
HAL Id: hal-00639905
https://hal.science/hal-00639905

Submitted on 10 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constrained periodic spacecraft relative motion using
non-negative polynomials

Georgia Deaconu, Christophe Louembet, Alain Théron

To cite this version:
Georgia Deaconu, Christophe Louembet, Alain Théron. Constrained periodic spacecraft relative mo-
tion using non-negative polynomials. American Control Conference (ACC 2012), Jun 2012, Montreal,
Canada. pp.6715-6720. �hal-00639905�

https://hal.science/hal-00639905
https://hal.archives-ouvertes.fr


Constrained periodic spacecraft relative motion using non-negative
polynomials

G. Deaconu, C. Louembet and A.Théron
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Abstract— A new method for obtaining constrained periodic
relative motion between spacecraft on Keplerian orbits is
presented. The periodic relative trajectory is required toevolve
autonomously inside a tolerance box centered in a specified
position. Unlike the classical time-sampling approaches,our
method guarantees continuous satisfaction of the constraints
on infinite horizon. This is done by reformulating the tolerance
box constraints on the relative trajectory as conditions of
non-negativity of some polynomials. The resulting problemis
solved using semi-definite programming.
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motion, non-negative polynomials, semi-definite programming,

I. INTRODUCTION

In the recent years, new rendezvous missions and prox-
imity operations between spacecraft have been considered,
including sample returns, repairing, refueling, upgrading,
and other on-orbit servicing [1]. The ability to design fuel
efficient maneuvers in order to reach naturally periodic
relative orbits, confined in a specified region in space, willbe
an important step towards the success of these missions. We
propose a new method for obtaining an open loop maneuvers
plan leading to this kind of bounded autonomous periodic
motion.

The relative motion between spacecraft on Keplerian orbits
is naturally bounded [2]. Moreover, the relative motion can
be initialized to result as periodic when viewed from a local
reference frame. In the unperturbed case, the necessary and
sufficient condition for periodicity is that the semi-major
axis of the spacecraft orbits are equal [3]. The period of
the resulting relative trajectory is then equal to the orbital
period of the spacecraft.

Using Cartesian coordinates and a local frame attached to
one of the spacecraft, Inalhan obtained in [4] a periodicity
condition at perigee, for the linearized relative motion and
for arbitrary eccentricity. This condition was then used for
spacecraft formation initialization. Inalhan’s condition was
later explicitly generalized for any true anomaly in [5],
where the effect of the eccentricity on the shape of the
periodic relative trajectory was analyzed. Gurfil wrote the
energy-matching condition for periodicity in [2], obtaining
a sixth degree polynomial equation, valid for the non linear
dynamics.

The previous conditions guarantee that the resulting rela-
tive trajectory will be periodic, without giving any insight on
its shape or its size. In [6] and [7], Gurfil and Kolshevnikov

analytically studied the minimum and maximum distances
between two spacecraft on elliptical orbits. Their method
amounts to solving an eighth degree trigonometric polyno-
mial and obtaining the true anomalies corresponding to the
extremal distances, in a worst case analysis. However, the
dimensions of the relative trajectory are highly dependenton
the initial conditions of the motion, which are not considered
in the aforementioned studies.

In [8] model predictive control (MPC) and linear program-
ming (LP) are used to design a fuel optimal maneuvers plan,
leading to autonomous periodic relative motion confined
inside a specified tolerance region. The method is based on
the propagation of the autonomous relative motion starting
at the end of the plan for one additional orbital period.
Periodicity is ensured by imposing the initial and the final
state of the autonomous motion to match. To control the
dimensions of the periodic trajectory, its inclusion in the
tolerance box is explicitly checked in a finite number of
time samples along the propagation. Because of the nature
of the orbital dynamics, an autonomous relative trajectory
that remains inside the box for one orbit and begins and
terminates at the same state is a nominal invariant set [8].
Thus attaining this kind of trajectory prevents any future
constraints violation.

The LP formulation has the advantage of providing a
general framework for minimizing fuel consumption while
including various types of state and actuator constraints
[9]. The drawback is that it cannot guarantee continuous
satisfaction of the constraints since the behavior betweenthe
time samples is not controlled.

