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Epitaxially grown semiconductor heterostructures make it possible to tailor the potential landscape for the
carriers in a very controlled way. In planar lattice-matched heterostructures, the potential has indeed a very
simple and easily predictable behavior: it is constant everywhere except at the interfaces, where there is a
step (discontinuity) that only depends on the composition of the semiconductors in contact. In this paper, we
show that this universally accepted picture can be invalid in nanoscale heterostructures (e.g., quantum dots,
rods, nanowires), which can presently be fabricated in a large variety of forms. Self-consistent tight-binding
calculations applied to systems containing up to 75 000 atoms indeed demonstrate that the potential may have a
more complex behavior in axial heteronanostructures: The band edges can show significant variations far from
the interfaces if the nanostructures are not capped with a homogeneous shell. These results suggest new strategies
to engineer the electronic properties of nanoscale objects, e.g., for sensors and photovoltaics.
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I. INTRODUCTION

For the past four decades, semiconductor heterostruc-
tures have been at the heart of major scientific discoveries
(e.g., quantum Hall effect) and technological innovations
(e.g., resonant tunneling diodes, solid-state lasers, and high-
frequency electronic devices). The epitaxial growth of suc-
cessive semiconductor layers with different band gaps indeed
introduces energy barriers and wells for the carriers, which
control their optical and transport properties.1–3 In planar
lattice-matched heterostructures, the potential experienced by
a carrier in each layer is actually the same as that in the
corresponding bulk material except for a rigid shift due to
the presence of a two-dimensional (2D) dipole layer at the
interface.

Recently, low-dimensional nanostructures containing mul-
tiple semiconductor compounds have been synthesized, bring-
ing forth a new generation of materials with unique electronic
and optical properties. These include 0D (e.g., core/shell
nanocrystals,4–7 nanorods,8–10 tetrapods,11,12 dumbbells,13 and
stars14) and 1D structures (e.g., nanowire superlattices15–18

and core/shell nanowires19–21). The usual paradigm for
the electronic structure of these complex objects is that
the potential profile in a nanoscale heterojunction is exactly the
same as in the planar case.22 This assumption underlies all non-
self-consistent, semiempirical descriptions of semiconductor
nanostructures (effective-mass, k · p,23–26 tight-binding,27–29

and pseudopotentials30,31), widely used for their relative sim-
plicity. But the application of the concepts of band offsets, po-
tential wells, and barriers to nanostructures is questionable.32

In this paper, we actually show that nanoscale heterostructures
may require more elaborate treatments depending on their
dimensionality, their symmetry, and their surface passivation.
We demonstrate that the potential in these systems presents
the same discontinuity at the interface as in the planar case,
but does not necessarily behave as a simple step function. The
variations of the potential away from the interface may be sub-
stantial and therefore strongly influence the electronic states.

This provides new opportunities to engineer the properties of
nanostructures.

The paper is organized as follows: We describe the
methodology in Sec. II, then set out the main conclusions from
an analysis of various examples with different dimensionalities
(nanocrystals, nanowires, etc.) in Sec. III. We discuss the
underlying physics and present a more quantitative theory in
Sec. IV. We finally discuss other nanostructures with mixed
dimensionalities as well as possible applications in Sec. V.

II. METHODOLOGY

In the following, we consider GaAs/AlAs as a prototypical
system. The relevant physics is, indeed, most easily high-
lighted in binary, lattice-matched materials, where the band
edges do not show additional variations due to inhomogeneous
strains and alloy disorder. The conclusions of this work,
however, apply to heterostructures of any semiconductor com-
pounds or alloys. The band-offset problem is actually challeng-
ing because only a self-consistent electronic-structure method
can allow for charge transfers between materials—yet any
realistic nanoscale heterojunction contains at least thousands
of atoms and is beyond the reach of ab initio approaches such
as density functional theory. It has been shown previously that
self-consistent tight binding accurately describes electrostatic
and screening effects in semiconductors.33,34 Here we use this
approach, which we have considerably optimized thanks to
efficient algorithms that enable the treatment of nanostructures
with more than 75 000 atoms.

