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ERGODICITY OF CERTAIN COCYCLES OVER CERTAIN INTERVAL EXCHANGES

We show that for odd-valued piecewise-constant skew products over a certain two parameter family of interval exchanges, the skew product is ergodic for a full-measure choice of parameters.

Introduction and background

Z-valued (or more generally G-valued where G is a locally compact group) skew products are a natural construction of infinite-measure preserving transformations using ergodic sums over a finite-measure preserving transformation. For a thorough overview of constructing skew products over irrational rotations, see [START_REF] Conze | Recurrence, ergodicity and invariant measures for cocycles over a rotation[END_REF]. The natural generalization of an irrational rotation is an interval exchange transformation; recent work in studying generic skew products over generic interval exchanges may be found in [1], where the authors establish ergodicity of skew products for step functions over generic interval exchanges. We present here an alternate 'hands-on' approach to prove generic ergodicity for one specific construction.

Let X = S 1 × {0, 1, . . . , k -1}, endowed with Lebesgue measure µ (scaled so µ(X) = k), and assume that k = 1 mod 2. Let T be a map on X defined by (1) T (x, ℓ) = (x + α) mod 1, (ℓ + I(x)) mod k ,

where I(x) is the characteristic function of an interval of length β, and α is irrational; {X, T } is a Z/kZ-valued skew product (in fact a cyclic extension) of the irrational rotation by α. Let f be an integer-valued function on X. The skew products we will consider are given by

T f (x, ℓ, m) = (x + α) mod 1, (ℓ + I(x)) mod k, m + f (x, ℓ) .
Denote by S m (x, ℓ) the Z-coordinate of T m f (x, ℓ, 0):

S m (x, ℓ) = m-1 i=0 f (T i (x, ℓ)).
Note that {X × Z, T f } will not in general itself be a skew product over rotation by α, as f (x, ℓ) is not independent of ℓ. We assume that f is of mean zero, and assume further that f is piecewise constant on finitely many intervals; let Var(f ) be the sum over ℓ of the (finite) variations of f restricted to each S for convenience we furthermore assume that I and f are right-continuous; they are defined using intervals closed on the left and open on the right.

An integer E is an essential value of our skew product if for every A ⊂ X of positive measure, there is some i such that

µ A ∩ T i A ∩ {(x, ℓ) : S i (x, ℓ) = E} > 0.
If E is an essential value, the skew product is ergodic if and only if the skew product given by f into Z/(EZ) is ergodic.

We will use Koksma's inequality: let P be a partition of S 1 into q intervals of equal length, let f be real-valued, of bounded variation on S 1 , and suppose that x 1 through x n are chosen such that each interval of P contains exactly one x m . Then

n m=1 f (x m ) -n S 1 f (x)dx ≤ Var(f ).
Our interval exchanges are characterized by two choices: α and β.

Theorem 1.1. Let f take only odd values, and assume that not every value of f is a multiple of the same number. Then the set of α, β for which the skew product is ergodic is of full measure.

Proof

Lemma 2.1. Let f take integer values (not necessarily odd) and assume that not every value of f is a multiple of the same number. Further let β ∈ (0, 1) be fixed, and assume there is some finite, nonzero E ∈ Z which is an essential value of the skew product {X × Z, T f }. Then the set of α for which the skew product is ergodic is of full measure.

Proof. Suppose that β is fixed and not zero. We can construct a compact, connected translation surface M and a cross-section X so that the the first return map to X of the geodesic flow in the direction with slope 1/α is T given by (1) for the parameters α, β.

β i iii β ii i β iii ii Figure 1. The translation surface M for k = 3 and I(s) = 1 [0,β).
The unlabeled sides are identifies to the opposite side in the same square, the other identifications are given by roman numbers. The cross-section X × {0, 1, 2} consists of the bottom of the three squares. The flow in the vertical direction corresponds to α = 0.

By [START_REF] Kerckhoff | Ergodicity of billiard flows and quadratic differentials[END_REF], the system {X, µ, T } is (uniquely) ergodic for almost every choice of α. Now let X ′ = X × {0, 1, . . . , E -1}, with the identification

(x, ℓ, k) ∼ (x, ℓ, k + f (x, ℓ) mod E)
for each (x, ℓ) ∈ X. This identification corresponds to gluing together E disjoint copies of M via the values given by f , taken modulo E; denote this new surface by M ′ . So long as M ′ is connected, the results of [START_REF] Kerckhoff | Ergodicity of billiard flows and quadratic differentials[END_REF] still apply, and the transformation

S ′ (x, ℓ, k) = (x + α mod 1, ℓ + I(x), k + f (x, ℓ) mod E)
is uniquely ergodic for almost every choice of α. The assumption that the values of f generate Z exactly ensure that M ′ is connected via Bézout's Lemma: the values taken by f on each X ×{j} do not depend on the choice of j ∈ {0, 1, . . . , E -1}, and there is no single common divisor for the set of values taken by f , so we may freely pass from one copy of M to another via the values of f to generate any integer value. Ergodicity of the skew product for each α such that this finite system is ergodic then follows as E was assumed to be an essential value of {X × Z, µ × dz, T f }.

