(0))) + Eπβ
(logK(X(0)

q )) (13)

+ Pπβ
(X(0)

q = ⋆)

(

∑

n>q

K(n)

K(⋆)
log

K(n)

K(⋆)

)

(14)

Analyzing the behaviour of λ(β) and πβ for large values of β is not a trivial task,
because it depends on the maxima of the function G (see for instance [1] and
references therein on this topic). We will rather transform the last expression
so that the proof does not rely on the large β analysis of these quantities. The
sum in (13) can be reinterpretated as a sum of energy and entropy terms : the

term
∑

n>q
K(n)
K(⋆) log

K(n)
K(⋆) is the opposite of the entropy of the kernel Kq(n) :=

K(n)
K(⋆)1{n>q}, we denote by h(Kq). The specific entropy h(Q̃∗

β) of the stationary

Markov chain (X(n))n≥0 (see [15, pp.59-63]) can be rewritten as, using (12),

−h(Q̃∗
β)

(def)
= Eπβ

(log Q̃∗
β(X

(0), X(1)))

= β2Eπβ
(G(X(1))) + Eπβ

(logK(X(1)
q ))

− logλ(β) + Eπβ
(log r∗β(X

(1)))− Eπβ
(log r∗β(X

(0)))

(stationarity)
= β2Eπβ

(G(X)) + Eπβ
(logK(Xq))− logλ(β).

Therefore, we may write:

∂γΛ(β, γ)|
γ=1−

=
β2

2
+ β2Eπβ

(G(X))− h(Q̃∗
β)− h(Kq)Pπβ

(Xq = ⋆). (15)

As the specific entropy of a process on the finite state space Eq, for all β, h(Q̃∗
β)

is nonnegative and bounded above by log Card(Eq), so the last two terms of
(15) are bounded. We are now going to conclude the proof by showing that

β2

2
+ β2Eπβ

(G(X))
β→+∞−→ +∞.
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Let h(Q̃∗
β |Q̃∗

0) be the specific relative entropy (see [8] for instance) of the sta-

tionary Markov chain with transition matrix Q̃∗
β with respect to the one with

transition matrix Q̃∗
0, defined as the limit of (1/n)h(Q̃∗

β|Fn
|Q̃∗

0|Fn
), where Fn is

the σ-algebra generated by the random variables X(k) for 0 ≤ k ≤ n. We have

h(Q̃∗
β |Fn

|Q̃∗
0|Fn

) = Eπβ

(

log

(

πβ(X
(0))

∏n
i=1 Q̃

∗
β(X

(i−1), X(i)

π0(X(0))
∏n

i=1 Q̃
∗
0(X

(i−1), X(i))

))

= β2
n
∑

i=1

Eπβ
(G(X(i)))− n logλ(β) + Eπβ

(log r∗β(X
(n)))

− Eπβ
(log r∗β(X

(0))) + Eπβ

(

log

(

πβ(X
(0))

π0(X(0))

))

(stationarity)
= β2

(

Eπβ
(G(X(0)))− logλ(β)

)

n+ h(πβ |π0)

and so
h(Q̃∗

β |Q̃∗
0) = β2Eπβ

(G(X(0)))− logλ(β),

which is a nonnegative quantity. Thus,

β2

2
+ β2Eπβ

(G(X)) ≥ β2

2
+ logλ(β) = −ha

c (β).

Since ha
c (β)

β→+∞−→ −∞ (because hc(0) = 0, ha
c (β) < 0 for some β > 0 and it is

concave in β), the proof is complete.

4. Case α > 1/2 and β > 0

In this section we shall prove Theorem 2.2 and Theorem 2.3. In a first part,
we adapt the fractional moment technique developed in [7] to our case. It is
a refinement of the fractional moment technique of the previous section from
which we show that the free energy is null if a certain sum ̺ depending on β,h,γ
and a scale k is small (see Lemma 4.1 and (24)). The way we make this quantity
small depends whether α is greater than 1 or between 1/2 and 1. In the sequel,
the functions Li(·) will refer to slowly varying functions.

