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The work presented in this paper is concerned with the fundamental study of a damage detection

principle in a reverberant medium, based on ambient acoustic noise correlation. The aim here is to

theoretically investigate the sensitivity of the correlation of received signals to a local defect. The

acoustic reverberation in the medium is modeled by a random process and an empirical description

of the defect behavior is deduced from its experimental characterization. A global parameter r,
corresponding to the energy ratio between the change in the correlation function caused by the

defect and the defect-free correlation, is defined and theoretically derived. It is shown to essentially

depend on the reverberation properties of the medium and the relative positions of the noise source,

the sensor(s) and the defect. The theoretical expression of r is experimentally validated in a particular

2D-case (metallic plate) and then used to define the detection range and the optimal placements of

the sensors. VC 2011 American Institute of Physics. [doi:10.1063/1.3652907]

I. INTRODUCTION

Recent trends in theoretical research on acoustic

imaging1–5 are concerned with the means of performing

imaging in complex media, where the time-of-flights of

waves are not distin guishable and thus conventional imaging

algorithms are not applicable. The bonus idea in this case is

to increase the sensitivity and the spatial range of the tech-

nique by exploiting the whole “diffuse” signals rather than a

few temporally localized echoes. Indeed, even a moderate

local modification of the medium properties will result in sig-

nificant changes in a multipaths wave propagation. The ex-

ploitation of such ideas has given birth to a range of

techniques known as coda-wave interferometry or diffusing

wave spectroscopy, first developed in optics and later trans-

posed to acoustic waves.6 In practice, signal cross-correlation

is used to compare the waves in the reference-state medium

and the waves, generated in the same conditions, in the modi-

fied medium.7,8 These techniques have been successfully

applied to geophysical applications9,10 and to ultrasound in

reverberant media.11,12

Besides, many recent studies in various application

domains such as underwater acoustics13–16 and seismology17–19

have shown the potential of extracting information about a

given medium through exploitation of the natural ambient

acoustic noise present in this medium. Theoretically, in the

presence of a perfectly diffuse field (spatial and temporal uni-

formity), it is possible to retrieve the Green’s function between

two points by cross-correlating the signals received simultane-

ously at these points.20–23 Structural health monitoring (SHM)

is a more recently investigated application of this principle.24–27

In particular, aeronautical structures may be good candidates

for such application, since they are subject to intense acoustic

noise sources during service (engines, air friction, or local aero-

acoustic effects). The work presented in this paper primarily

belongs —but might not be limited —to this context.

One of the difficult points in ambient noise correlation

techniques is the extreme sensitivity to the actual acoustic

field conditions. In the hypothetical case of a perfectly dif-

fuse field, the obtained correlation functions only depend on

the structural properties (including possible damage) of the

medium. But in other cases, the correlations are also influ-

enced by the characteristics of the acoustic sources (position,

power spectral density), which might fluctuate from one

measurement to the other. In other works, this specific prob-

lem is usually bypassed either by controlling the acoustic

sources or by artificially increasing the diffuse nature of the

field (spatial averaging, use of chaotic-shaped media,

etc.).24–26 Only a few recent studies27,28 have focused on

directly coping with the nondiffuse nature of the field. In par-

ticular, we have proposed27,29,30 the use of a “reference” sen-

sor in order to be able to identify the acoustic source

characteristics at the instant of measurement. This solution is

inspired by the impact localization technique based on one-

channel time reversal.31–33 The reverberant nature of the

propagation (considerable number of multipaths) makes

indeed the dependence of the measured signals on the source

characteristics potentially unequivocal. The principle is then

to compare the measured correlation function to a set of

baseline correlation functions stored in a database and corre-

sponding to the most frequent source configurations.

Theoretically speaking however, the multipath propaga-

tion should be affected also by a localized change (damage)

in the medium. Then the crucial point for this application is

where to place the reference sensor so that it would be as

unsensitive as possible to a damage appearing in the part of

the medium that we want to monitor (inspection area). A

very simple, first-approach empirical description based on

the general waveform aspects had been proposed in a previ-

ous work.27 It has allowed a demonstration of the feasibilitya)Electronic mail: emmanuel.moulin@univ-valenciennes.fr
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of the principle, but provided only a coarse description with

actually no firm physical justification.