A. The self-consistent tight-binding method

The electronic states of the nanostructures are described
with an sp3d5s∗ tight-binding model. The Hamiltonian matrix
is written H = H0 + V0 + V sc, where H0 is the bare Hamilto-
nian calculated using the tight-binding parameters of Ref. 35,
which provide excellent band structures for GaAs and AlAs.
Since in this parametrization the energy of the valence-band
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(VB) edge of each semiconductor is arbitrarily set to zero, we
apply a rigid shift V0 to the AlAs atomic energies in order to
define the relative position of the bands of the two materials
prior to self-consistency. V0 is adjusted to achieve a VB offset
of 447 meV for the GaAs/AlAs (110) interface, in agreement
with the ab initio calculations of Ref. 36. But it is important
to point out that the choice of V0 (within a reasonable range)
has a small influence on the results presented in this work37

for reasons discussed in Refs. 38 and 39. V sc is the potential
induced by the variations of the atomic charges with respect
to the bulk references. These charges are computed from the
Green function of the system40 using an efficient “knitting”
algorithm41 (see details in the Appendix). The potential is
calculated iteratively until self-consistency is achieved. In this
paper, we discuss the variations of the total potential V0 + V sc,
which, with the above conventions, can be interpreted as the
local VB edge in the nanostructure (or equivalently as the
confinement potential for the holes).

B. Application to GaAs/AlAs superlattices

As an illustration, the VB edge in a (GaAs)8(AlAs)8 (110)
superlattice is plotted in Fig. 1. It shows the expected behavior
of a periodic step function with sharp variations limited to
two atomic planes on each side of the interfaces. Elsewhere,
the potential is basically constant. Very similar results are
obtained for systems with larger periods and for (111) and
(001) superlattices.

C. Surface passivation of nanostructures

In the following, we consider finite-size heterostructures
such as nanocrystals and nanowires. There the band edges
are also controlled by the surface dipoles, which depend on
the passivation. Recent experiments have actually shown that
the nature of the ligands determines the ionization potential
of nanocrystals.42,43 The work function of semiconductor

FIG. 1. (Color online) VB edge in a (GaAs)8(AlAs)8 (110)
superlattice. The average potential in the GaAs layer has been shifted
to zero, so that the horizontal dashed lines directly indicate the VB
offset.

surfaces can indeed be modified [up to 1 eV in the case of
GaAs (Ref. 44)] by grafting polar molecules,45 and, more
generally, by various chemical or technological treatments. In
our calculations, we emulate these treatments by passivating
the dangling bonds at the surface of the nanostructures with
hydrogen atoms. The tight-binding parameters of these atoms
determine the charge transfers with the semiconductor, hence
the surface dipole layer that controls the absolute value of the
inner potential. We can therefore tune the ionization potential
and mimic the effect of different ligands (or capping materials)
by changing the parameters of these “pseudo”-hydrogen atoms
(given in the Appendix). In the next section, we discuss
different passivations when appropriate.

III. RESULTS

In this section, we highlight the main conclusions of this
work on various examples with different dimensionalities:
0D core/shell quantum dots (Sec. III A) and 1D nanowires
(Sec. III B). We briefly discuss the physics behind these
examples, and give a more quantitative and complete analysis
in Sec. IV.

A. Core/shell quantum dots

Figure 2 presents a typical result for GaAs/AlAs core/shell
quantum dots. The rapid variation of the potential at the surface
is due to the charge transfers with pseudohydrogen atoms, as
discussed above. The VB edge is constant in the core and in
the shell, respectively, and the VB discontinuity is the same
as for the planar interface. Therefore, the traditional model
of square wells and barriers is justified in spherical core/shell
quantum dots, as well as the use of the band offset derived from
the 2D case (for core diameter �1.5 nm and shell thickness
�0.75 nm). In addition, we have verified that the band offset at
the interface does not depend on the dipole layer at the surface,
thus on the nature of the ligands.

FIG. 2. (Color online) VB edge in a spherical GaAs/AlAs
core/shell quantum dot as a function of the radial position of the
atoms (core diameter dc = 4 nm; shell diameter ds = 7 nm). The
horizontal dashed lines indicate the VB offset in the 2D GaAs/AlAs
superlattice.
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FIG. 3. (Color online) (a) 2D plot of the VB edge in a section of
a GaAs/AlAs nanowire superlattice with cylindrical shape (diameter
d = 5 nm, length of the GaAs and AlAs segments l = 22.5 nm).
(b) VB edge (blue dots) and CB edge (red crosses) along the axis of
the nanowire superlattice. The horizontal dashed lines indicate the VB
and CB offsets in the 2D GaAs/AlAs superlattice. The difference �VB

between the VB edges in GaAs and AlAs drops to 0.175 eV in between
the interfaces, and would tend to 0.1 eV when l → ∞, the difference
between the VB edges of the pristine GaAs and AlAs nanowires.
(c) and (d) 2D plots of the envelopes of the highest occupied and of
the lowest unoccupied states, respectively.

