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ABSTRACT

Burst-type signals constitute an important class of transient
signals, being used especially in the investigation of various
physical environments by electric or acoustic means. An im-
portant issue in the analysis of this type of signals is theirde-
tection in time. In this paper, we propose a detection method
that is based on the histogram of the phase space distributed
over time. The method consists in representing the analyzed
signal in phase space and, then, quantifying the recurrences of
the trajectory obtained in this space. In this way, we derivea
time - recurrence radius representation for the signal, that al-
lows identification of positions and durations of the transients.
Afterwards, we propose a method to obtain a detection curve
starting from this representation of the signal. We also present
here some results concerning the performance of our method
in the presence of noise on both synthetic and real signals.

Index Terms— Transient signals, phase space represen-
tation, recurrence plot, detection curve

1. INTRODUCTION

Transient signals are generally characterized by very short du-
rations over the observation and they often indicate abrupt
changes or unstable states in the operation of the system that
is being studied. In this paper, we deal with a particular case
of transient signals, namely burst signals consisting in pulses
or short oscillations. Such signals are encountered in the in-
vestigation of various physical environments using ultrasonic
or electric signals. The general approach of such applications
consists in transmitting a short signal in the environment to
be investigated. This signal usually consists in a pulse (e.g.
Gaussian pulse) or an oscillation (e.g. sine, chirp). The prop-
agated signal is then recorded and analyzed, in order to detect
changes from the original.

The analysis of transient signals addresses two issues: de-
tection (that consists in identifying the time intervals where
transients are present in the anlyzed signal) and characteriza-
tion (that consists in identifying the characteristic parameters
of these transients (e.g. envelope, frequency band, shape,zero
crossing rate, energy)). In this work, only the detection issue

is addressed. Some of the transient signal detection methods
(e.g. based on spectrogram, wavelets, complex-time distribu-
tion [1]) [2] provide the detection curve from a representa-
tion of the signal in a transformed space – that is represented,
most often, by the time-frequency plane [3]. In this paper
we propose a detection method based on a representation of
the analyzed signal in the time - recurrence radius plane. We
start (section 2) by discussing the idea of time-distributing the
histogram of the signal and showing its potential in detecting
transient signals. We continue (section 3) with improving this
idea by first representing the signal in phase space and then
computing the local recurrence rate, thus obtaining the time-
distributed phase space histogram (TDPSH) of the signal. We
present then (section 4) a method to obtain a detection curve
from the TDPSH and then we show some results (section 5).
We conclude the paper (section 6) by pointing out conclusions
and directions for future research in this area.

2. TIME-DISTRIBUTED HISTOGRAM

The histogram of a signal is obtained by dividing the range of
signal values in a chosen number of (non-overlapping) bins
and by summing for each bin the number of samples whose
values lie inside it. However, this gives only global informa-
tion about the signal, without any time information. This can
be solved by replacing every signal sample with the histogram
value corresponding to the bin where the value of that sample
lies. We obtain thus a time-distributed histogram (TDH):

TDH(ε)(t) = hist(ε) (s(t)) , (1)

wheres is the signal, andhist(ε) is its histogram, computed
using bins of sizeε.

The potential use of the TDH is illustrated in Figure 1.(a),
for a test signal composed of two Gaussian pulses and an
exponentially decaying sinusoidal oscillation (plus a 15dB
noise). The figure illustrates the variation ofTDH(ε) for
some range of the parameterε. During the time intervals
where transients are present, the density of vertical blacklines
in the imageTDH(ε)(t) increases, which allows a fairly good
visual detection of these transients. If, on the other hand,the
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Fig. 1. (a) TDH for a test signal composed of three transients,
plus a 15dB noise. (b) TDH for noise.

analyzed signal only contains noise (Figure 1.(b)), the visual
inspection of the TDH does not reveal any transient signals.

In the following section we show that extending the idea
of TDH in phase space leads to at-ε representation that has a
better noise robustness, providing thus a more precise detec-
tion of transients.

3. TIME-DISTRIBUTED PHASE SPACE
HISTOGRAM

Representing a time series (and, in particular, a signal) in
phase space is discussed in various papers in literature [4,5].
We will use a representation obtained by the method of de-
lays, that consists in transforming the signals into an ordered
set of vectors (describing a trajectory in phase space) obtained
by:

~vi = (s(t), s(t + d), ..., s(t + (m − 1)d)) , (2)

wherem is the dimension of the phase space used for repre-
senting the signal andd is the time delay between two suc-
cessive components of such a vector. Discussion concern-
ing these two parameters and the way they affect the appear-
ance of the trajectory, as well as various methods for choosing
them, can be found in [6]. An intensively studied method [7]
to analyze this phase space trajectory is the recurrence matrix,
that is computed with:

R
(m,d,ε)
i,j = Θ (ε − ||~vi − ~vj ||) , (3)

whereΘ is the Heaviside step function,ε is the recurrence
radius, and||·|| is a norm that we associate to the phase space.

As a value of 1 inR(m,d,ε)
i,j means that~vj lies in the neigh-

bourhood of~vi, summing afterj the elements of the matrix
R(m,d,ε) would have for pointi the signification of ”the num-
ber of vectors that are in the neighbourhoodof~vi”. We call the
function thus obtained (followed by a normalization) time-
distributed phase space histogram (TDPSH). Its mathematical
expression is:

TDPSH
(ε)
(m,d)(t) =

1

M

M∑

j=1

R
(m,d,ε)
i,j , (4)
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Fig. 2. (a) TDPSH with m = 1 and (b) TDPSH with m = 3 and
d = 15, for the test signal in Figure 1.(a).

whereM = N − (m − 1)d, N being the number of sam-
ples in the original signal. (We must note that by representing
the signal in phase space the time coordinate does not remain
exactly the same, as each pointt in TDPSH

(ε)
(m,d)(t) does

not correspond to a certain time instant, but to an entire time
interval, having a size of1 + (m − 1)d.)