4.1. Fractional moments

In the following, we take this definition of the hamiltonian:

Hj(β, h, ω, τ) =

j−1
∑

k=0

(βωk + h)δk,

which does not change the value of the limit free energy. We recursively define
the following subset of τ : τ̂0 = 0 and for all n ≥ 0

τ̂n+1 = inf{τk > τ̂n : τk − τk−1 > q},
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i.e τ̂ is the subset of renewal points that come just after a stretch strictly larger
than q. Let us also define the following partition functions:

Ẑj,β,h,ω := E
(

exp(Hj(β, h, ω))1{τ̂∩{1...j}={j}}
)

,

Žj,β,h,ω := E
(

exp(Hj(β, h, ω))δj1{τ̂∩{1...j}=∅}
)

,

Z̃j,β,h,ω := E
(

exp(Hj(β, h, ω))1{j∈τ̂}
)

.

In other words, Ẑj is the partition function restricted to the event “j is a renewal
point and the only stretch strictly larger than q is the one just before j”, Žj

the restriction to the event “j is a renewal point and all stretches before it are
smaller than q”, and Z̃j the restriction to “j is a renewal point, the stretch just
before it is strictly larger q”.

Let k be an integer that we shall specify later. We decompose Z̃n the following
way: l is the last element of τ̂ strictly before k and r is the first element of τ̂
after k (in the large sense). This yields, by Markov property:

Z̃n,ω =
∑

0≤l<k

n
∑

r=k

Z̃l,ωẐr−l,θlωZ̃n−r,θrω, (16)

if we agree that Ẑj = Z̃j = 0 if 1 ≤ j ≤ q, and Ẑ0 = Z̃0 = 1. Observe that the
three factors in the sum, seen as disorder functions, are independent because
of the finite range assumption and our construction of τ̂ . From (16) and (5) we
deduce that for all γ ∈ (0, 1),

Z̃γ
n,ω ≤

∑

0≤l<k

n
∑

r=k

Z̃γ
l,ωẐ

γ
r−l,θlω

Z̃γ
n−r,θrω (17)

and if we define the sequence An = EZ̃γ
n,ω, we have by independence, for n ≥ k,

An ≤
k−1
∑

l=0

n
∑

r=k

AlE(Ẑ
γ
r−l)An−r. (18)

Let

K̂(j) = K̂(j, β, h, γ) =

{

E(Ẑγ
j,β,h,ω) if j > q

0 if j ≤ q.

We have the following lemma:

Lemma 4.1. If β and h are such that there exists k ≥ 1 and γ ∈ (0, 1) for
which

̺(β, h, γ, k) :=
∑

r≥k

k−1
∑

l=0

K̂(r − l)Al ≤ 1 (19)

then F (β, h) = 0.
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Proof of Lemma 4.1. If (19) is true then from (18) we can show by induction
that for every l, Al ≤ max{A0, . . . , Ak−1}. Therefore,

F (β, h) = lim
1

Nγ
E log(ZN )γ

(Jensen)
≤ lim

1

Nγ
logE(Zγ

N )

≤ lim
1

Nγ
log

(

E(Z̃γ
N+q+1)

K(q + 1)γ

)

≤ lim
1

Nγ
log

(

AN+q+1

K(q + 1)γ

)

= 0.

Note that in the partition function ZN considered above, the sum in the hamil-
tonian should go from 0 to N (instead of going from 0 to N − 1, or 1 to N) but
all these definitions lead to the same free energy in the limit. Moreover, to go
from the first line to the second line, we restrict Z̃N+q+1 to renewal trajectories
that start with a stretch of length q + 1.

Therefore, our task is now to find parameters h > ha
c (β), γ and k that meet

the requirements of Lemma 4.1. Suppose now that h = ha
c (β)+∆ with ∆ small

but positive. Then we are going to prove:

Lemma 4.2. For all β, if γ is close enough to 1 and ∆ > 0 is small enough
then there exists a constant c(β) such that

K̂(n, β, ha
c (β) + ∆, γ) ≤ c(β)L1(n)n

−(1+α)γ . (20)

Moreover, there exists β0 > 0 and ǫ > 0 such that for all β ∈ (0, β0), ∆ ∈ (0, ǫ),
γ ∈ (1− ǫ, 1), (20) holds with c(β) replaced by c(β0).

Proof of Lemma 4.2. Let n > q. Then, by decomposing Ẑn,β,h,ω according to
the last stretch before n, we get

Ẑn,β,h,ω =

n
∑

L=q+1

K(L)Žn−L,β,h,ωe
βωn−L+h

hence

K̂(n, β, h, γ) ≤
n
∑

L=q+1

K(L)γZn−L,β,h (21)

where
Zj,β,h := E

(

eγ(βωj+h)Žγ
j,β,h,ω

)

.