A more complete and rigorous physical description is

given in this paper. The reverberation caused by the medium

boundaries is treated as a random process, which is conven-

ient for extracting a general behavior (in the form of

expected values) of the physical phenomena involved. In this

way, the envelope of the received signal can be physically

related to the medium properties, and then the influence of

the relative source, receiver and damage positions on the cor-

relation function can be explicited and precisely quantified.

This is the object of the first part of this paper. In the second

part, the results of these theoretical developments are com-

pared to measurements. Practical exploitation of the obtained

results for the SHM system design is also proposed.

II. THEORY

A. Problem settings and assumptions

Let us consider a finite-size medium with characteristic

dimensions much smaller than the acoustic absorption length.

In the experimental study presented in Sec. III, for instance,

the considered medium is an aluminum plate that might repre-

sent a part of an aeronautical shell structure. This medium is

supposed to be excited by some ambient sources. We will

consider in this study the simplified case of a single acoustic

source (S) and a single receiver (R) (Fig. 1). The following

developments will aim at theoretically quantifying the average

influence of a given defect position (D) on the realizations.

From a practical point of view, it is convenient to analyze

the obtained (wide-band) responses using time-frequency

analysis or, equivalently, by bandpass filtering in a set of dis-

crete frequency bands.27 Therefore, the problem can be judi-

ciously treated, without loss of generality, inside an arbitrary

frequency band centered on a given frequency x0. This has

the additionnal virtue of making negligible, as a first approxi-

mation, the possible dispersion effects when dealing with

guided waves.

Let sx0
be a band-limited, windowed sinusoid signal

emitted by the source, of the form sx0
ðtÞ ¼ wðtÞ sinðx0tÞ,

where wðtÞ is a windowing function (eg. a Hann window) of

duration T. The response h0ðtÞ obtained at the receiver con-

sists of the direct propagation from (S) to (R) plus an infinite

series of reflections on the medium boundaries. This process

can be described by a simple shot-noise model. Therefore, as

a first approximation, h0 can thus be considered as a

weighted sum of propagated sx0
waveforms. Dividing the

time axis into intervals of duration Dti centered on regularly

spaced instants ti, this can be expressed as:

h0ðtÞ ¼
X1
i¼1

jiAisx0
ðt� tiÞ; (1)

where ji is the number of wavepackets arriving within the

ith time interval and Ai ¼ AðtiÞ is an amplitude term depend-

ing on the propagation distance (or, equivalently, the propa-

gation time). This amplitude is associated both to the

exponential decrease caused by losses during propagation,

with a certain time constant s, and to the two-dimensional

geometrical spreading, proportionnal to the inverse of the

square root of the propagation distance. This can be written

as AðtÞ ¼ ðK=
ffiffi
t
p
Þe�t=s, where K is an arbitrary constant that

might indifferently have different values in other frequency

bands (other x0 values). It should be noted that the propaga-

tion of a single wave type only is considered, which will be

acceptable here as it will be seen in Sec. III A.

For a given medium, the distribution of arrival times of

the wavepackets contained in h0 can be determined using the

image source method.34 In order to extract some general

trend concerning the reverberant propagation in the medium,

a particular set of the source and receiver positions can be

considered as a given realization of a random process (simi-

lar considerations can be found for instance in.35 This will be

modeled by considering ji as an integer random variable.

Assuming that the time interval Dti is small enough, every ji

is either 0 or 1, which corresponds to a nonstationary Poisson

process of characteristic parameter kðtÞ. Physically, k can be

interpreted as the average density of wavepacket arrival

times. Hence, it is directly related to the expected value of ji

in the following way:

E½ji� ¼ kðtiÞDti: (2)

It is shown in Appendix A that in a two-dimensional case, k
can be approximated by a linear function of time kðtÞ ¼ bt,
where b is a constant depending on the propagation velocity

and the medium dimensions.