A new method for designing a fuel optimal maneuvers
plans leading to this type of bounded periodic relative motion
is presented in this paper. This approach no longer requires
the explicit propagation of the autonomous relative trajectory
at specified time samples. It is based on the fact that the pe-
riodic motion can be represented by rational expressions. We
show that, by using these rational expressions, the dimension
constraints for the periodic trajectory can be written in terms
of non-negativity of some polynomials. The main advantage
of this method is that it guarantees constraints satisfaction
continuously in time.

The paper is organized as follows. Section II first gives
a brief description of the spacecraft relative dynamics and
their closed-form solutions. Then the linear condition used to
ensure the periodicity of the relative trajectory is presented.



Finally, the rational expressions for the propagation of the
autonomous periodic relative motion are derived. Our main
contribution is detailed in Section III, where the previously
obtained rational expressions are used to write the prob-
lem of designing a periodic relative trajectory contained
in a tolerance box as a polynomial optimization problem.
This polynomial optimization problem is transformed into
a convex semi-definite program (SDP), for which efficient
solvers are available. An always feasible formulation of the
problem is also presented, by considering the dimensions
of the tolerance box as part of the optimization variables.
The methodology is illustrated through some impulsive ren-
dezvous scenarios in Section IV.

II. RELATIVE DYNAMICS AND PERIODICITY

A. Relative Motion Modeling

Let us consider the relative motion between two spacecraft
on elliptic Keplerian orbits. The reference orbit corresponds
to the leader spacecraftM1 while the other orbit corresponds
to the follower spacecraftM2.

Consider an Earth-centered inertial (ECI) frame with the
orthonormal basisB0 = (X̄0,Ȳ0, Z̄0). The relative motion
is described in the rotating Cartesian local-vertical/local-
horizontal (LVLH) frame attached to the leader. The cor-
responding basis isB1 = (~x1,~y1,~z1), with~z1 lying along the
radius vector from the satellite to the center of the Earth,
~y1 normal to the plane defined by the position and velocity
vectors ofM1 in the ECI frame, in opposite direction to the
angular momentum, and~x1 completing the basis (Fig. 1).

Let~r =
[

x y z
]T

be the position of the follower space-
craft in the LVLH frame of the leader. The linearized relative
dynamics with respect to the orbit of the leader are described
by the well-known Tschauner-Hempel equations [10]:

ẍ = 2ν̇ ż+ ν̈z+ ν̇2x− µ
R3 x + ux

ÿ = − µ
R3 y + uy

z̈ = −2ν̇ ẋ− ν̈x + ν̇2z+2 µ
R3 z+ uz

(1)

where ν and R are the true anomaly and the norm of the
radius of the leader,µ is the gravitational parameter of the

~x1

~z1 ν

a

O ~X0

~Y0

~Z0
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M2
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Fig. 1. The local frame and the relative position of the spacecraft

Earth:

ν̇ =
√

µ
a3(1−e2)3 (1+ ecosν)2, R =

a(1− e2)

1+ ecosν
, (2)

anda ande are the semi-major axis and the eccentricity of
the leader. After replacing time as the independent variable
with the true anomaly:

d(·)

dt
=

d(·)

dν
dν
dt

= (·)′ν̇,
d2(·)

dt2 = ν̇2(·)′′ + ν̈(·)′ (3)

and scaling the variables by:
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, (4)

equations (1) become:

x̃′′ = 2z̃′ + ũx

ỹ′′ = −ỹ+ ũy

z̃′′ = 3
1+ecosν z̃−2x̃′+ ũz

(5)

In the sequel, the ˜ sign is used to mark the variables
after the variables change (4). If we define the state vector
X̃(ν) =

[

x̃(ν) ỹ(ν) z̃(ν) x̃′(ν) ỹ′(ν) z̃′(ν)
]T

and the

input vector ˜u(ν) =
[

ũx(ν) ũy(ν) ũz(ν)
]T

, system (5) can
be written as a periodic state-space model:

dX̃(ν)

dν
= Ã(ν)X̃(ν)+ B̃ ũ(ν) (6)

with:
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(7)
Starting from system (6), Yamanaka and Ankersen give in
[11] a transition matrixΦ which enables the propagation of
the relative motion starting from an initial conditioñX(ν0),
under impulsive control:

X̃(ν) = Φν
ν0

X̃(ν0)+∑
i

Φν
νi

B̃ ũi. (8)

B. Periodic motion propagation

An arbitrary stateX̃(ν0) is an initial state for a naturally
periodic motion if it is equal to the autonomously propagated
state after one period. This condition can easily be expressed
using the Yamanaka-Ankersen transition matrix:

X̃(ν0 +2π) = Φν0+2π
ν0

X̃(ν0) = X̃(ν0) (9)

After some calculations, the following periodicity condition
is obtained [5]:

x̃′(ν0) =
(2+3ecosν0 + e2)

(1+ ecosν0)2 z̃(ν0)+
esinν0

(1+ ecosν0)
z̃′(ν0).