We now look at the rate of decay of the sequence Zn. After some computations
similar to those of (6) we can write

Zn,β,h ≤ C(β,∆)

n
∑

k=1

∑

t1,...,tk
t1+...+tk=n
ti≤q,1≤i≤k

K(t1)
γ . . .K(tq)

γ
n−1
∏

i=1

Qβ,h,γ(ti, ti+1) (22)
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where, for all x,y in Eq,

Qβ,h,γ(x, y) = exp

(

β2γ2

2
+ hγ + γ2β2G(y)

)

K(yq)
γ1{x y}.

From (22), the behaviour of Zn is related to the Perron-Frobenius eigenvalue of
Qβ,h,γ restricted to the space {1, . . . , q}q. By choosing γ below but close enough
to 1 and ∆ > 0 small enough, by continuity of Perron-Frobenius eigenvalues
with respect to parameters, the Perron-Frobenius eigenvalue of Qβ,ha

c (β)+∆,γ

restricted to {1, . . . , q}q will be arbitrarily close to the one of Qβ,ha
c (β),γ=1 re-

stricted to {1, . . . , q}q, which itself is strictly smaller than 1, because it is the
restriction to {1, . . . , q}q of a kernel on {1, . . . , q, ⋆}q with eigenvalue 1. With
such γ and ∆ we can state that

Zn,β,ha
c (β)+∆,γ ≤ ce−δn (23)

where δ = δ(∆, γ) is the (well defined) positive real such that the Perron Frobe-
nius eigenvalue of

(

exp

(

δyq +
β2

2
γ(γ − 1) + γ2β2G(y) + ∆γ

)

K(yq)
γ

λ(β)γ
1{x y}

)

x,y∈{1,...,q}q

equals one. From (1), (21) and (23) the first point of the lemma is proved. For
the second point (uniform version), notice that for all β ≤ β0 with β0 small
enough and γ ∈ (1− ǫ, 1) with ǫ small enough, the Perron-Frobenius eigenvalue
of Qβ,ha

c (β),γ
is smaller than P (T1 ≤ q) + η < 1 (P (T1 ≤ q) being the Perron-

Frobenius eigenvalue of Q0,0,1), so one can conclude by taking ∆ < ∆0 :=
− log(P (T1 ≤ q) + η).

Let now ∆ be close enough to 0 and γ close enough to 1 so that the tail
behaviour of K̂ is as in Lemma 4.2 and (1+α)γ− 1 > 1 (which is possible since
α > 1). Then we have

̺ := ̺(β, h, γ, k) =
∑

r≥k

k−1
∑

l=0

K̂(r − l)Al ≤ c(β)
∑

r≥k

k−1
∑

l=0

(r − l)−(1+α)γL2(r − l)Al

(24)

≤ C(β)

k−1
∑

l=0

L2(k − l)Al

(k − l)(1+α)γ−1
(25)

where C(β) is a constant which can be made uniform on (0, β0) for all β0. Our
goal in the next sections is to make this last sum small enough, by suitably
choosing the shift ∆ := hc(β) − ha

c (β) as a function of β, and the parameter k
as a function of ∆. Theorems 2.2 and 2.3 will follow by application of Lemma
4.1.
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4.2. Case α > 1

In what follows, we set k = k(β) = 1
aβ2 and ∆ = aβ2, with a to be specified

later. Then
̺ ≤ c(β)(S1 + S2)

where

S1 =

k(β)−R−1
∑

l=0

L2(k − l)Al

(k − l)(1+α)γ−1

and

S2 =

k(β)−1
∑

l=k(β)−R

L2(k − l)Al

(k − l)(1+α)γ−1

with R ≤ k(β) to be specified. On one hand we have:

Lemma 4.3. S1 can be made small by taking R large enough and a small
enough.

Proof. We have

Al = E(Z̃γ
l )

(Jensen)
≤ (EZ̃l)

γ ≤ c(β) exp(γF a(β, ha
c (β) + aβ2)l) ≤ c(β)eaβ

2l,

which is lower than a constant c(β) whenever l ≤ k(β). Therefore, by summing
on l we get

S1 ≤ c(β)L3(R)

R(1+α)γ−2

which can be made small by choosing R large enough. Since R ≤ k(β) = 1
aβ2 ,

this may require a small enough.

