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Constrained periodic spacecraft relative motion using nomegative
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Université de Toulouse; UPS, INSA, ISAE; UT1, UTM, LAAS; 3077 Toulouse; France

Abstract— A new method for obtaining constrained periodic  analytically studied the minimum and maximum distances
relative motion between spacecraft on Keplerian orbits is petween two spacecraft on elliptical orbits. Their method
presented. The periodic relative trajectory is required toevolve amounts to solving an eighth degree trigonometric polyno-
autonomously inside a tolerance box centered in a specified . . . .
position. Unlike the classical time-sampling approachespur mial and o_btalnlng the true anomalies Corre_spondlng to the
method guarantees continuous satisfaction of the constrais ~ €xtremal distances, in a worst case analysis. However, the
on infinite horizon. This is done by reformulating the tolerance  dimensions of the relative trajectory are highly dependent
box constraints on the relative trajectory as conditions of the initial conditions of the motion, which are not consietkr
non-negativity of some polynomials. The resulting problemis in the aforementioned studies.

solved using semi-definite programming. In [8] model predictive control (MPC) and linear program-
Keywords— impulsive orbital rendezvous, periodic relative Ming (LP) are used to design a fuel optimal maneuvers plan,
motion, non-negative polynomials, semi-definite programiimg, leading to autonomous periodic relative motion confined
inside a specified tolerance region. The method is based on
l. INTRODUCTION the propagation of the autonomous relative motion starting
In the recent years, new rendezvous missions and proxt the end of the plan for one additional orbital period.
imity operations between spacecraft have been consider@riodicity is ensured by imposing the initial and the final
including sample returns, repairing, refueling, upgradin state of the autonomous motion to match. To control the
and other on-orbit servicing [1]. The ability to design fueldimensions of the periodic trajectory, its inclusion in the
efficient maneuvers in order to reach naturally perioditolerance box is explicitly checked in a finite number of
relative orbits, confined in a specified region in space, béll time samples along the propagation. Because of the nature
an important step towards the success of these missions. fethe orbital dynamics, an autonomous relative trajectory
propose a new method for obtaining an open loop maneuvatsat remains inside the box for one orbit and begins and
plan leading to this kind of bounded autonomous perioditerminates at the same state is a nominal invariant set [8].
motion. Thus attaining this kind of trajectory prevents any future
The relative motion between spacecraft on Keplerian orbitonstraints violation.
is naturally bounded [2]. Moreover, the relative motion can The LP formulation has the advantage of providing a
be initialized to result as periodic when viewed from a locafjeneral framework for minimizing fuel consumption while
reference frame. In the unperturbed case, the necessary ameluding various types of state and actuator constraints
sufficient condition for periodicity is that the semi-major[9]. The drawback is that it cannot guarantee continuous
axis of the spacecraft orbits are equal [3]. The period dfatisfaction of the constraints since the behavior betwieen
the resulting relative trajectory is then equal to the @ibit time samples is not controlled.
period of the spacecraft. A new method for designing a fuel optimal maneuvers
Using Cartesian coordinates and a local frame attached pans leading to this type of bounded periodic relative oroti
one of the spacecraft, Inalhan obtained in [4] a periodicitis presented in this paper. This approach no longer requires
condition at perigee, for the linearized relative motiord anthe explicit propagation of the autonomous relative tr@jpsc
for arbitrary eccentricity. This condition was then used foat specified time samples. It is based on the fact that the pe-
spacecraft formation initialization. Inalhan’s conditiovas riodic motion can be represented by rational expressioes. W
later explicitly generalized for any true anomaly in [5],show that, by using these rational expressions, the diroansi
where the effect of the eccentricity on the shape of theonstraints for the periodic trajectory can be written imte
periodic relative trajectory was analyzed. Gurfil wrote thef non-negativity of some polynomials. The main advantage
energy-matching condition for periodicity in [2], obtaigi of this method is that it guarantees constraints satisfacti
a sixth degree polynomial equation, valid for the non lineacontinuously in time.
dynamics. The paper is organized as follows. Section Il first gives
The previous conditions guarantee that the resulting rela- brief description of the spacecraft relative dynamics and
tive trajectory will be periodic, without giving any insighn  their closed-form solutions. Then the linear conditioncdug®e
its shape or its size. In [6] and [7], Gurfil and Kolshevnikovensure the periodicity of the relative trajectory is preéedn