B. Nanowires/rods with axial heterostructures

1. Nanowires/rods without external shell

Similar results are obtained for core/shell GaAs/AlAs
nanowires with cylindrical or faceted geometries. The situation
is, however, very different in 1D (nanowires) or nearly 1D
(e.g., nanorods) systems embedding axial heterostructures.
Figure 3 presents typical results for a nanowire superlattice
made of successive segments of GaAs and AlAs. The VB
discontinuity right at the interface is once again the same as
in the planar case, but the VB edge is not constant along the
nanowire axis. Indeed, as shown by Léonard and Tersoff in
carbon-nanotube Schottky diodes,32 the dipole layer at the

FIG. 4. (Color online) Schematic representation of the dipole
layers at the surfaces and interfaces of an A/B nanowire superlattice
with (a) or without (b) a shell. The contribution of these dipoles to
the band offset is also plotted.

interface shifts the potential only over distances comparable
with its lateral dimension (the diameter of the nanowire). Far
from this interface, the potential is controlled by the surface
dipoles (see Fig. 4), so that the VB edge tends to the value
for the corresponding pristine nanowire: for the passivation
considered here, the VB edge of the pristine AlAs nanowire is
only � 0.1 eV lower than the VB edge of the pristine GaAs
nanowire (in other words, the difference between the VB edges
of the pristine GaAs and AlAs nanowires is �0.35 eV smaller
than the planar band offset). The important variation of the VB
and CB edges displayed in Fig. 3(b) has a significant effect
on the electronic structure of the nanowires. Figure 3(c) shows
that the highest occupied level is strongly localized at the GaAs
side of the interface, while the lowest unoccupied state remains
centered in the GaAs segment. As an interesting side effect,
a barrier is raised at the interface for the holes in the AlAs
segment.

The effects highlighted in Fig. 3 are mostly visible when
the period of the superlattice is larger than the diameter of
the nanowire (see Fig. 5 for a comparison with a short-period
superlattice). Indeed, in long nanowire segments, the band-
edge profiles are determined not only by the discontinuity
at the heterojunctions but also by the surface passivation
(e.g., ligands), which controls the absolute value of the inner
potential far from the interfaces. The influence of the surface
termination is further demonstrated in Fig. 6. In that case, we
have used a different set of parameters for the pseudohydrogen
atoms, such that the VB edge of the pristine GaAs nanowire
is now �0.8 eV higher than the VB edge of the pristine AlAs
nanowire (i.e., the difference between the VB edges is �0.35
eV larger than the planar band offset, contrary to the previous
case). The variation of the VB edge in the superlattice is
then inverted with respect to Fig. 3. Interestingly, the lowest
unoccupied state is now located in the AlAs segment, even
though the CB edge of GaAs remains below the CB edge
of AlAs. Indeed, quantum confinement, which is stronger in
GaAs due to its small effective mass, raises the electronic states
of the GaAs segment above those of the AlAs segment.
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FIG. 5. (Color online) VB edge along the axis of a GaAs/AlAs
nanowire superlattice with cylindrical shape and short period (diam-
eter d = 5 nm, length of the GaAs and AlAs segments l = 4.5 nm).
The tight-binding parameters are the same as for Fig. 3 (long-period
counterpart).

2. Nanowires/rods with an external shell

The importance of the surface termination is also illus-
trated in Fig. 7, which represents a nanowire superlattice
now surrounded by an additional shell of AlAs. Then a
simple behavior is recovered: the VB edge is constant
everywhere except at the GaAs/AlAs interfaces, where there
is the expected discontinuity. The uniform dipole layer
at the surface and interfaces (see Fig. 4) rigidly shifts
the potential in the nanowire but does not influence its
form.

In the next section, we give a more quantitative and
comprehensive picture of the above results, and clarify
in particular the role of the shell in the band-offset
problem.