On the other hand we have S2 ≤ C2 maxk(β)−R≤l<k(β) Al. We will show that
this can be made small by taking a small enough, by using the same change of
measure argument used in the case of i.i.d. disorder. For this purpose, define

dPN,λ

dP
(ω) =

e−λ
∑n

i=1 ωi

E(e−λ
∑

n
i=1 ωi)

.

Lemma 4.4. There exists c > 0 such that for all N , all λ and γ in (0, 1)

E(Z̃γ
N ) ≤ (EN,λZ̃N )γ exp

(

c
γ

1− γ
λ2N

)

.

Proof. By Hölder inequality we have

E(Z̃γ
N ) = EN,λ

(

Z̃γ
N

dP

dPN,λ
(·)
)

≤ (EN,λZ̃N )γEN,λ

(

(

dP

dPN,λ
(·)
)1/(1−γ)

)1−γ

(26)
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Let vN := Var(
∑N

i=1 ωi). The last factor on the right-hand side of (26) is equal
to

[

E

(

eλ
∑

ωi+
λ2

2 vN
)

1
1−γ

e−λ
∑

ωi−λ2

2 vN

]1−γ

= e
λ2γ

2(1−γ)
vN .

and the lemma is true with c := supN≥1(vN/N), which is finite since vN ∼
N(1 + 2

∑q
k=1 ρk) as N tends to +∞.

If N = j and λ = 1√
j
, we get:

Aj ≤ (Ej,1/
√
jZ̃j)

γ exp

(

c
γ

1− γ

)

.

Proposition 4.1. If h = ha
c (β) + ∆ then

Ej,λ(Z̃j) ≤ c(β)Eβ

(

e(∆−ρβλ)
∑j

i=1 δi
)

where ρ = 1 + 2
∑q

k=1 ρk.

Proof. Computations give:

Ej,λ(Z̃j) = EEj,λ

(

e
∑j−1

k=0(βωk+h)δk1{j∈τ̂}
)

≤ E
(

E

(

e
∑j−1

k=0(βωk+h)δk−λ
∑j−1

k=0 ωk

)

e−
λ2

2 vj
)

= E
(

eh
∑

δk+
1
2 Var(

∑j−1
k=0 ωk(βδk−λ))

)

e−
λ2

2 vj ,

and

Var(

j−1
∑

k=0

ωk(βδk − λ))

=

j−1
∑

k=0

(βδk − λ)2 + 2
∑

0≤m<n≤j−1

(βδm − λ)(βδn − λ)Cov(ωn, ωm)

= λ2j + 2λ2
∑

0≤m<n≤j−1

Cov(ωn, ωm) + β2

j−1
∑

k=0

δk − 2βλ

j−1
∑

k=0

δk

+ 2β2
∑

0≤m<n≤j−1

δmδnρn−m − 2βλ
∑

0≤m<n≤j−1

δn Cov(ωn, ωm)

− 2βλ
∑

0≤m<n≤j−1

δmCov(ωn, ωm)

and in the last equality, the sum of the first two terms equals λ2vj . Hence, at
h = ha

c (β) + ∆:

Ej,λ(Z̃j) ≤ C1(β)E
(

e(∆−ρβλ−log(λ))
∑

δn+β2 ∑
δnδmρn−m

)

≤ C2(β)Eβ

(

e(∆−ρβλ)
∑j

k=1 δk
)

.
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where C1(β) and C2(β) are constants which are uniform on β ≤ β0, for all
β0.

If ∆ = aβ2, and a small enough, then for j ≤ k(β) = 1
aβ2 ,

∆− ρβ√
j
≤ − c1

2k(β)
√
a
,

(the constant is uniform in β) hence

max
k(β)−R≤l<k(β)

Ej,1/
√
j(Z̃j) ≤ ec3

√
aβ2 R

2 Eβ

(

exp

(

− c3
2
√
ak(β)

|τ ∩ {1, . . . , k(β)}|
))

.

We can make the last term as small as we want by taking a small enough, which
proves the second point of the theorem. For the first point, we need to prove
that the procedure is uniform in β ≤ β0. Indeed, we shall prove:

Lemma 4.5.
lim
c→∞

lim sup
β→0

Eβ

(

e−
c

k(β)
|τ∩{1,...,k(β)}|

)

= 0. (27)

Proof. This is a bit trickier than in the i.i.d case because also the law of τ
depends on β. First, let us remark that there exists a coupling (of the modulating
Markov chains with kernel Q̃∗

β) such that the expectation in (27) can be written

E

(

exp

(

− c

k(β)
|τβ ∩ {1, . . . , k(β)}|

))

.