(10)



Consideringui = 0 in (8) and assuming that the initial state
X̃(ν0) satisfies (10), the equations for the propagation of the
periodic motion can be deduced:

x̃(ν) = (2+ ecosν)(d1sinν −d2cosν)+ d3

ỹ(ν) = d4cosν + d5sinν
z̃(ν) = (1+ ecosν)(d1cosν + d2sinν)

, ν ≥ ν0

(11)
wheredi, i = 1...5 are constants linearly depending on the
initial stateX̃(ν0). Let D =

[

d1 d2 d3 d4 d5
]T

, then:

D = C(ν0)X̃(ν0) (12)

where the matrixC(ν0) is defined by:

C(ν0) =










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0 0
2ec2

0+c0−e
(1+ec0)2 0 0 − s0

1+ec0

0 0 s0(1+2ec0)

(1+ec0)2 0 0 c0
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1 0 es0(2+ec0)

(1+ec0)2 0 0 2+ec0
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0 c0 0 0 −s0 0
0 s0 0 0 c0 0

















(13)

with c0 = cosν0 and s0 = sinν0.
By replacing the true anomalyν with w ∈ R such that:

w = tan( ν
2 ), cosν =

1−w2

1+ w2 , sinν =
2w

1+ w2
(14)

a rational form for equations (11) is obtained:

x̃(w) =
px1w4 + px2w3 + px3w2 + px4w+ px5

(1+ w2)2

ỹ(w) =
py1w2 + py2w+ py3

1+ w2

z̃(w) =
pz1w4 + pz2w3 + pz3w2 + pz4w+ pz5

(1+ w2)2

(15)

DenotingPx = [px1 px2 px3 px4 px5]
T , Py = [py1 py2 py3]

T ,
Pz = [pz1 pz2 pz3 pz4 pz5]

T , it comes:

Px = CxD Py = CyD Pz = CzD (16)

where:

Cx =






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

0 2−e 1 0 0
4−2e 0 0 0 0

0 2e 2 0 0
4+2e 0 0 0 0

0 −2−e 1 0 0










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
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0 0 0 0 2
0 0 0 1 0
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
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
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



e−1 0 0 0 0
0 2−2e 0 0 0

−2e 0 0 0 0
0 2+2e 0 0 0

e+1 0 0 0 0











(17)
A similar approach is used in [12] in order to obtain

algebraic expressions for the propagation of the periodic
motion, in the case of a periodic motion starting at perigee.
The objective of [12] was to determine the type of quadratic
surface on which the relative orbit laid. As far as we are
concerned, the rational expressions (15) will be used in the
purpose of designing maneuvers plans leading to bounded
periodic motion after control.

III. T RAJECTORY OPTIMIZATION FOR AUTONOMOUS

RENDEZVOUS

The fixed time impulsive rendezvous problem consists in
determining fuel optimal impulsive maneuvers that steer the
follower spacecraft from an initial stateX(ν1) to a desired
stateX f =

[

x f y f z f ẋ f ẏ f ż f
]T

. An impulsive ma-
neuver involves an ideally instantaneous change∆V in the
spacecraft velocity. The numberN of impulsive thrusts is
known a priori and so are the thrusting instantsν1, ...,νN .
Hence the optimization variables are∆V1, ...,∆VN ∈ R

3, the
coordinates of the thrusts in the local basis of the leader.

A. Proximity periodic relative motion

For our purpose, the terminal condition is relaxed by
no longer requiring the follower spacecraft to reach an
exact stateX(νN) = X f . The objective is to minimize the
fuel consumption necessary to reach a final state that can
guarantee periodic movement after control, on a trajectory
contained in a tolerance regionXtol , while taking into account
actuators saturation. The optimization problem can be written
as:

min
∆Ṽ

∑N
i=1‖∆Ṽi‖1

s.t.