IV. DISCUSSION

We can identify a few rules about the behavior of the po-
tential in nanoscale heterostructures from the different systems
we have considered. In principle, the potential is determined
in a complex manner by the geometry and composition of the
nanostructure, and by its surface termination. For example,
the Madelung potential is not the same in low-dimensional
systems as in the bulk. Charge transfers also occur between the
different materials in the nanostructure. However, we observe
that the self-consistent potential Vsc always has a relatively
simple behavior, which can be interpreted as the result of
dipole layers located at the surfaces and interfaces. Also, the
band-edge discontinuity right at the interface is remarkably
robust and remains very close to the 2D band offset down to
extreme nanostructures with characteristic dimensions below
�2 nm. We discuss in more detail the physics of axial 1D
heterostructures in Sec. IV A, and then we clarify the role of
the shell in Sec. IV B. We also discuss why the discontinuity at
the interface remains so close to the planar limit in Sec. IV C,
and the effects of doping and surface defects (disregarded up
to now) in Sec. IV D.

FIG. 6. (Color online) Same as Fig. 3 but after modification of
the pseudohydrogen atoms at the surface (see text). (a) VB edge
(blue dots) and CB edge (red crosses). The difference �VB between
the VB edges in GaAs and AlAs reaches 0.695 eV in between the
interfaces, and would tend to 0.8 eV when l → ∞, the difference
between the VB edges of the pristine GaAs and AlAs nanowires.
(b) and (c) 2D plots of the envelopes of the highest occupied and of
the lowest unoccupied states, respectively.

A. Band offsets in 1D axial nanostructures

The situation in axial 1D heterostructures is schematically
depicted in Fig. 4. In the case of an A/B nanowire superlattice
(where A and B stand for two semiconductor materials),
the potential along the axis is determined (i) by the dipole
layer at each A/B interface, which controls the band-edge
discontinuity, and (ii) by the dipole layer at the surface of the
nanowire, which is usually different in A and B segments.
The potential created by the interface dipoles is actually
short-range (due to the finite cross section of the nanowire)
and decays over a few times the radius R. Therefore, in a
superlattice with long segments (Figs. 3 and 6), the surface
dipoles prevail over the interface dipoles a few R’s away from
the heterojunctions, so that the potential far from the A/B

interfaces is the same as in the corresponding pristine nanowire
and is just determined by the nature of the semiconductor and
its capping. In contrast, a superlattice with short segments
mostly experiences the average distribution of surface dipoles,
which cannot sustain a significant modulation of the potential
deep inside the nanowire (Fig. 5).

This can be put in a more quantitative way with a
simple model neglecting the dielectric mismatch between the
nanowire and its environment. The potential V ≡ Vsc created
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FIG. 7. (Color online) (a) 2D plot of the VB edge in a section
of a GaAs/AlAs nanowire superlattice surrounded by an AlAs shell
(core diameter dc = 5 nm, shell diameter ds = 6 nm; length of each
GaAs or AlAs segment l = 22.5 nm). (b) VB edge along the axis of
the nanostructure. The horizontal dashed lines indicate the VB offset
in the 2D GaAs/AlAs superlattice.

by a disk of interface dipoles with density P in a medium with
dielectric constant ε reads, along the symmetry axis z,

V (z) = 2πP

ε

[
z − zi√

R2 + (z − zi)2
− z − zi

|z − zi |
]

, (1)

where zi is the position of the disk. It features, as expected,
a discontinuity �V = 4πP/ε at z = zi , and decays as
V (z) � ±πR2P/[ε(z − zi)2] when |z − zi | � R. Likewise,
the potential created by a tube of surface dipoles extending
from z = zi to z = zj reads

V (z) = 2πP

ε

[
z − zi√

R2 + (z − zi)2
− z − zj√

R2 + (z − zj )2

]
. (2)

In the case of a single A/B interface at z = 0, the potential
therefore behaves on each side of the heterojunction as

V (z) � 4πPA

ε
− πR2

εz2
(PA − PB − PAB) if z � −R,

(3)

V (z) � 4πPB

ε
+ πR2

εz2
(PA − PB − PAB) if z � R ,

where PA and PB are the dipole densities at the surface of
materials A and B, and PAB is the dipole density at the
A/B interface. As discussed above, V (z) tends to 4πPA/ε

in material A, and to 4πPB/ε in material B, which are the
potentials in pristine A and B nanowires, respectively.