Since τβ converges to τ and k(β) tends to +∞ as β goes to 0, and

|τ ∩ {1, . . . , N}|
N

a.s→ 1

m
:=

1
∑

n≥1 nK(n)
,

we expect that the random variable
|τβ∩{1,...,k(β)}|

k(β) converges to 1/m, but the

result is not clear because there is a problem of uniformity in β. However, we
can prove by hand that the convergence holds in law. We can show for example
convergence of the cumulative distribution function. Since

P (
|τβ ∩ {1, . . . , k(β)}|

k(β)
≥ x) = P (|τβ ∩ {1, . . . , k(β)}|

≥ ⌈xk(β)⌉)
= P (τβ,⌈xk(β)⌉ ≤ k(β))

= P (τβ,⌈xk(β)⌉/k(β) ≤ 1)

, it is enough to show that τβ,⌈xk(β)⌉/k(β) converges in law to x/m as β tends to
0. We will prove this point by mean of convergence of the Laplace transforms.
From now on, we assume xk(β) is an integer to avoid repeated use of ⌈·⌉. First
we define φβ a matrix of Laplace transforms. For all β ≥ 0, λ ≥ 0, x and y in
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Eq, φβ,x,y(λ) := ϕyq
(λ)Q̃∗

β(x, y) where Q̃∗
β is the transition matrix defined in

(4) and the ϕt’s are the following Laplace transforms:

ϕt(λ) =

{

e−λt if 1 ≤ t ≤ q
∑

t>q e
−λt K(t)

K(⋆) if t = ⋆.

Then

E(e−λ
τβ,xk(β)

k(β) ) = µ0φ
xk(β)
β (

λ

k(β)
)1

where µ0 is the initial law of the modulating Markov chain. Define also

m(t) =

{

t if 1 ≤ t ≤ q
∑

t>q t
K(t)
K(⋆)

Then ϕt(λ) = 1− λm(t)(1 + oλ(1)) and Q̃∗
β = Q̃∗

0 + Aβ2(1 + oβ(1)), with

A1 = 0, (28)

so there exists a matrix ǫβ(λ) = oβ(1) for all λ ≥ 0 so that

φβ(λaβ
2) = Q̃∗

0 + β2(A− λaM) + β2ǫβ(λ), (29)

where M(x, y) = m(yq)Q̃
∗
0(x, y) and

M1 = m1. (30)

Notice that from (28) and (30) we have for all k ≥ 0,

µ0(Q̃
∗
0 + β2(A− aλM))k1 = (1 − aλmβ2)k (31)

and if we choose k = k(β) = 1
aβ2 and make β tend to 0, the right-hand side

of (31) converges to e−
λx
m , which is the limit we want to obtain. It remains to

control the remainder term. Let

Rβ,n(λ) = µ0

(

φn
β(λaβ

2)− (Q̃∗
0 + β2(A− aλM))n

)

1.

From (29), for all λ ≥ 0 there exists c > 0 such that

|Rβ,n(λ)| ≤
n
∑

k=1

Ck
n(1 + cβ2)n−k(β2 max

x,y∈Eq
|ǫβ(x, y)|)k

= (1 + cβ2 + β2‖ǫβ‖)n − (1 + cβ2)n

and if we set n = x/(aβ2), the two terms will tend to the same quantity as β
tends to 0.

We make a brief summary of the proof in the case α > 1. Uniformly in β ≤ β0

(for any β0): set h = ha
c (β) + aβ2 and choose a small and γ close to one so that

(1 + α)γ − 1 > 1 and Lemma 4.2 holds. Again, if necessary, take a even smaller
so that S2 is small and R large enough to make S1 small. All in all, ̺ is smaller
than 1 so with Lemma 4.1 we can conclude that F (β, ha

c (β) + aβ2) = 0.
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4.3. Case 1

2
< α < 1

The proof is similar to the one in [7] and relies on Lemma 4.6 and Lemma 4.7,
so we focus on the modifications that are necessary in our case. Let us choose
ǫ > 0 small enough and γ in (0, 1), close enough to 1, so that

γ

{

(1 + α) + (1− ǫ2)(1 − α+
ǫ

2
(α− 1

2
))

}

> 2

and
γ
{

(1 + α) + (1− ǫ2)(1 − α)
}

> 2− ǫ2. (32)