‖∆Ṽi‖ ≤ ∆Ṽi, ∀ i = 1...N

X̃(νN) satisfies (10)

(x̃(ν), ỹ(ν), z̃(ν)) ∈ X̃tol, ∀ν ≥ νN

(18)

where∆Ṽ =
[

∆Ṽ1 · · · ∆ṼN
]T

∈ R
3N and∆Ṽi ∈ R

3 are the
thrusters saturation levels.̃X(νN) is the state at the end of
control, which considering (8) can be expressed as:

X̃(νN) = AN + BN∆Ṽ (19)

with:

AN = ΦνN
ν1

X̃(ν1) BN =
[

ΦνN
ν1

B̃ · · ·ΦνN
νN−1

B̃ B̃
]

. (20)

Since the 1-norm criterion is only piecewise linear, slack
variablesZ ∈ R

3N are introduced in order to writeJ in a
linear form.Z are such that:

{

−Zi ≤ ∆Ṽi ≤ Zi

Zi ≤ ∆Ṽi
, ∀ i = 1, · · · ,N (21)

Let M(νN) be:

M(νN) =
[

0 0 − 2+3ecosνN+e2

(1+ecosνN)2 1 0 − esinνN
1+ecosνN

]

(22)
Then the periodicity constraint (10) can be written as:

M(νN)X̃(νN) = 0 (23)

The tolerance regionXtol is a box centered on the final
positionX f , defined byXtol =

[

xtol ytol ztol
]

. The variable
change (4) must be taken into consideration when writing the
tolerance box constraints on the autonomously propagated
trajectory:

(1+ ecosν)(x f − xtol) ≤ x̃(ν) ≤ (1+ ecosν)(x f − xtol)
(1+ ecosν)(y f − ytol) ≤ ỹ(ν) ≤ (1+ ecosν)(y f − ytol)
(1+ ecosν)(z f − ztol) ≤ z̃(ν) ≤ (1+ ecosν)(z f − ztol)

(24)



Constraints (24) must be respected for all instants starting
from the end of the plan (∀ν ≥ νN). The optimization
problem (18) becomes:

min
Z,∆Ṽ

N

∑
i=1

Zi

s.t.







































−Zi ≤ ∆Ṽi ≤ Zi

Zi ≤ ∆Ṽi
, ∀ i = 1...N

M(νN)X̃(νN) = 0

x̃ f − x̃tol ≤ x̃(ν) ≤ x̃ f + x̃tol

ỹ f − ỹtol ≤ ỹ(ν) ≤ ỹ f + ỹtol

z̃ f − z̃tol ≤ z̃(ν) ≤ z̃ f + z̃tol

, ∀ν ≥ νN

(25)

The LP approach for solving (25) presented in [8] requires
the discretization of constraints (24) over a specified interval
[νN+1,νN+q] after control:

x̃ f − x̃tol ≤ x̃(νk) ≤ x̃ f + x̃tol

ỹ f − ỹtol ≤ ỹ(νk) ≤ ỹ f + ỹtol

z̃ f − z̃tol ≤ z̃(νk) ≤ z̃ f + z̃tol

,∀ k ∈ {N +1, ...,N + q}

(26)
with q the number of discrete points where constraints are
explicitly checked. This approach cannot guarantee that the
box constraints (24) are not violated between the discretiza-
tion points.

The variable change (14) can be used to define rational
bounds for each coordinate. Please note that the methodology
is detailed only for thex axis. They and z axis follow the
same procedure.

x̃max(w) = (1−e)w2+1+e
1+w2 (x f + xtol)

x̃min(w) = (1−e)w2+1+e
1+w2 (x f − xtol)

(27)

Using equations (15) and (27), the tolerance box con-
straints (24) can be written as rational inequalities:

x̃min(w) ≤ x̃(w) ≤ x̃max(w), ∀w ∈ R (28)

Let x andx be:

x(w) = −x̃(w)+ x̃max(w) = 1
(1+w2)2 Γx(w)

x(w) = x̃(w)− x̃min(w) = 1
(1+w2)2 Γx(w)

(29)

whereΓx andΓx are the following polynomials:

Γx(w) =
5

∑
i=1

γxiw
i−1 Γx(w) =

5

∑
i=1

γxiw
i−1 (30)

whose coefficientsγx =
[

γx1 γx2 γx3 γx4 γx5

]T
andγx =

[

γx1
γx2

γx3
γx4

γx5

]T
are given by:

γx = −Px + T (x f + xtol)
γx = Px −T(x f − xtol)

(31)

and T =
[

1− e 0 2 0 1+ e
]T

. Using (12), (16) and
(19) it comes:

γx = −CxC(νN)BN∆Ṽ −CxC(νN)AN + T(x f + xtol)
γx = CxC(νN)BN∆Ṽ +CxC(νN)AN −T (x f − xtol)

(32)

Hence the coefficientsγx and γx of the polynomialsΓx and
Γx depend linearly on the optimization variables∆Ṽ .