Now, whenever a defect appears in the medium, the

received response is modified and can be written as

hðtÞ ¼ h0ðtÞ þ DhðtÞ. Considering the defect as a secondary

source, Dh can be expressed in a way similar to Eq. (1):

DhðtÞ ¼
X1
j¼1

j0j Bjsx0
ðt� tjÞ; (3)

with j0j the number of arrival times in an interval Dtj centered

at tj, and Bj ¼ BðtjÞ ¼ ðK0=
ffiffiffi
tj
p Þe�tj=s. K0 will be supposed

equal to K0 ¼ aK, where a then represents the response of

the defect to each incoming wave. The arrival time density

associated to Dh is noted k0ðtÞ. For an arbitrary type of

defect, k0 would be a priori unknown. We will make here the

assumption of a linear dependence with time: k0ðtÞ ¼ ctþ e.
Details on this point are given in Appendix D (available

as supplementary material37). It will be verified in Sec. III B

that this assumption effectively applies to the experimental

situation tested in this study.

As mentioned, the theoretical derivations presented in

this paper are based on some simplifying assumptions that

have proven to be reasonable. A number of them haveFIG. 1. A given realization of the experiment.
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already been discussed above, and some others will be in the

next sections. For convenience, they are all listed below:

• 2D geometry;
• single-mode propagation;
• dispersion effects neglected;
• unitary reflection coefficient at the medium boundaries;
• particular defect behavior (linear expression of k0);
• slow variations of AðtÞ and kðtÞ;
• ji and jj independent for i 6¼ j;
• ji and j0j independent for all (i; j).

B. Expected values of the received signal and the
envelope

It can be easily shown that the expected value E½h0� of

the received signal modeled here is zero. Indeed, from Eqs.

(1) and (2), the following expression is obtained:

E½h0ðtÞ� ¼
X1
i¼1

kðtiÞAisx0
ðt� tiÞDti: (4)

For very small Dti, the discrete sum can be converted

into an integral (Dti ! du). Now, remarking that sx0
ðtÞ is

zero outside the interval ½0; T� and that kðtÞ and AðtÞ vary

slowly within the duration T (see eg. Ref. 35 for a similar

assumption), a suitable change of variables yields:

E½h0ðtÞ� ’ kðtÞAðtÞ
ðT

0

sx0
ðuÞdu ¼ 0: (5)

Since the integral of sx0
is zero, E½h0ðtÞ� is zero as well.

Therefore, no interesting average behavior can be predicted

directly from the received response modeled by Eq. (1).

On the contrary, it will be seen that the envelope of h0

does not vanish by averaging over the realizations. From

Eq. (1), the complex analytic representation of h0 is given by

H0ðtÞ ¼ �j
X1
i¼1

jiAiwðt� tiÞejx0ðt�tiÞ: (6)

Assuming that the random variables ji and jj are inde-

pendent for i 6¼ j, the expected values of the square of the en-

velope of h0 can then be reduced to (see Appendix B for

detailed calculation):

E jH0ðtÞj2
h i

’ K2W2be�2t=s; (7)

where W2 ¼
Ð T

0
w2ðtÞdt.

It will be seen in Sec. III B that this relation can be used

to extract basic information on the structure, independently

on the relative source and receiver positions.

C. Influence of a localized defect

In the actually envisaged application, the sources would

generate a random acoustic noise. In that case, the received

signals would not bring directly exploitable information and

only the correlation functions would be insightful. Therefore

in this section, it is the correlations that will in fact be con-

sidered as the useful signals. The aim here is then to obtain

an estimate of the average influence of the defect’s presence

on the correlation functions, with respects to the relative

locations of the source, the receiver and the defect.

We consider the configuration defined in Fig. 1. Defin-

ing v as the group velocity, s0 ¼ d0=v and s00 ¼ ðd1 þ d2Þ=v
are respectively the direct source-receiver and source-defect-

receiver time-of-flights. In the following, s0 and s00 will be

considered known invariants of the random process, which

means that they will be kept constant for every realization.

Since the first terms of each sum of Eqs. (1) and (3) corre-

spond to these first arrival times, they will naturally be con-

sidered deterministic. Formally, let us define i0 and j0 such

that ti0 ¼ s0 and tj0 ¼ s00. Then by definition, ji ¼ 0 for

i < i0, j0j ¼ 0 for j < j0 and ji0 ¼ j0j0 ¼ 1. For i > i0 and

j > j0, ji and j0j are 0 or 1, depending on whether a wave-

packet arrives at times ti, tj or not.