Finally, the rational expressions for the propagation @& thEarth:

autonomous periodic relative motion are derived. Our main I 5 a(l—e?)
contribution is detailed in Section Ill, where the prevityus V=\/zmaepr(ltecos)s, R= T+ ecos’ )
obtained rational expressions are used to write the pro
lem of designing a periodic relative trajectory containet?he leader. After replacing time as the independent vagiabl
in a tolerance box as a polynomial optimization problerr\Nith the true anomaly:

This polynomial optimization problem is transformed into

a convex semi-definite program (SDP), for which efficient ~ d(-) _ d()dv _ (' d*() Vv )

nda ande are the semi-major axis and the eccentricity of

solvers are available. An always feasible formulation & th dt T dvodt dt?
problem is also presented, by considering the dimensioasid scaling the variables by:
of the tolerance box as part of the optimization variables. B X
The methodology is illustrated through some impulsive ren- §| = (1+ecosv) |y
dezvous scenarios in Section V. 5 2
Il. RELATIVE DYNAMICS AND PERIODICITY g v . ’ ()
A. Relative Motion Modeling ¥ | =(1+ecosv) |y | —esinv |y
Let us consider the relative motion between two spacecraft 1Z 4 z
on elliptic Keplerian orbits. The reference orbit corresg® equations (1) become:
to the leader spacecrait; while the other orbit corresponds K = 27 4Gy
to the follower spacecraftl,. § = —§+0, (5)
Consider an Earth-centered inertial (ECI) frame with the g _ 3 3 5
== = (ECD) ' = recowl— 2X + Gz

orthonormal basisBy = (Xo,Y0,Zo). The relative motion it _

is described in the rotating Cartesian local-verticalllec !N the sequel, the ™ sign is used to mark the variables

horizontal (LVLH) frame attached to the leader. The corﬁ}ﬂer the variables change (4). If we define th$ state vector

responding basis iB1 = (%1,V1,71), with Z lying along the X(V)=[X(v) ¥§(v) Zv) K(v) ¥(v) Z(v)] and the

radius vector from the satellite to the center of the Eartfinput vectoru{v) = [Tx(v) Ty(v) Gz(v)}T, system (5) can

y1 normal to the plane defined by the position and velocitpe written as a periodic state-space model:

vectors ofM; in the ECI frame, in opposite direction to the dX(v) o .

angular momentum, ari completing the basis (Fig. 1). = AWX(v)+Ba(v) (6)
LetP=[x y 2Z]' be the position of the follower space- with:

craft in the LVLH frame of the leader. The linearized relativ

dynamics with respect to the orbit of the leader are desdribe 8 8 8 é 2 8 g 8
by the well-known Tschauner-Hempel equations [10]:

~ [0 0 0 0 O ~ [0 0O

%= 202+ Uz+ VX~ x4 Uy AVi=lo o 0 o0 04" BTl1 00

Y= —&y+uy (1) 0 -1 0 0 00 010

2= 20X~ Vx+V2z+ 2Kzt 0 0 =2 200 001
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wherev and R are the true anomaly and the norm of thestarting from system (6), Yamanaka and Ankersen give in

radius of the leaden is the gravitational parameter of the[11] a transition matrix® which enables the propagation of
the relative motion starting from an initial conditiof(vo),

v under impulsive control:

Tl
X gM2 X(V) = d)xo)N((vo) + E ¢‘3i éﬁi. (8)
RS |

~ B. Periodic motion propagation

An arbitrary stateX(vp) is an initial state for a naturally
1 v periodic motion if it is equal to the autonomously propadate
state after one period. This condition can easily be express
using the Yamanaka-Ankersen transition matrix:

X (Vo+2m) = ®}5 "X (vo) = X (vo) (9)
After some calculations, the following periodicity condit
is obtained [5]:

24 3ecosvg + €) 7o) +
0

o
Py

a .
esinvg

(14 ecosvy)

% (vo) = .