The effect of Lemma 2.1 is to reduce our problem to the existence of a single nonzero, finite essential value for generic choice of β. We now re-introduce the assumption that the values of f are all odd (and still not multiples of the same number). Let α be irrational with continued fraction expansion

α = [a 1 , a 2 , . . .] = 1 a 1 + 1 a 2 + 1 . . .
where each a m is a positive integer; an excellent reference for the theory of continued fractions is [START_REF] Ya | Continued fractions[END_REF]. Denote by p n /q n the convergents to α, and by • the distance to the nearest integer. Then it is well-known that (2)

q n q n α ≤ 1 a n+1
.

On X we also use • for distance, with the convention that if ℓ = ℓ ′ , (x, ℓ) -(y, ℓ ′ ) = 1. We denote by Q n (T ) the periodic approximation to T given by

Q n (x, ℓ) = x + p n q n mod 1, ℓ + I(x) mod k .
Definition 2.2. A point x ∈ X will be called n-good for rational approximation if for all i = 0, 1, . . . , kq n -1 we have

f (T i x) = f (Q i n (x)), I(T i x) = I(Q i n x).
That is, as far as the functions f and I are concerned, through time kq n we may replace the orbit of x under T with the orbit of x under Q n . Definition 2.3. A point x ∈ X will be called n-spread out if the set {T i (x)}, i = 0, 1, . . . , kq n -1, has the property that

• there are exactly q n points in each S 1 × {ℓ}, and • for each ℓ, there is a partition of S 1 × {ℓ} into disjoint intervals of length 1/q n such that there is exactly one of the T i x in each partition element.

Lemma 2.4. Suppose that x is n-spread out. Then

kqn-1 i=0 f (T i x) ≤ Var(f ).
Proof. The restriction of the orbit of x to each S 1 × {ℓ} may be summed separately, and the n-spread out assumption allows us to use Koksma's inequality on each S 1 × {ℓ}.

Let D = {d 1 , . . . , d N } be the projection of all discontinuities of f onto S 1 together with the discontinuities of I(x). For n = 0 mod 2 define

A n =   S 1 \   kqn-1 i=0 N j=1 d j -k q n α -iα, d j -iα     × {1, 2, . . . , k},
while for n = 1 mod 2 we use the intervals

d j -iα, d j + k q n α -iα .
Lemma 2.5. Each x ∈ A n is n-good for rational approximation, and

µ(A n ) ≥ k 1 -k 2 N q n q n α ≥ k 1 - k 2 N a n+1 .
Proof. The first inequality is elementary (assume all removed intervals are disjoint), and the final inequality is simply due to (2); the only content to prove is that x ∈ A n implies that x is n-good for rational approximation. Suppose that n = 0 mod 2 so that p n /q n > α. Let x ∈ A n ; there is no i < kq n such that

x + iα ∈ [d j -k q n α , d j ) .
The distance between x + iα and x + ip n /q n is no larger than k q n α , so we cannot have x + iα < d j ≤ x + i p n q n for any i, j. As p n /q n > α, this completes the proof for n = 0 mod 2. For n = 1 mod 2 the process is identical, but we remove intervals from the other side of the discontinuities d j , and p n /q n < α.

Definition 2.6. The action of T kqn on A is nearly-rigid if x -T kqn (x) ≤ k q n α for all x ∈ A.

Lemma 2.7. The action of T kqn on A n is nearly-rigid.

Proof. Through time q n the point x orbits into the interval defining I(x) some number of times. Under Q n , however, x has returned exactly to the same S 1 coordinate. Over the next q n times, the orbit of x will therefore intersect this interval the same number of times (recall that I(x, ℓ) is independent of ℓ), and so on for each q n steps in the orbit. Whatever this number of intersections is, once we have applied Q n a total of kq n times, the total number of points in these intervals must be zero modulo k: Q kqn n (x) = x. As x ∈ A n , we certainly have T kqn (x) belonging to the same copy of S 1 as x, then, and the distance in S 1 between x and T kqn (x) is equal to kq n α , which is no larger than k q n α .

Definition 2.8. The set A is nearly invariant under T if µ(A△T (A)) ≤ 2k 2 N q n α .
Lemma 2.9. The set A n is nearly invariant under T .

Proof. Recall that A n is constructed by removing successive preimages of kN different intervals of length k q n α (N such intervals in each copy of S 1 ). Therefore A n △T (A n ) at most consists of the first image of these intervals and the next preimage.