The box constraints (28) can be expressed as non-
negativity conditions onx andx. However, since the denom-
inator (1+ w2)2 is always strictly positive, these conditions
are equivalent to the non-negativity of the polynomialsΓx

andΓx:
Γx(w) ≥ 0
Γx(w) ≥ 0

,∀w ∈ R. (33)

As showed in [13], the cone of non-negative univariate
polynomials can be seen as the linear image of the cone of
positive semi-definite matrices. Thus, finding non-negative
polynomials over an infinite interval becomes a semi-definite
programming problem.

Let P be a polynomial of degree 2n. Searching for
pi, i = 1..2n +1, the coefficients of the polynomialP, such
that P(w) = ∑2n+1

i=1 piwi−1 ≥ 0, ∀ w ∈ R is equivalent to
searching for a symmetrical positive semi-definite matrix
Y ∈ R

(n+1)×(n+1) � 0, such that [13]:

pi = tr(Y Hn,i), i = 1..2n +1 (34)

whereHn,i ∈ R
(n+1)×(n+1) are the Henkel matrices:

Hn,i( j,k) =

{

1, if j + k = i+1
0,otherwise

(35)

and tr denotes the trace of the matrix.
The same principle is applied for the polynomial

constraints (33). If there exist two symmetric positive
semi-definite matricesYx ∈ R

(n+1)×(n+1) � 0 and Yx ∈
R

(n+1)×(n+1) � 0 such that the coefficients of the polynomials
Γx andΓx are equal to:

γx =
[

tr(YxHn,1) ... tr(YxHn,2n+1)
]T

γx =
[

tr(YxHn,1) ... tr(YxHn,2n+1)
]T (36)

then constraints (33) are guaranteed to be satisfiedcontinu-
ously (∀w ∈ R).

The optimization problem (25) becomes a semi-definite
program (SDP):

min
Z,∆Ṽ

N

∑
i=1

Zi

s.t.


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










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
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
















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































−Zi ≤ ∆Ṽi ≤ Zi

Zi ≤ ∆Ṽi
, ∀ i = 1. . .N

M(νN)X̃(νN) = 0

Yx � 0 Yy � 0 Yz � 0

Yx � 0 Yy � 0 Yz � 0

γx = [tr(YxH2,1) ... tr(YxH2,5)]
T

γx = [tr(YxH2,1) ... tr(YxH2,5)]
T

γy = [tr(YyH1,1) ... tr(YyH1,3)]
T

γy = [tr(YyH1,1) ... tr(YyH1,3)]
T

γz = [tr(YzH2,1) ... tr(YzH2,5)]
T

γz = [tr(YzH2,1) ... tr(YzH2,5)]
T

(37)



B. Always feasible formulation

When solving an optimization problem like problem (37)
as part of an autonomous rendezvous algorithm, it is impor-
tant to guaranteeat each step the feasibility of the solution.
Infeasibility could arise from the fact that the objective
cannot be reached in theN steps of the plan (because the
control action is bounded by saturation constraints) or from
the fact that no periodic trajectory could be found in the
given tolerance region.

Infeasibility can be avoided by considering the dimensions
of the tolerance box as optimization parameters. For the LP
formulation of the problem, feasibility is guaranteed by using
a scale factor for the tolerance box [9]. In our case, each
dimension of the tolerance box is considered as a separate
parameter. As illustrated by equations (32), the coefficients
of the polynomials that constitute the constraints depend
linearly onXtol . So transformingXtol into a decision variable
does not change the nature of the optimization problem and
does not increase its complexity.

The optimization criterion must be modified to include the
new variables:

min
Z,∆Ṽ ,Xtol

N

∑
i=1

Zi + ρ
3

∑
i=1

Xtol(i) (38)

whereρ > 0 is large enough to ensure that the tolerance box
is modified only when needed to guarantee feasibility.