Following these considerations, the expressions of h0

and Dh in Eqs. (1) and (3) are separated into deterministic

and random parts as

h0ðtÞ ¼ hD
0 ðtÞ þ hR

0 ðtÞ (8)

and

DhðtÞ ¼ DhDðtÞ þ DhRðtÞ; (9)

where hD
0 ðtÞ ¼ Aðs0Þsx0

ðt� s0Þ and DhDðtÞ ¼ Bðs00Þsx0

ðt� s00Þ are deterministic, and hR
0 ðtÞ ¼

P1
i¼i0þ1 jiAisx0

ðt� tiÞ
and DhRðtÞ ¼

P1
j¼j0þ1 j0jBjsx0

ðt� tjÞ are random.

Notating uh0h0
the autocorrelation without defect and

uhh the autocorrelation with a defect, it comes uhh ¼ uh0h0

þDu with Du ¼ uh0Dh þ uDhh0
þ uDhDh.

Considering the autocorrelation function to be the useful

signal, the average influence of the defect can then be quanti-

fied by the following parameter:

r ¼
E

ð1
�1

Du2ðtÞdt

� �

E

ð1
�1

u2
h0h0
ðtÞdt

� � : (10)

It represents the ratio between the expected value of the

energy of Du, caused by the presence of the defect, and the

expected value of the energy of uh0h0
, the autocorrelation

without defect.

Following a mathematical derivation detailed in Appen-

dix C, this parameter can be expressed as

r ¼ 2a2 P1ðsdÞ
Q

e�2sd=s þ a4 P2ðsdÞ
Q

e�4sd=s; (11)

with sd ¼ s00 � s0 and P1, P2, and Q defined in Eq. (C9),

(C10), and (C11), respectively.

Following the same general derivation, this relation can

be easily generalized to the two- receiver case:

r12 ¼ a2 P01
Q0

e�2sd2
=s þ P02

Q0
e�2sd1

=s

� �
þ a4 P03

Q0
e�2ðsd1

þsd2
Þ=s;

(12)
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where sdi
¼ s00i

� s0i
ði ¼ 1; 2Þ, with s0i

and s00i
, respectively,

the propagation times from the source to the receiver i, and

from the source to the damage to the receiver i. All details

about the derivation and the expressions of P01, P02, P03, and

Q0 are given in Appendix E (available as supplementary

material37).

III. EXPERIMENTAL VALIDATION AND EXPLOITATION

A. Experimental setup

The experimental results presented in this section have

been obtained on a rectangular aluminum plate of dimen-

sions 2� 1 m2 and 6 mm thickness. Two piezoelectric trans-

ducers (one emitter and one receiver) have been attached at

two positions of the plate surface. For practical reasons, and

to allow repetitive trials, the defect used here was an alumi-

num cylinder of 1.25 cm radius coupled on the surface using

a viscous gel. The excitation signals sx0
ðtÞ used in this sec-

tion are 10-cycle, Hanning-windowed sinusoids with fre-

quency in the range [5� 15 kHz]. The reverberation time for

the plate being of the order of 100 ms in this frequency

range, experimental signals of 500 ms-duration have been

recorded.

Considering the excitation method (surface actuation)

and the frequency-plate thickness product, only the flexural

(or A0) Lamb mode is expected. Thus the single-mode

assumption, implicit in the theoretical derivation, is correct

here.

B. Parameter estimation

Before using the theoretical expression in Eq. (11) and

compare to experimental data, the parameters s and a have

to be determined. They are related respectively to physical

properties of the medium and the behavior of the defect, and

will be experimentally estimated.

First, the experimental value of s can be estimated using

Eq. (7). Precisely, the procedure used here is a curve fitting

from a set of functions fA;sðtÞ ¼ Ae�2t=s [as suggested by

the form of the function in Eq. (7)]. The retained values of A
and s are those for which fA;sðtÞ best matches (in the least

square sense) the square of the envelope of the measured

h0ðtÞ. Concretely, we define a cost function RðA; sÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yn � fA;sðnTsÞ
� �2q

to be minimized, where yn are the

samples of the squared absolute value of the analytic repre-

sentation of the measured signal h0, computed here using the

numerical Hilbert transform implemented in the “signal”

package of GNU Octave.36 Ts is the sampling period of the

acquisition. For measurements performed on the test setup

described above, R reaches its minimum for A ¼ 5:7 � 10�7

and s ¼ 0:013 s. Note that the value of A is of no particular

interest in this study. However, both parameters cannot be

estimated separately. The result of this curve fitting is pre-

sented in Fig. 2. The measured signal h0ðtÞ is represented in

thin line and the envelope corresponding to the identified A
and s is represented in thick line.