Fig. 1. The local frame and the relative position of the speafe (1+ecosvp)?

2’(\/0).
(10)



Consideringy; = 0 in (8) and assuming that the initial state
X(vp) satisfies (10), the equations for the propagation of the

periodic motion can be deduced:

X(v) = (2+ecosv)(dy sinv —dycosv) + d3
§(v) = dscosv + dssinv , V>V
Z(v) = (1+ecosv)(dicosv +dzsinv)

(11)

IIl. TRAJECTORY OPTIMIZATION FOR AUTONOMOUS
RENDEZVOUS

The fixed time impulsive rendezvous problem consists in
determining fuel optimal impulsive maneuvers that steer th
follower spacecraft from an initial staté(v;) to a desired
stateXt = [X; Yf 2zt X Vi 'zf]T. An impulsive ma-
neuver involves an ideally instantaneous chafgein the

whered;, i = 1...5 are constants linearly depending on thépacecraft velocity. The numbét of impulsive thrusts is

initial stateX(vo). LetD=[d; d d3 da d5}T, then:

D = C(vp)X(vo) (12)
where the matriXC(vp) is defined by:
r 28(32+C0—e S ]
0 0 Tgp O T
0 0 So(1+2ecp) 0 Co
Clvo) = o2t 2 | (19)
1 0 (Lieco)? 0 O Tre
0 ¢ 0 0 —% 0
0 0 0 o 0 |

with ¢ = cosvg and sg = sinvg.
By replacing the true anomaly with w € R such that:

—tan(Y =W i a4
w=tan}§), cosv= L wvy: (14)
a rational form for equations (11) is obtained:
. P W + PoW 4 P + Py W+ P
K(w) =
(14+w?)?
) = Pt Pt By (15)
3w) — PaW' + P2,W° + WP + Py W+ Pz
(14+w?)?

DenotingPX: [pX]_ pX2 pX3pX4 pX5]T, Py: [pyl py2 pY3]T1
PZ: [pzl pZz p23 p24 pz5]T, It comes:

where:
0 2-e 1 O
4—2e 0 0 0 O 0 0 0 -1 0
Cx= 0 2e 2 0 0 ¢=|0 0 0 0 2
44 2e 0 0 0 O 0 0 0 1 O
0 —-2-e 1 0 O
e—-1 0 0 0
0 2-2 0 0 O
C,=|—-2e 0 0 0 O
0 2+2 0 0 O
e+1 0 0 0 Q0

17)

known a priori and so are the thrusting instants, ..., .
Hence the optimization variables af¥/, ...,AVy € R3, the
coordinates of the thrusts in the local basis of the leader.

A. Proximity periodic relative motion

For our purpose, the terminal condition is relaxed by
no longer requiring the follower spacecraft to reach an
exact stateX(vy) = X;. The objective is to minimize the
fuel consumption necessary to reach a final state that can
guarantee periodic movement after control, on a trajectory
contained in a tolerance regidg,, while taking into account
actuators saturation. The optimization problem can beenrit
as:

. N ~
min iz || AV;
av Z|_1||~ I||1_~
[AVi|| <AV;, Vi=1..N
s.t. X(vy) satisfies (10)
(X(v),¥(v),Z(v)) € X, YV = WN
whereAV = [AV; AV] T e RN andAV: € R3 are the
thrusters saturation levelX(vy) is the state at the end of
control, which considering (8) can be expressed as:

X(vn) = An + BnAV (19)

(18)

with:
AN = CDxT;((Vl) BN = [Cbx'l\'é---CDVN é é} .