From a practical point of view, the VB and CB edges,
therefore, tend on each side of the interface to their values
in pristine A and B nanowires, with a typical ∝(R/z)2

asymptotic behavior. In general, the VB and CB discontinuities
at the interface do not match the difference of ionization
potentials and affinities so that the band edges do not make
a simple step: The difference between the affinities of many
semiconductor surfaces can deviate by a few hundreds of meV
from the corresponding CB offsets,46 and can be enhanced
by, e.g., grafting polar molecules, which make different dipole
distributions on each material.44,45 The band edges in pristine
A and B nanowires can be inferred from ionization potential
or electron affinity measurements, possibly corrected from
confinement effects (the ionization potential is the valence-
band edge plus the hole confinement energy, while the affinity
is the conduction-band edge minus the electron confinement
energy). The exact band-edge profiles away from the axis or in
inhomogeneous dielectric environments can be obtained from
a numerical solution of Poisson’s equation. If the dielectric
constants of the two materials are close (which is usually the
case), the drop of potential will be about the same on each side
of the interface, as evidenced in Figs. 3 and 6.

Appropriate summation of Eqs. (1) and (2) in a single layer
with thickness l (or in a superlattice) also confirms that the
potential is only weakly modulated by the surface dipoles when
l � R. The strong modulation of the band edges observed in
Figs. 3 and 6 is not, however, limited to nanosize wires, but can
actually be evidenced at any R provided the different segments
are long enough [since, according to Eq. (3), the potential
mostly depends on z/R]. In the case of an A/B nanowire
superlattice surrounded by an additional shell of A [Fig. 4(b)],
the dipole layer on the outer surface is homogeneous and only
induces a rigid shift of the inner potential. Since each B region
is completely surrounded by material A, there is just a constant
discontinuity at the A/B interface and the potential is basically
flat beyond the surfaces and interfaces, as easily verified from
Eqs. (1) and (2).

B. The role of the shell

As discussed above, the band edges make a simple step
at the interfaces in core/shell quantum dots and core/shell
nanowires (even embedding axial heterostructures). In fact,
one can show that the model of square wells and barriers is
valid in core-shell nanostructures with arbitrary geometries
when the interfaces are closed shapes with homogeneous
properties (same material or alloy everywhere on each side),
as is the case for Figs. 2 and 7. Indeed, the potential inside and
outside a closed surface S covered by a uniform distribution of
dipoles normal to S and with density P is given by (assuming
a homogeneous dielectric constant ε)

V (r) = P

ε

∫
S

d2r′n(r′) · r′ − r

|r′ − r|3 = P

ε
�S (r) , (4)

where �S (r) is the solid angle subtended by S at point r,
i.e., 4π if r is inside the volume delimited by S and 0 if it is
outside. Therefore, the potential is constant everywhere except
for a discontinuity at the surface. Actually, the argument also
holds if the dielectric constant is not homogeneous, but makes
a jump εin → εout across the surface S.
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This shows that the model of square wells and barriers
is valid in core-shell heterostructures, whatever their shape,
provided (sufficient conditions) that (i) the surfaces and
interfaces are closed shapes, (ii) the dipoles are normal to
these surfaces and interfaces, and (iii) their strength is uniform
enough. We have verified that fluctuations in the thickness
of the shell(s) lead to very small variations (a few meV) of
the band edges as long as they remain at least �5 Å thick
everywhere.

C. Invariance of the band offsets in nanostructures

In all cases, we have found that the discontinuity right
at the interface remains remarkably close to the planar limit
(at least for nanocrystals and nanowires with diameters �
2 nm). This behavior can be explained by the alignment
of the so-called charge-neutrality levels on each side of
the interface.38,39 The alignment of these levels is mainly
governed by local neutrality arguments, and therefore depends
weakly on size, dimensionality, and shape of the nanostructure.
In our calculations, these arguments also explain the weak
dependence of the discontinuity on V0.37 In contrast, the
variations of the band edges beyond the interface depend on
the environment, and in particular on the distribution of surface
dipoles that compete with the interface dipoles.

D. Effects of defects and doping

The conclusions drawn in this work also apply to defective
nanostructures. Charged surface defects would primarily shift
the potential, contributing the imbalance between the electron
affinities or ionization energies of, e.g., the different segments
of a nanowire heterostructure (especially if the density of
surface states is not homogeneous). If the nanostructures are
not intrinsic (intentional or unintentional doping by residual
impurities or surface traps), the free carriers might partly
screen the variations of the band edges. This effect is well-
understood already in planar heterostructures and can be
treated with the usual approaches (e.g., the effective-mass
Schrödinger-Poisson approximation for the free carriers), us-
ing the bare (unscreened) valence-band-edge profile computed
following the lines of this work as input.