In order to characterize the defect’s behavior, a prelimi-

nary experiment with a very specific transducers arrange-

ment has been performed. A source (S) and five receivers

regularly positioned along a semicircle (Ri) have been placed

on the plate surface (Fig. 3). The distances between the trans-

ducers have been chosen so that the first wavepacket of each

received signal is separated from the wavepackets associated

to the reflections at the plate edges.

The comparison of the signals hi ði ¼ 1;…; 5Þ received

by the set of receivers when the defect is placed at the center

of the semi-circle and the signals hi0 without the defect then

allows to get interesting empirical information about the

transmission properties of the defect. Consistently with the

definition introduced in Sec. II A, the difference signals are

notated Dhi ¼ hi � hi0 . First, the ratio of the amplitudes of

the first wavepacket of Dh1 and the first wavepacket of h10

provides an experimental value of the parameter a ’ 0:59.

Then, an estimation of the defect directivity is obtained

by plotting the relative amplitudes of the first wavepackets

of each Dhi (Fig. 4). The curve shows that the waves dif-

fracted by the defect are essentially concentrated around the

direction of incidence. This effect may be roughly quantified

by a divergence angle hD ’ 1:32 rad estimated using a clas-

sical “�3 dB criterion.”

Finally, these experimental considerations enable to

build a simple statistical model of the defect’s behavior and

thus lead to a justification of the linear expression of the ar-

rival time density k0ðtÞ defined at the end of Sec. II A and

used in the theoretical derivation of Sec. II C. All details

about this are given in Appendix D (available as supplemen-

tary material37).

It should be noted that the measurements described here

have been repeated several times, the defect being succes-

sively removed and placed again, and no significant varia-

tions of the results have been observed.

FIG. 2. Curve fitting for parameter identification.

FIG. 3. Measurement of the defect directivity.
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C. Sensitivity to defect position

The experimental estimations of the parameter r
[defined in Eq. (10)] are computed from the autocorrelations

of the received signals, according to the procedure described

below. First, the experimental received signal h0ðtÞ in the

damage-free plate is measured for fixed source and receiver

positions. Then, the received signals hðtÞ are measured for

different defect positions, randomly chosen in such a way as

to cover the plate surface, and all the autocorrelations and

energy ratios are computed. Finally, the expected values are

estimated by averaging these ratios per interval of sd.

The obtained results are presented in Fig. 5, and com-

pared to the theoretical expression given in Eq. (11). A very

satisfying agreement is obtained. This shows that the theoret-

ical developments of Sec. II C allow a correct prediction of

the evolution of the defect’s influence on the correlation as a

function of the defect’s position.

The major interest of these results is in the design of the

passive monitoring system envisaged. Considering some

threshold value rt for the sensitivity, the damage would be

considered “detectable” by a given sensor if r > rt. On the

contrary, r < rt would mean that the measured correlation

function would be virtually unaffected by the defect’s pres-

ence, and then would make the corresponding sensor a good

candidate for the source configuration identification (refer-

ence sensor).

To illustrate this on a practical case, we consider two

sensors R1 and R2 and a source S located at given (fixed)

positions of the plate. The sensitivity of the cross-correlation

to a defect of coordinates ðx; yÞ can be theoretically esti-

mated using Eq. (12). Then, by representing the value of r12

in gray level for each ðx; yÞ on the discretized plate surface

(2D-grid), a map of the sensitivity to the defect can be estab-

lished for the particular measurement configuration (Fig. 6).

Empirically, the modification of the measured correla-

tion has proven clearly observable for r > 0:1.27,29,30 Then

the level curve for the threshold value rt ¼ 0:1 has been dis-

played in thicker line. The white area inside this curve can

thus be interpreted as the “monitoring area” for sensors R1

and R2, where the occurrence of a given damage would be

detected. On the contrary, a damage appearing in the grayed

area outside this curve would be virtually undetectable.