UN—1 (20)
Since the 1-norm criterion is only piecewise linear, slack
variablesZ € R3N are introduced in order to writd in a

linear form.Z are such that:

~Zi <NV, <Z .
=T =" vi=1,--- N (21)
Zi <AV
Let M(vn) be:
o 2+43ecosvy +€? esiny,
M(wn) = [0 0 - (l+eCOS\';‘N)2 10 _l+ecoSNVN
22)

Then the periodicity constraint (10) can be written as:
M (vn)X(vn) =0 (23)

The tolerance regiorX, is a box centered on the final

A similar approach is used in [12] in order to obtainPOSitionXs, defined byXo = [X%o Yo  Zol]. The variable
algebraic expressions for the propagation of the periodf1ange (4) must be taken into consideration when writing the
motion, in the case of a periodic motion starting at periged?lérance box constraints on the autonomously propagated
The objective of [12] was to determine the type of quadratif@ectory:

surface on which the relative orbit laid. As far as we are (14 ecosv)(x; —%o|)

(V) < (14 ecosv)(xf —Xal )

<X
concerned, the rational expressions (15) will be used in the (1+ecosv)(ys — Vo) < J(V) < (1+ecosv)(Ys — Yto)
<

purpose of designing maneuvers plans leading to bounded(1+ ecosv)(zs — zg)

periodic motion after control.

Z4(v) < (1+ecosv)(zf — 2ol
(24)



Constraints (24) must be respected for all instants startitHence the coefficientg; and y of the polynomialdsx and
from the end of the planvy > vy). The optimization [y depend linearly on the optimization variablég.

problem (18) becomes: The box constraints (28) can be expressed as non-
N negativity conditions ox andx. However, since the denom-
min Z\Zi inator (1+w?)? is always strictly positive, these conditions
ZAV = B are equivalent to the non-negativity of the polynomigjs
i <AV x(W) >
5 25 ,Ywe R. (33)
st M(vn)X(vn) =0 29 Me(w) 20
X — %Kol <X(V) < Kt + Kol As showed in [13], the cone of non-negative univariate
Yt — Yiol < Y(V) <Vt + Vo » YV > Wy polynomials can be seen as the linear image of the cone of
%t — %ol < 2(V) < Z + Zol positive semi-definite matrices. Thus, finding non-negativ

polynomials over an infinite interval becomes a semi-definit
The LP approach for solving (25) presented in [8] requiregrogramming problem.
the discretization of constraints (24) over a specifiedriae Let P be a polynomial of degreen2 Searching for
[N+1, VN+] after control: pi, i = 1..2n+1, the coefficients of the polynomi, such
that P(w) = 32 pw 1 >0, Vv we R is equivalent to
searching for a symmetrical positive semi-definite matrix
Y € RMDx(0+1) - 0, such that [13]:

Xt — %o < X(Vk) < Kt + Kol
V5 — Yol <Y(Vk) <Vt + %ol ,V ke {N+1,...,N+q}
Zt — %ol < Z(Vk) < Zt + %ol
(26)
with g the number of discrete points where constraints are
explicitly checked. This approach cannot guarantee that ”\)vhereHni c RMDx(+1) gre the Henkel matrices:
box constraints (24) are not violated between the disaetiz '
tion points. Hui(],K) = Lif j+k=i+1 (35)
The variable change (14) can be used to define rational nitl; 0,otherwise
bounds for each coordinate. Please note that the methqplolo&ﬁ]dtr denotes the trace of the matrix
is detailed only for thex axis. They and z axis follow the '
same procedure.

pi =tr(YHn), i=1.2n+1 (34)

The same principle is applied for the polynomial
constraints (33). If there exist two symmetric positive

Smax(W) = %}'ie(xf+x&ﬂ) semi-definite matricesty € R™MDx(MD - 0 and Yy €

.  (1_ewPilie (27)  R(+Dx(0+1) - 0 such that the coefficients of the polynomials

Kmin(W) = == 57— (X — %ol ) x andly are equal to:

Using equations (15) and (27), the tolerance box con- T
straints (24) can be written as rational inequalities: Y= [tr(YeHna) tr(Y?HﬂZnJrl)]T (36)
Yo = [tr(YéHn,l) tr(YéHn,2n+l)]
Kmin(W) < X(W) < Kmax(W), YweR (28)
then constraints (33) are guaranteed to be satisfietinu-

Let X andx be: oudly (Yw € R).