V. OTHER NANOSTRUCTURES AND APPLICATIONS

With the help of the arguments of Sec. IV, we can
design nanostructures to expect significant modulations of
the band edges for applications to, e.g., photovoltaics or
sensors. We discuss an original shell design in Sec. V A, then
nanostructures with mixed 0D/1D dimensionality (dot-rod and
dumbbell heterostructures) in Sec. V B.

A. Nanowires with an inhomogeneous shell

In Fig. 8, we consider a GaAs nanowire that alternates
segments with an AlAs shell and segments without a shell.
This kind of heterostructure might be fabricated by AlAs
overgrowth over a GaAs nanowire followed by a selective
etching of the shell. This inhomogeneous shell does not
fulfill the conditions of Sec. IV B: the GaAs/AlAs interface
is not a closed shape. We can therefore expect significant

FIG. 8. (Color online) (a) VB edge along the axis of a GaAs
nanowire that alternates segments with an AlAs shell and segments
without a shell (core diameter dc = 5 nm, shell diameter ds = 6 nm;
length of each segment l = 22.5 nm). The potential would look like a
smoothed �0.35 eV step function around each interface when l → ∞
(same surface termination as in Fig. 3). (b) and (c) 2D plots of the
envelopes of the highest occupied and of the lowest unoccupied states,
respectively.

band-edge modulations in the core. The potential in the core
actually looks approximately like a sine function, because
the surface/interface dipoles drive the band edges to different
limits in each segment. Its overall shape can also be inferred
from Eq. (1). It would tend to a smoothed step function when
l → ∞, with a transition region around each shell extremity
of width ∝ R. Such structures efficiently separate carriers,
the holes being localized in the segments with a shell and
the electrons in the segments without a shell. Therefore, the
separation of electron-hole pairs, which is highly desirable for,
e.g., photovoltaics, does not necessarily require nanostructures
with type-II interfaces but can also be obtained with type-I
interfaces (Fig. 6), or even with homogeneous cores and
appropriate passivation (Fig. 8), which would limit carrier
diffusion. Large variations of the band edges can, in particular,
be expected in core/shell nanowires with no common atom.46,47

The sensitivity of nanowires to local modifications of their
surface (even by neutral polar species) is also attractive for
sensor applications.48 Note that inhomogeneous shells or
cappings are ubiquitous in nanowire devices, which can feature
different materials or stacks of materials in different parts of
the device.
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FIG. 9. (Color online) VB edge in a GaAs-quantum-dot/AlAs-
quantum-rod heterostructure (diameter of the core sphere and of the
cylindrical rod d = 3.2 nm; total length l = 17.2 nm). For clarity,
only atoms with r < 1.2 nm are plotted, where r is the distance to the
symmetry axis. The dashed horizontal lines indicate the VB offset in
the 2D GaAs/AlAs superlattice.

B. Nanostructures with a mixed (0D/1D) dimensionality

1. Dot-rod heterostructures

Figure 9 presents results for a nanostructure with a mixed
(0D/1D) dimensionality. An AlAs quantum rod is attached
to a spherical GaAs quantum dot. This type of structure
presently receives considerable attention.8–10 As expected
from nanowire superlattices, the VB edge varies along the
rod axis because it tends to the value for the pristine AlAs
rod. Interestingly, the VB edge shows similar variation in
the GaAs quantum dot in spite of its small size. Recently,
Borys et al.10 have shown that the interfacial energy transfer
in CdSe/CdS heterostructure nanocrystals depends strongly
on the particle morphology, for instance on the presence of
CdS bulbs around the CdSe core in CdSe/CdS nanorods.
Our results indeed suggest that the presence of these CdS
bulbs could considerably modify the VB and CB edges
in the nanostructures by changing the surface potential.
As discussed above, the interfacial energy transfer could
also be influenced by the presence of a barrier at the
interface.

2. Dumbbell quantum-dot heterostructures

The synthesis of nanoscale heterostructures in the form of
dumbbells has been recently reported.13 Figure 10(a) presents
the VB edge in a cylindrical GaAs nanorod on which AlAs
hemispheres have been grown at each tip. Although they have
a very small volume, the AlAs hemispheres have a profound
influence on the potential in the GaAs rod. As a consequence,
the highest occupied state is localized near the right interface
[Fig. 10(b)] while the lowest unoccupied state is centered in
the GaAs rod [Fig. 10(c)]. The localization of the highest
occupied level on the right side of the structure is due to a
small asymmetry in the dumbbell. There is another state with
almost the same energy on the left side.