In a similar way, a map of acceptable reference sensor

locations can be obtained using Eq. (11). We consider here a

defect (D) located approximately at the center of the moni-

toring area defined above. Now the variable coordinates

ðx; yÞ are those of a “candidate” reference sensor. The sensi-

tivity of the autocorrelation to the damage (the value of r) as

a function of ðx; yÞ is represented on Fig. 7. Here again, the

level curve for r ¼ rt is emphasized. The only acceptable

locations for the sensor are in the grayed area outside this

curve.

This provides a theoretical justification of the results al-

ready observed in Ref. 27, where the reference sensor and

the damage appear to have been located inside the areas

defined above. This naturally explains both the unequivocal

FIG. 4. Measured defect directivity.

FIG. 5. Evolution of r as a function of sd: theoretical expression (solid line)

of Eq. (11) and experimental values (dots).

FIG. 6. Definition of the monitoring area.

FIG. 7. Positioning of the reference sensor.
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detectability of the damage by the two measurement sensors

and the relative insensitivity of the third (reference) sensor.

IV. CONCLUSION AND FUTURE WORK

The results presented and discussed in this paper consti-

tute an important step toward a passive SHM system based

on ambient acoustic field correlation. The particularity here

is that the application of the principle has been demonstrated

even in nondiffuse and nonstationary field conditions.

The statistical model developed has shown how the aver-

age influence of a localized defect on the correlation functions

is guided by a limited number of parameters: the reverberation

properties of the medium, the radiation characteristics of the

damage and the relative positions of the source, the receiver

and the defect. The theoretical predictions, obtained in a

single-mode and two-dimensional propagation situation, have

been successfully confronted to measurements and their use

has been illustrated on a typical case study.

However, a lot of theoretical work has still to be done

before developing a fully functional passive SHM system. In

particular, taking into account actual scattering properties of

defects and multimode propagation would lead to a more

complete model, adapted to more general practical situa-

tions. In the same idea, dealing not only with reverberant,

but also media with scattering and even multiscattering prop-

erties could be pertinent. Such extensions of the modeling

could be very precious, in order to go beyond the mere dam-

age detection and envisage localization, characterization or

even, ultimately, imaging in a fully passive way.
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APPENDIX A: ESTIMATION OF k(t) FOR A
RECTANGULAR PLATE

Let us consider a rectangular plate of surface S (repre-

sented by the solid lines in Fig. 8). The images of the pri-

mary source (emitter position) are located according to a

periodic pattern, whose elementary cell is the dashed-line

rectangle represented in Fig. 8.34

Each image source will generate its own wavepacket

eventually arriving at the receiver. The ones located inside a

disk of radius q will then produce wavepackets arriving

before the time t ¼ q=v, where v is the group velocity of the

propagation in the medium. The number KðqÞ of these image

sources is four times the number of elementary cells included

in the disk. For q much greater than the plate dimensions, it

corresponds approximately to the ratio of the disk surface

and the plate surface:

KðqÞ ’ pq2

S (A1)

Obviously, this can also be interpreted as the number of

wavepackets arriving before time t:

KðtÞ ’ pv2t2

S (A2)

Then, the number of wavepackets arriving between t and

tþ dt is Kðtþ dtÞ � KðtÞ ¼ dK. The arrival time density k is

defined as:

kðtÞ ¼ dK
dt

(A3)

From Eq. (A2), k can then be estimated as:

kðtÞ ’ bt (A4)

with

b ¼ 2pv2

S (A5)

APPENDIX B: THEORETICAL DERIVATION OF THE
ENVELOPE OF h0

From Eq. (6), the square of the envelope of h0ðtÞ is

jH0ðtÞj2 ¼
X1
i¼1

jiAiwðt� tiÞ cos½x0ðt� tiÞ�
" #2

þ
X1
i¼1

jiAiwðt� tiÞ sin½x0ðt� tiÞ�
" #2

¼
X1
i¼1

X1
j¼1

jijjAiAjwðt� tiÞwðt� tjÞ cos½x0ðtj � tiÞ�

(B1)