Define

σ n (x) = qn-1 i=0 I x + i q n mod 1 . Note that if x ∈ A n , then σ n (x) = qn-1 i=0 I(T i x). Lemma 2.10. If x ∈ A n , a n+1 ≥ k, and σ n (x) is relatively prime to k, then x is n-spread out.
Proof. Note that σ n (x) is exactly the number of times through time q n that I(Q i n x) = 1. By the assumption that x ∈ A n , this is also the number of times that T i x will orbit into this interval, and furthermore this number will be repeated for each successive length-q n segment of the orbit we consider:

x ∈ A n =⇒ σ n (x) = σ n (T qn x) = . . . = σ n (T (k-1)qn x).
As σ n (x) was assumed to be relatively prime to k (i.e. σ n (x) generates Z/kZ), it follows that for each i = 0, 1, . . . , q n -1, each of

{T i+ℓqn (x)} (ℓ = 0, 1, . . . , k -1)
belongs to a different copy of S 1 . Finally, the assumption that a n+1 ≥ k implies (again via (2)) that k q n α < 1 q n , so the intervals [x + i/q n , x + (i + 1)/q n ) in each circle (if n = 0 mod 2; for n = 1 mod 2 reverse which end is closed versus open) each contain one element of the orbit.

Lemma 2.11. For all x, σ n (x) ∈ {M, M + 1}, where M = [q n β], the integer part of q n β.

Proof. The number M is the minimum number of abutting intervals of length 1/q n (closed on the left, open on the right, say) which will always be completely contained within an interval of length β:

M q n ≤ β < M + 1 q n .
For any x, then, there are at least M successive I(x + i/q n ) = 1. On the other hand, as (M + 1)/q n > β, no x may have σ n (x) ≥ M + 2.

Definition 2.12. If T kqn is nearly rigid and there is some ǫ > 0 such that µ(A n ) ≥ ǫ then T is called quasi-rigid and the A n are called quasi-rigidity sets.

Corollary 2.13. Suppose that for infinitely many n we have

• a n+1 > k 2 N , • q n = 1 mod 2, • σ n (x) is relatively prime to k for all x ∈ X.
Then there is a finite nonzero essential value.

Proof. The assumption that a n+1 > k 2 N implies that the A n are quasi-rigidity sets (via Lemmas 2.5 and 2.7). That σ n (x) is relatively prime to k ensures that for each x ∈ A n , x is n-spread out, so by applying the Koksma inequality there is a uniform bound on the absolute value of the ergodic sums on A n . We therefore apply [2, Corollary 2.6] (utilizing that the A n are quasi-rigid and nearly invariant, which we have already established) to find an essential value (possibly zero) for the skew product; in short, as there is an upper bound on the sums from Koksma's inequality, we may pass to a sequence of subsets along which a single value is seen, and this value is therefore an essential value. As kq n is odd and f takes only odd values, it follows that for all x ∈ A n we must have

kqn-1 i=0 f (T i f (x)) ≥ 1,
so therefore the essential value we have found in this manner is not zero.

It is therefore of interest to determine when σ n (x) is relatively prime to k.

Lemma 2.14. Let {m i } be an unbounded sequence of integers, and let k be a positive integer. Then for each residue class j mod k, for almost every θ the equality

[m i θ] = j mod k
is satisfied for infinitely many i.

Proof. Without loss of generality, assume that {m i } are unbounded above, and by passing to a subsequence, we may assume that the m i are superlacunary:

lim i→∞ m i+1 m i = ∞.
Also, without loss of generality assume θ ∈ [0, 1], and define the random variable

X i (θ) = [m i θ] mod k.
Suppose that X i-1 (θ) = R, so that for some M we have

θ = R + M k m i-1 + {m i-1 θ} m i-1 ,
where {x} denotes the fractional part of x. The residue class of [m i θ], then, is determined by the residue class of R ′ , where

θ ∈ R ′ m i , R ′ + 1 m i .
As the {m i } are superlacunary, the number of intervals of length 1/m i within an interval of length 1/m i-1 diverges, from which it follows that lim i→∞ P (X i+1 = j|X i ) = 1 k for each residue class j. So along this superlacunary subsequence, for generic θ the sequence [m i θ] is uniformly distributed among the residue classes, from which the lemma trivially follows.

Corollary 2.15. For almost every choice of α, β, there are infinitely many n such that such that a n+1 > k 2 N , q n = 1 mod 2, and [q n β] = 1 mod k.

Proof. For generic α there are infinitely many pairs a n+1 , a n+2 of arbitrarily large partial quotients, and no two consecutive q n , q n+1 may be even, so the first two conditions are trivially satisfied. The {q n } are an increasing sequence of integers, so by Lemma 2.14, for almost every β arbitrary residue classes of [t m β] modulo any fixed k are achieved infinitely many times. This completes the proof of ergodicity: for generic choice of α, β the skew product will have a nonzero essential value E by Corollary 2.13 (as k is odd, both one and two are relatively prime to k). By Lemma 2.1, this suffices for generic ergodicity.
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