We suppose that h = ha
c (β) + ∆ with ∆ = aβ

2α
2α−1 (1+ǫ), β ≤ β0 for some

β0 > 0, and we choose for k the value k(β) = 1
Fa(β,ha

c (β)+∆) . We decom-

pose the sum in (24) into the sum of S1 :=
∑k1−ǫ2

l=0
L2(k−j)Aj

(k−j)(1+α)γ−1 and S2 :=
∑k−1

j=k1−ǫ2+1

L2(k−j)Aj

(k−j)(1+α)γ−1 , which are made small using two lemmas:

Lemma 4.6. There exists c such that for all ∆ ∈ (0, 1), for all j ≤ 1
Fa(β,ha

c (β)+∆) ,

we have
Za
j,β,ha

c (β)+∆ ≤ c

j1−αL(j)
.

Lemma 4.7. There exists ǫ0 > 0 such that for all ǫ ≤ ǫ0

Ej, 1√
j

[

Zj,β,ha
c (β)+

1
k(β)

]

≤ c

j1−α+( ǫ
2 )(α− 1

2 )

for a constant c which depends on ǫ but not on β nor α, uniformly in β ∈ [0, β0]

and j ∈ [k1−ǫ2 , k].

With these lemmas, we conclude as follows : using the boundAj ≤ (Za
j,β,ha

c (β)+∆)
γ

(by Jensen inequality) and Lemma 4.6, we may write

S1 ≤ L3(k)

k(1+α)γ−1

1

k(1−ǫ2)((1−α)γ−1)
,

which can be made small using (32) and by taking a small. As for S2 we write

Aj ≤
[

Ej, 1√
j
(Zj)

]γ

exp(
cγ

1− γ
)

(see Lemma 4.4) and use Lemma 4.7 to see that

Aj ≤
c

j(1−α+ ǫ
2 (α− 1

2 ))γ
.

This is enough to make S2 small.
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Proof of Lemma 4.6. It is enough to show that

sup
N

Eβ

(

exp(
c

Nα
|τ ∩ {1, . . . , N}|)|N ∈ τ

)

≤ ∞. (33)

First we prove that

sup
N

Eβ

(

exp
( c

Nα
|τ ∩ {1, . . . , N}|

))

< +∞ (34)

We have Pβ(
|τ∩{1,...,N}|

Nα > t) ≤ Pβ(τn ≤ N) where n = ⌊tNα⌋. By Markov
inequality, this is smaller than eλNEβ(exp(−λτn)) for all λ ≥ 0. Then, there
exist a constant c such that Eβ(exp(−λτn)) ≤ cφ(λ)n, where φ(λ) is the Perron-
Frobenius eigenvalue of the matrix Aβ(λ) which is defined by Aβ(λ)(x, y) =

Q̃∗
β(x, y)e

−λyq if 1 ≤ yq ≤ q and Aβ(λ)(x, y) = Q̃∗
β(x, y)

(

∑

n>q e
−λnK(n)

K(⋆)

)

if

yq = ⋆. Moreover, by the tail behaviour of K(·), there exists λ0 and a constant c′

such that for all λ ≤ λ0, φ(λ) ≤ exp(−c′λα). Therefore, Pβ(
|τ∩{1,...,N}|

Nα > t) ≤
eλN−c′nλα

, which is smaller than a constant times e−c′c′′t if we choose λ = c′′

N .
If we take c′′ large enough, the proof of (34) is complete since

Eβ(exp(
c

Nα
|τ ∩ {1, . . . , N}|)) = 1 + c

∫ ∞

0

ectPβ

( |τ ∩ {1, . . . , N}|
Nα

> t

)

dt.

To go from (34) to (33), we use [7, (A.14)-(A.20)], except that in (A.14) we
need to decompose not only on the value of XN but also on the value of the
modulating Markov chain at XN .

Proof of Lemma 4.7. It is enough to generalize [7, Proposition A.2] to the law
Pβ ; see proof of [7, Lemma 4.2]. To do so, we have to decompose the partition
function in [7, (A.9)] according to the cardinality of τ ∩ {1, . . . , N} and the
state of the modulating Markov chain at N . Then the proof follows by applying

estimates [7, (A.7) and (A.8)] to the renewals (τ
(x)
n )n≥0, where for all x in Eq,

τ (x) := {τn : n ≥ q, T
∗
n−q = x}.
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