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Extraction de galaxies dans les données hyperspectrales MUSE : une approche objet non supervisée

Il s'agit de détecter de manière automatique les galaxies présentes dans les cubes de données hyperspectrales issues du spectroimageur MUSE. Un processus objet est utilisé pour représenter de manière parcimonieuse les champs de données massifs MUSE. L'estimation conjointe des paramètres du modèle et de la configuration des galaxies présentes dans la scène imagée est effectuée de manière automatique, dans un contexte entièrement bayésien. Le modèle utilisé satisfait à un principe d'invariance par transformation affine, permettant de correctement prendre en compte les grandes variations de dynamique au sein du cube. Les galaxies sont extraites sur des cubes de données "quasi-réelles". Leurs spectres ainsi que les propriétés spectrales du fond astrophysique sont également estimés.

Introduction

Le projet d'instrument MUSE (Multi Unit Spectroscopic Explorer [START_REF]Official website of the MUSE project[END_REF]), destiné à l'ESO (European Southern Observatory) vise à fournir aux astronomes un instrument de nouvelle génération afin d'observer le ciel profond. Les performances de MUSE devront permettre de détecter des galaxies extrêmement lointaines (et donc très jeunes) qui sont jusqu'à 100 fois moins lumineuses que celles actuellement détectables. Prévu pour être associé au VLT à l'horizon 2012, cet instrument mesurera un spectre en chacun des points du champ de vue de 60×60 arcsec. Il délivrera ainsi des "cubes de données" composés d'une pile d'images, ou feuillets, acquises à 3578 longueurs d'onde différentes variant de 430nm jusqu'à 930nm. Pour chaque feuillet de ce cube, i.e. pour chaque image "monochromatique", la résolution spatiale est de 0.2×0.2 arcsec. Par conséquent, chaque acquisition fournit un cube de données de 1570Mo stockant 3578 images de 300 × 300 pixels chacune, et pouvant contenir les réponses de plusieurs milliers de galaxies qui existent sur des plages de longueurs d'onde éventuellement différentes. L'exploitation de champs de données aussi massifs nécessite alors de définir des algorithmes dédiés afin d'extraire automatiquement les galaxies présentes. Dans ce contexte, des approches par processus "objet" tels que des processus ponctuels marqués semblent particulièrement bien adaptées.

Un processus ponctuel marqué est un processus aléatoire dont les réalisations sont des configurations aléatoires d'ob-jets. Chaque objet y est modélisé par un point (sa position), ainsi que par des marques qui correspondent à ses propriétés, ici géométriques ou spectrales. Ces processus fournissent donc une représentation naturellement parcimonieuse d'une configuration d'objets d'intérêt, présents dans une image. Ils permettent en effet de se détacher du modèle numérique induit par l'image, pour mieux se rapprocher du modèle physique. Les problèmes de complexité calculatoire inhérents aux approches pixeliques (et dus à la dimension ou à la taille des données) sont alors considérablement réduits : le nombre de paramètres ne dépend que du nombre d'objets effectivement présents dans la configuration. Pour ces raisons, ces processus ont été largement utilisés au cours de la dernière décennie, tout particulièrement en imagerie de télédétection [START_REF] Descamps | Automatic flamingo detection using a multiple birth and death process[END_REF][START_REF] Ortner | A marked point process of rectangles and segments for automatic analysis of digital elevation models[END_REF]. Cependant, un problème majeur des approches développées précédemment réside dans leur grande sensibilité aux choix de certains "hyperparamètres" qui contrôlent les termes d'attache aux données et les a priori du modèle. Ces paramètres sont alors classiquement ajustés manuellement à une valeur ad hoc pour chaque jeu de données.

L'approche proposée dans ce travail consiste à se placer dans un contexte entièrement bayésien. Ainsi des a priori non-informatifs, peuvant être introduits à un second niveau de hiérarchie dans le modèle bayésien, sont pris en compte afin de modéliser ces paramètres. La loi a posteriori du modèle bayésien hiérarchique obtenu peut alors être échantillonnée à l'aide de méthodes de Monte Carlo par chaînes de Markov à saut réversibles (RJMCMC) classiques. Il s'ensuit un algorithme général et robuste permettant d'estimer ces hyperparamètres sur la base des seules données observées. En outre, la détection de la configuration des objets d'intérêt, i.e. les galaxies, est effectuée conjointement à l'estimation de ces paramètres.