Separating in the double sum above the terms with i ¼ j
and the cross-terms, and taking the expected value then yields:

E jH0ðtÞj2
h i

¼
X

i

E½j2
i �A2

i w2ðt� tiÞ

þ
X

i

X
j 6¼i

E½jijj�AiAjwðt� tiÞwðt� tjÞ

� cos½x0ðtj � tiÞ�: (B2)

FIG. 8. Image sources for a rectangular plate.
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Assuming that the random variables ji and jj are inde-

pendent for i 6¼ j and remarking that j2
i ¼ ji (since it is ei-

ther 0 or 1) the expected values in the equation above can be

simplified to

E½jijj� ¼ E½ji�E½jj� ¼ kðtiÞkðtjÞDtiDtj (B3)

for i 6¼ j, and

E½j2
i � ¼ E½ji� ¼ kðtiÞDti: (B4)

Replacing the discrete sums in Eq. (B2) by integrals

ðDti ! du;Dtj ! dvÞ then yields:

E jH0ðtÞj2
h i

¼
ðþ1

0

kðuÞA2ðuÞw2ðt� uÞdu

þ
ðþ1

0

ðþ1
0

kðuÞkðvÞAðuÞAðvÞwðt� uÞ

� wðt� vÞ cos½x0ðv� uÞ�dudv: (B5)

Using once more the fact that wðtÞ is zero outside the

interval ½0; T� and that kðtÞ and AðtÞ vary slowly, and after per-

forming the suitable change of variables, Eq. (B5) becomes

E jH0ðtÞj2
h i

’ kðtÞA2ðtÞ
ðT

0

w2ðuÞdu

þ k2ðtÞA2ðtÞ
ðT

0

ðT

0

wðuÞwðvÞ

� cos½x0ðv� uÞ�dudv: (B6)

Splitting the cosine and then separating the variables in

the double integral term above yields

ðT

0

ðT

0

wðuÞwðvÞ cos½x0ðv� uÞ�dudv

¼
ðT

0

wðtÞ cosðx0tÞdt

� �2

þ
ðT

0

wðtÞ sinðx0tÞdt

� �2

: (B7)

Typically, the window function wðtÞ could be for

instance a Hann window function expressed as

w tð Þ ¼
1� cos x0t=Ncð Þ

2
if 0 � t � T

0 if t > T

8<
: ; (B8)

where Nc is the number of sinusoid cycles.

Then, reporting the expression in Eq. (B8) into Eq. (B7),

it is easy to show that both terms are zero. Note that the

same conclusion can naturally be reached with other classi-

cal window types (rectangular, Hamming, Blackman,…) as

well. This shows that the cross-term influence may be

ignored, as already observed elsewhere.7

Therefore, Eq. (B6) simply reduces to

E jH0ðtÞj2
h i

’ kðtÞA2ðtÞW2 ¼ K2W2be�2t=s (B9)

where W2 ¼
Ð T

0
w2ðtÞdt is the energy of the windowing func-

tion (the envelope) wðtÞ of the emitted signal sx0
ðtÞ.

APPENDIX C: DERIVATION OF THE DEFECT
SENSITIVITY PARAMETER r

From Eqs. (8) and (9), the first term of Du can be

expressed as

uh0DhðtÞ ¼ Aðs0ÞBðs00Þux0
ðt� s00 þ s0Þ

þ Aðs0Þ
X1

j¼j0þ1

j0jBjux0
ðtþ s0 � tjÞ

þ Bðs00Þ
X1

i¼i0þ1

jiAiux0
ðtþ ti � s00Þ

þ
X1

i¼i0þ1

X1
j¼j0þ1

jij
0
jAiBjux0

ðtþ ti � tjÞ (C1)

where ux0
is the autocorrelation of sx0

.