The optimization problem (25) becomes a semi-definite
(29) program (SDP):

() = ~E(W) + Sonanl W) = (2= (W)

Pl

X(W) = K(W) — Zimin(W) = mrl(w) )
wherel'x andly are the following polynomials: glAl\r) zizi
y i=
5 5 ~Z <N <Z .
Mx(W) = ziwqw—l Mx(W) = ziinW_l (30) 'Zf<A'—\7f ' Vi=1...N
i= i= i > i
. T M (un)X(vN) = 0
whose coefficientgy = [ygrl Voo Yoo Ve Vs andy= %=0 Yy=0 Y,=0
o Yo Ko Ka o] are given by: % =0 Y%=0 Y0 (37)
¥ = —P+ T (Xt + %o1) (31) S.t. Yo = [tr(YxHZ,]_) . U‘(YXHZ.5)]T
Yo = Bc— T (Xt — X%ol) ¥ = [tr(YeH2.1) ... tr(YeHo5)]T
— a /| T
andT=[1-e 0 2 0 1+ e}T. Using (12), (16) and Yy =[tr(YyHo) tr(YyHlﬁ)]T
(19) it comes: ¥ =[tr(fyHy1) ... tf(YyHl,B)]T
~ = |tr(YzHz21) ... tr(YzH
¥ = —CxC(Vn)BNAV — CC(VN)AN + T (Xt + %ol ) (32) Yz - {trEYZHZ,lg trEYzHZ,sﬁT
¥ = CxC(VN)BNAV + CC(VN)AN — T (Xf — %ol ) Ve = [U(YzH21) ... W(¥z25



B. Always feasible formulation

When solving an optimization problem like problem (37)
as part of an autonomous rendezvous algorithm, it is impor
tant to guaranteat each step the feasibility of the solution.
Infeasibility could arise from the fact that the objective
cannot be reached in the steps of the plan (because the
control action is bounded by saturation constraints) omfro
the fact that no periodic trajectory could be found in the
given tolerance region.

Infeasibility can be avoided by considering the dimensions
of the tolerance box as optimization parameters. For the LI
formulation of the problem, feasibility is guaranteed byngs
a scale factor for the tolerance box [9]. In our case, eacl = = - _— -
dimension of the tolerance box is considered as a separa %[
parameter. As illustrated by equations (32), the coefftsien
of the polynomials that constitute the constraints depenflg. 2. xz axis projections of the periodic relative trajectory aftentrol
linearly onX; . So transforming¢ into a decision variable
does not change the nature of the optimization problem and

z[m]

does not increase its complexity. advantage of our methodology can be noticed when looking
The optimization criterion must be modified to include theat the trajectories obtained after control, in Fig. 2. Fer L
new variables: formulation, the box constraints are violated between some
N 3 of the discretization instants. Our methodology produced
min zizi+p zixml(i) (38) trajectories that evolve very close to the bounds, without
2V Kol i = crossing them. It guarantees continuous satisfaction ef th

wherep > 0 is large enough to ensure that the tolerance bosonstraints, without adding extra inequalities to reach a
is modified only when needed to guarantee feasibility. ~ Certain precision.

Bounds should be given for the minimal b¥y, to ensure For better understanding, Table Il shows the influence on
that the optimization algorithm will not minimize the boxdan the performances of the LP based algorithm of the number

as a consequence increase the fuel consumption: of instants where constraints are explicitly checked. The
same simulation data as for the first example is used. The
Xiol > Xm (39) discretization is done over 1 orbital period ¢ 5843s),
taking 15, 30 and then 50 instants. The given solver time
IV. NUMERICAL EXAMPLES (ST) is the mean time for 10 runs of each algorithm. The