FIG. 10. (Color online) (a) VB edge along the axis of a
GaAs/AlAs dumbbell quantum dot (diameter of the GaAs cylinder
and of the AlAs hemispheres d = 3.4 nm, length of the GaAs segment
l = 20 nm). (b) and (c) 2D plots of the envelopes of the highest
occupied and of the lowest unoccupied states, respectively.

VI. CONCLUSION

In summary, we have presented self-consistent tight-
binding calculations of nanoscale semiconductor heterojunc-
tions. We have developed algorithms and methods enabling
the study of 0D and 1D nanostructures containing more than
75 000 atoms per unit cell. Our analysis unveils the important
physics that determines the band edges at the nanoscale.
The band discontinuity right at the interfaces is found to be
almost independent of the shape, dimensionality, and size of
the nano-objects. Hence the notion of band offset is robust
in nanoscale heterojunctions, but the usual picture of square
wells and barriers is only valid in particular cases. Indeed, in
core-shell nanostructures with homogeneous shells, the band
edges have a simple steplike behavior as in the 2D case.
However, in nanowires or nanorods with axial heterostructures,
the band edges have a more complex behavior that is strongly
influenced by the nature of the surfaces (even if passivated).
Indeed, the surface dipoles control the inner potential far
from the interfaces, so that inhomogeneous surface termi-
nation leads to inhomogeneous band-edge profiles that can
trap or separate carriers. The electronic properties of such
axial heterostructures can therefore be tailored by surface
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manipulations, which opens up new opportunities for the
design of, e.g., nanoscale photovoltaics or sensor devices.
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COMPUTATIONAL DETAILS

As usual in tight binding,33,34 only the diagonal matrix
elements of V sc are considered. The potential on atom i is
written V sc

i = −e
∑

j qj /Rij − V mad, where qj is the charge
on atom j and Rij is the distance between atoms i and j . We
remove the bulk Madelung potential V mad from V sc

i , because
it is implicitly included in the tight-binding parameters (H0),
which account for the potential due to the ionic charges in
bulk. In periodic systems, V sc

i is calculated using the Ewald
summation method.

The most common prescription for self-consistent calcu-
lations is to diagonalize the Hamiltonian and compute the
charge from the occupied states. This approach is, however,
impractical if not impossible for systems with thousand of
atoms. We therefore compute the local density of states
ρi(E) = −ImGii(E)/π from the Green function G(E) of

the system, and then we use contour deformation techniques
to integrate ρi(z) in the complex plane. The net charge
converges (up to 10−6 electrons) with only 48 points on the
contour proposed in Ref. 40. The Green function G(z) is
efficiently computed with the knitting algorithm of Ref. 41.
The procedure can easily be parallelized and scales as R7

(instead of R9 for full diagonalization) in a nanocrystal
with radius R, so that self-consistency can be achieved in
just a few hours on 48 processors for tens of thousands
of atoms. The pseudohydrogen atoms are described by a
single s orbital with nearest-neighbor tight-binding parameters
Vssσ = −4.00 eV and Vspσ = 6.93 eV. The on-site s orbital
energy is equal to −0.85, 0.65, and 4.85 eV for pseudo-
hydrogen nearest-neighbor atoms of Ga, Al, and As atoms,
respectively. The on-site parameters have been adjusted to
minimize the charge transfers between pseudohydrogen and
semiconductor atoms (<0.1e) while achieving an ionization
potential �0.1 eV higher in (large) AlAs nanocrystals than
in GaAs nanocrystals. Some results presented in this paper
have been obtained using different on-site s orbital energies
equal to 0.22 and −0.42 eV for pseudohydrogen nearest-
neighbor atoms of Ga and Al atoms, respectively, which
increases the ionization potential difference up to 0.8 eV. We
emphasize that different sets of hydrogen parameters can reach
the same difference of ionization potentials (with different
charge transfers) but yield almost equivalent results. If the
charge transfer between pseudohydrogen and semiconductor
atoms becomes much larger, there is, as expected, stronger
lateral band bending near the surface of the nanowires, for
example, but with similar variations of the potential along the
nanowires.
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