In the same way that in Eq. (B6), the cross-terms once

more give vanishing contributions when taking the square of

Eq. (C1). Then, since j2
i ¼ ji and j02j ¼ j0j, the energy of the

correlation function can be written as

ðþ1
�1

u2
h0DhðtÞdt ¼ A2ðs0ÞB2ðs00Þ

ðþ1
�1

u2
x0
ðt� s00 þ s0Þdt

þ A2ðs0Þ
X

j

j0jB
2
j

ðþ1
�1

u2
x0
ðtþ s0 � tjÞdt

þ B2ðs00Þ
X

i

jiA
2
i

ðþ1
�1

u2
x0
ðtþ ti � s00Þdt

þ
X

i

X
j

jij
0
jA

2
i B2

j

ðþ1
�1

u2
x0
ðtþ ti � tjÞdt

(C2)

By performing suitable changes of variables, it is easy

to show that all integral terms in Eq. (C2) merely reduce to

the energy of the autocorrelation of sx0
, defined as

U2
x0
¼
Ð T
�T u2

x0
ðtÞdt. Then, in a similar way as in the previous

section, taking the expected value, assuming that ji and j0j
are independent, and replacing the discrete sums by integrals

yield:

E

ðþ1
�1

u2
h0DhðtÞdt

� �

¼ U2
x0

A2ðs0ÞB2ðs00Þ þ A2ðs0Þ
ðþ1

s0
0

k0ðvÞB2ðvÞdv

"

þ B2ðs00Þ
ðþ1

s0

kðuÞA2ðuÞdu

þ
ðþ1

s0

ðþ1
s0

0

kðuÞk0ðvÞA2ðuÞB2ðvÞdudv

#
: (C3)

Introducing the expressions of k and k0 established in

Appendices A and D (available as supplementary mate-

rial37), Eqs. (A4) and (D6) in Eq. (C3) yields:
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E

ðþ1
�1

u2
h0DhðtÞdt

� �
¼U2

x0
a2K4e�2ðs0þs0

0
Þ=s 1

s0s00
þ cs

2s0

þ bs
2s00

�

þ cbs2

4
� ee2s0

0
=s 1

s0

þbs
2

� �
Eið�2s00=sÞ

�
;

(C4)

where EiðxÞ ¼
Ð x
�1ðet=tÞdt is the exponential integral

function.

Once more neglecting the cross-terms, the energy ratio r
defined in Eq. (10) is then given by

r ¼
2E

ð1
�1

u2
h0DhðtÞdt

� �
þ E

ð1
�1

u2
DhDhðtÞdt

� �

E

ð1
�1

u2
h0h0
ðtÞdt

� � (C5)

Performing the same kind of calculation as from

Eqs. (C1) to (C4), the other terms E
Ðþ1
�1 u2

DhDhðtÞdt
h i

and

E
Ðþ1
�1 u2

h0h0
ðtÞdt

h i
of Eq. (C5) can be expressed as

E

ðþ1
�1

u2
DhDhðtÞdt

� �
¼ U2

x0
a4K4e�4s0

0
=s 1

s020
þ cs

s00
þ c2s2

4

�

�ee2s0
0
=s 2

s00
þ cs

� �
Eið�2s00=sÞ

þ e2e4s0
0
=sEi2ð�2s00=sÞ

i
(C6)

and

E

ðþ1
�1

u2
h0h0
ðtÞdt

� �
¼ U2

x0
K4e�4s0=s 1

s2
0

þ bs
s0

þ b2s2

4

� �
(C7)

Introducing Eqs. (C4), (C6), and (C7) into Eq. (C5) then

yields:

r ¼ 2a2 P1ðsdÞ
Q

e�2sd=s þ a4 P2ðsdÞ
Q

e�4sd=s (C8)

with

P1ðsdÞ ¼
1

s0ðs0 þ sdÞ
þ cs

2s0

þ bs
2ðs0 þ sdÞ

þ cbs2

4

� ee2ðs0þsdÞ=s 1

s0

þ bs
2

� �
Ei �2

s0 þ sd

s

	 

(C9)

P2ðsdÞ ¼
1

ðs0 þ sdÞ2
þ cs

s0 þ sd
þ c2s2

4

� ee2ðs0þsdÞ=s 2

s0 þ sd
þ cs

� �
Ei �2

s0 þ sd

s

	 

þ e2e4ðs0þsdÞ=sEi2 �2

s0 þ sd

s

	 

(C10)

and

Q ¼ 1

s2
0

þ bs
s0

þ b2s2

4
; (C11)

where sd ¼ s00 � s0.
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