To illustrate our approach for finding the optimal solu-cost is the sum aAV (passing back to the original variables).
tion to (18), we used a Prisma rendezvous mission, whoseThe costs obtained with each method are very similar.
scenario information is given in Table. I. The problem wadt can be easily observed that for the LP based algorithms
solved in Matlab using Yalmip [14] and SeDuMi [15]. increasing the number of discretization points increakes t
For comparison, we used the solution obtained from thgolver time and the number of constraints. On the other hand,
LP approach, as presented in [8]. The LP problem wait decreases the time spent outside the box (TOB), where
resolved with the Matlab’s linear solvéinprog, using 15 the tolerance box constraints on the trajectory are vidlate
discretization points over 1 period for the tolerance boxlowever, a large number of points would be necessary to
constraints. get closer to the performances of the SDP approach (zero

The maneuvers plans obtained with each method yieldatblation of the constraints).
very close values for the optimization criterion. But the A slightly different Prisma mission is used to illustrateth

advantages of the always feasible formulation. The changes

TABLE | to the rendezvous scenario are given in Table III.

SIMULATION DATA In the always feasible case, the obtained solution suggests
Eccentricity (e) 0.023776 TABLE 1l
Semi-major axis (a) [m] 7 011 003
Transfer fime [s] 64620 ALGORITHMS COMPARISON
Initial time [s] 1282
Actuator saturationZ{v) [m/s] 0.26 Method | Cost [m/s] | ST [s] | TOB[s] | Constraints| Variables
Impulsive thrusts (N) 10 LP15 0.390962 | 1.0969 818 271 60
Initial state [m,m/s] [10000,0,0,0,0,0] LP30 0.390983 | 2.0195 234 451 60
Final state X¢) [m,m/s] [100,0,0,0,0,0] LP50 0.390985 | 1.4937 152 691 60
Position toleranceX) [m] [10,5,5] SDP 0.390986 | 0.9387 0 133 90




TABLE Il

SIMULATION DATA

Transfer time [s] 18000
Final stateX; [m,m/s] | [300,0,30,0,0,0]
Minimum box Xpy, [m] [1,1,1]

that a box larger thaXy, is needed to ensure feasibility. As
shown in Fig. 3Xq = [1,1,33.0664 so an expansion on the
z axis of the given tolerance region is necessary.

(2]

(3]

(4]

P. Gurfil, “Relative Motion between Elliptic Orbits: Geralized
Boundedness Conditions and Optimal Formationkeepidayinal of
Guidance, Control, and Dynamics, vol. 28, no. 4, pp. 761-767, July
2005.

T. Alfriend and H. Schaub, “Dynamics and Control of Sparedt For-
mations: Challenges and Some Solutiodsfirnal of the Astronautical
Sciences, vol. 48, no. 2, pp. 249-267, 2000.

G. Inalhan, J. P. How, and M. Tillerson, “Relative Dynasiand
Control of Spacecraft Formations in Eccentric Orbitdgurnal of
Guidance, Control, and Dynamics, vol. 25, no. 1, pp. 48-59, Jan.
2002.

] P. Sengupta and S. R. Vadali, “Relative Motion and the Geiy

Used in an open-loop scheme, the always feasible formul®l
lation can provide some insight to the size of the smallest

tolerance box that ensures feasibility. Integrated in aeio

(7]

loop scheme, it can help avoiding unwanted situations where

no solution is available.

V. CONCLUSIONS

(8]

In this paper a new method for obtaining an open—loop[g]

impulsive maneuvers plan leading to periodic proximity rel

ative motion, between two spacecraft on Keplerian orbits wa

presented. The periodic relative trajectory is confineitima

(20]

specified tolerance region. By using the rational expressio[11]
for the propagation of the periodic motion and the result
linking the cone of non-negative polynomials to the cone O[tlz]
semi-definite positive matrices, the requirement to define a

prediction horizon where constraints are explicitly chestk

for a finite number of instants was removed. The methoﬂ3]

guarantees constraints satisfaction all along the pathpwi

increasing the computational load or the fuel consumption.

An always feasible formulation of the problem was als¢'

given, by considering the dimensions of the tolerance regio
as optimization parameters.
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