Bounds should be given for the minimal boxXm, to ensure
that the optimization algorithm will not minimize the box and
as a consequence increase the fuel consumption:

Xtol ≥ Xm (39)

IV. N UMERICAL EXAMPLES

To illustrate our approach for finding the optimal solu-
tion to (18), we used a Prisma rendezvous mission, whose
scenario information is given in Table. I. The problem was
solved in Matlab using Yalmip [14] and SeDuMi [15].
For comparison, we used the solution obtained from the
LP approach, as presented in [8]. The LP problem was
resolved with the Matlab’s linear solverlinprog, using 15
discretization points over 1 period for the tolerance box
constraints.

The maneuvers plans obtained with each method yielded
very close values for the optimization criterion. But the

TABLE I

SIMULATION DATA

Eccentricity (e) 0.023776
Semi-major axis (a) [m] 7 011 003
Transfer time [s] 64620
Initial time [s] 1282
Actuator saturation (∆v) [m/s] 0.26
Impulsive thrusts (N) 10
Initial state [m,m/s] [10000,0,0,0,0,0]
Final state (X f ) [m,m/s] [100,0,0,0,0,0]
Position tolerance (Xtol) [m] [10,5,5]

Fig. 2. xz axis projections of the periodic relative trajectory aftercontrol

advantage of our methodology can be noticed when looking
at the trajectories obtained after control, in Fig. 2. For the LP
formulation, the box constraints are violated between some
of the discretization instants. Our methodology produced
trajectories that evolve very close to the bounds, without
crossing them. It guarantees continuous satisfaction of the
constraints, without adding extra inequalities to reach a
certain precision.

For better understanding, Table II shows the influence on
the performances of the LP based algorithm of the number
of instants where constraints are explicitly checked. The
same simulation data as for the first example is used. The
discretization is done over 1 orbital period (T = 5843s),
taking 15, 30 and then 50 instants. The given solver time
(ST) is the mean time for 10 runs of each algorithm. The
cost is the sum of∆V (passing back to the original variables).

The costs obtained with each method are very similar.
It can be easily observed that for the LP based algorithms
increasing the number of discretization points increases the
solver time and the number of constraints. On the other hand,
it decreases the time spent outside the box (TOB), where
the tolerance box constraints on the trajectory are violated.
However, a large number of points would be necessary to
get closer to the performances of the SDP approach (zero
violation of the constraints).

A slightly different Prisma mission is used to illustrate the
advantages of the always feasible formulation. The changes
to the rendezvous scenario are given in Table III.

In the always feasible case, the obtained solution suggests

TABLE II

ALGORITHMS COMPARISON

Method Cost [m/s] ST [s] TOB[s] Constraints Variables
LP15 0.390962 1.0969 818 271 60
LP30 0.390983 2.0195 234 451 60
LP50 0.390985 1.4937 152 691 60
SDP 0.390986 0.9387 0 133 90



TABLE III

SIMULATION DATA

Transfer time [s] 18000
Final stateX f [m,m/s] [300,0,30,0,0,0]
Minimum box Xm [m] [1,1,1]

that a box larger thanXm is needed to ensure feasibility. As
shown in Fig. 3,Xtol = [1,1,33.0664] so an expansion on the
z axis of the given tolerance region is necessary.

Used in an open-loop scheme, the always feasible formu-
lation can provide some insight to the size of the smallest
tolerance box that ensures feasibility. Integrated in a closed-
loop scheme, it can help avoiding unwanted situations where
no solution is available.

V. CONCLUSIONS

In this paper a new method for obtaining an open-loop
impulsive maneuvers plan leading to periodic proximity rel-
ative motion, between two spacecraft on Keplerian orbits was
presented. The periodic relative trajectory is confined inside a
specified tolerance region. By using the rational expressions
for the propagation of the periodic motion and the result
linking the cone of non-negative polynomials to the cone of
semi-definite positive matrices, the requirement to define a
prediction horizon where constraints are explicitly checked
for a finite number of instants was removed. The method
guarantees constraints satisfaction all along the path, without
increasing the computational load or the fuel consumption.
An always feasible formulation of the problem was also
given, by considering the dimensions of the tolerance region
as optimization parameters.
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