In the case of representing the signal in a mono-dimension-
al phase space (i.e. withm = 1), R

(m,d,ε)
i,j becomes:

R
(1,d,ε)
i,j = Θ (ε − |s(i) − s(j)|) . (5)

Therefore, the neighbourhood of points(i) is an interval
of length 2ε, having its center in the values(i). Under
these conditions, the similarity betweenTDH(ε)(t) and

TDPSH
(ε)
(m,d)(t) (for fixed values ofm andd) is clear. The

second has the main advantage of being less sensitive to noise
than the first one. Figure 2 illustrates this, for the same test
signal used in Figure 1.(a). This figure also shows that the
choice of them andd parameters is important. The bottom
figure (Figure 2.(b)) shows that form = 3 andd = 15 the
representation in the time - recurrence radius plane allowsa
better time localization of the transients.

We have shown so far that the time - recurrence radius
representation given by the image ofTDPSH

(ε)
(m,d)(t) that is

obtained for fixed values of the parametersm andd allows a
good visual detection of the transient signals. In the following
section we propose a method to process this image in order to
build a detection curve.
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Fig. 3. Detection with TDPSH. (a) The test signal. (b)
TDPSH computed forε = εopt and rescaled. (c) The fi-
nal detection curve (obtained usingm = 3, d = 15, and
wfilt = 30).

4. DETECTION USING TDPSH

The detection algorithm we propose involves the following
steps:

• Choose from the imageTDPSH
(ε)
(m,d)(t) the horizon-

tal line (L) corresponding toε = εopt, where:

εopt =
1

M − 1

M−1∑

i=1

||~vi+1 − ~vi||. (6)

(We obtained the value ofεopt empirically.)

• RescaleL, by dividing it to its maximum value:L =
L/ max(L).

• ComplementL: C = 1 − L.

• Compute the envelopes ofC (i.e. Anvmin andAnvmax)
by linear interpolation of the local minima and maxima,
respectively.

• Compute the median-filtered version ofC: Cf =
filtmed(C), using a window of sizewfilt.
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Fig. 4. The detection curve obtained with the TDPSH method
(using the same parameters as in Figure 3), for a range of
SNRs.
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Fig. 5. (a) ROC curves for detection using the method based
on TDPSH. (b) ROC curves for detection based on the spec-
trogram.

• Compute the detection curve so that:Cdet = Anvmin

whenCf < 0.5, andCdet = Anvmax whenCf ≥ 0.5.

• Obtain the final detection curve by a median filter-
ing of Cdet (using a window of sizewfilt): Cdet =
filtmed(Cdet).

As can be noticed from this description, before using the
method the following three parameters must first be chosen:
m, d, andwfilt.

5. RESULTS

In Figure 3 we illustrate the application of the method we
proposed in the previous section, for the signal in Figure 1.(a).
Figure 4 shows what happens to this detection curve as the
noise level increases (i.e the signal-to-noise ratio (SNR)takes
values from 30 dB to -20dB).

A quantitative view on the method is offered by the re-
ceiver operating characteristic (ROC) curves shown in Fig-
ure 5. This figure shows, for comparison purposes, also the
ROC curves that we obtained for a detection using the spec-
trogram, on the same signal.
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Fig. 6. Some real signals and the corresponding detection
curves.m is 3 for all three figures, andd is: (a) 15, (b) 5, (c)
2. wfilt = 30 for all three figures.

We have shown so far how our method behaves for a syn-
thetic signal. Figure 6 shows its behavior when it comes
to detecting transients in a real signal. These signals were
measured during experiments conducted in collaboration with
Electricité de France [2].

We point out that them andd parameters have been cho-
sen separately in each case, based on empirical criteria. We
noticed that a value of 3 (or sometimes even 2 or 1) form is
enough for detecting transients having a fairly simple shape,
i.e. without highly irregular oscillations. This is because the
trajectory that corresponds to such transients is usually asim-
ple curve, without many loops and returns. Thed parameter
has been chosen so that the trajectory be as wide as possi-
ble. In the same time, we wantedd to be as small as possible
(in order to allow a better time localization of the phase space
vectors). Therefore, we have chosend by using visual criteria.
For the median filtering involved by the algorithm we used a
window of lengthwfilt = 30. The optimal choice forwfilt

should take into account the minimum expected duration of
the transients to be detected.

6. CONCLUSION

We proposed in this paper a new method for transient signal
detection. The method is based on representing the analyzed
signal in phase space and counting the number of recurrences

that correspond to each point of the trajectory. We obtained
thus a bi-dimensional representation for the signal, by plotting
in the time - recurrence radius plane the local recurrence rate
of the trajectory. This representation, that is in fact a general-
ized and improved version of the time-distributed histogram
of the signal, allows a good visual detection of the transients.
We proposed an empirical method to perform this detection
task automatically.

Further, we are planning to develop a technique for deter-
mining the optimum phase space representation parameters,
as they affect the performance of our method. The optimum
choice for the size of the window to be used in the filtering of
the detection curve is also important. Another research direc-
tion consists in experimenting with other phase space repre-
sentation techniques (e.g. singular value decomposition).
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