Dans la littérature, les galaxies sont couramment modélisées à l'aide de composantes elliptiques [START_REF] Simard | The deep groth strip survey. ii. hubble space telescope structural parameters of galaxies in the groth strip[END_REF][START_REF] Peng | Detailed Structural Decomposition of Galaxy Images[END_REF]. Aussi les galaxies sont-elles représentées comme des objets elliptiques dans notre modèle de processus ponctuels marqués.

Ce papier est organisé de la manière suivante. Le modèle bayésien de processus ponctuel marqué est présenté dans la partie 2, les grandes lignes de l'algorithme d'échantillonnage y étant également esquissées. Les résultats obtenus sur des données "quasi-réelles" sont présentés dans la partie 3.

Modèle bayésien

Dans la suite, on note y λ le vecteur M ×1 qui correspond au feuillet du cube hyperspectral associé à la longueur d'onde λ, représenté sous forme vectorisée. La configuration des objets est notée u = {u 1 , u 2 , . . .} et on désigne par n(u) le nombre d'objets présents dans cette configuration. Il est important de remarquer que la configuration des objets u est supposée commune à tous les feuillets du cube hyperspectral. Par conséquent, cette configuration ne dépend pas de longueur d'onde λ considérée.

Modèle d'observation monochromatique

Pour une longueur d'onde λ donnée, le modèle d'observation utilisé est défini comme :

y λ = s λ + 1m λ + n λ , (1) 
où m λ > 0 représente la valeur moyenne du fond astrophysique, 1 = (1 . . . 1) T est le vecteur unitaire M ×1 et n λ est un vecteur M × 1 correspondant à un bruit blanc gaussien centré de variance σ 2 , qui reflète les fluctuations du fond astrophysique. Le vecteur s de taille M × 1 correspond à la réponse de l'instrument à une configuration de galaxies u dans la scène imagée. Le signal s est modélisé comme u) est le vecteur des intensités associées à chacun de ces objets à la longueur d'onde λ. Les équations précédentes illustrent le fait que le problème direct ainsi considéré correspond à un mélange linéaire de sources. Soulignons que la contrainte de positivité des intensités w i,λ n'est pas détaillée dans cet article.

s λ = X λ w λ , où X λ = x 1,λ . . . x n(u),λ ∈ R M ×n(u) est la matrice composée des réponses x i,λ du système d'imagerie associées à chaque objet u i (supposé d'intensité unitaire) et w λ = (w 1,λ , . . . , w n(u),λ ) T ∈ R n(
Sous l'hypothèse d'indépendance des observations associées aux différents feuillets, la vraisemblance s'obtient alors comme le produit des vraisemblances associées à chaque feuillet λ :

f (y λ |u, m λ , σ 2 λ ) = 1 2πσ 2 λ M 2 exp - Z T λ Z λ 2σ 2 λ , (2) 
où Z λ = y λ -1m λ -X λ w λ . Pour des raisons de brièveté, la dépendance par rapport à λ sera omise dans le reste de l'article.

A priori sur les paramètres

Un a priori non-informatif impropre est choisi pour le couple de paramètres (m, σ 2 ) : p(m, σ 2 ) = 1 σ 2 1 (0,+∞) 2 (m, σ 2 ), un a priori gaussien de Zellner [START_REF] Zellner | Bayesian Inference and Decision Techniques : essays in honour of Bruno de Finetti, chapter On assessing prior distributions and Bayesian regression analysis with g-prior distribution[END_REF] étant choisi pour le vecteur des intensités :

w|u, σ 2 , g 2 ∼ N 0, g 2 σ 2 (X T X) -1 .
Il est important de noter que ces a priori satisfont à un principe d'invariance : toute transformation affine des mesures y, ou de la base de décomposition du signal X, transforme la distribution a posteriori et donc les estimées de la même façon. Les grandes variations de dynamique entre les différents feuillets observés pourront alors être correctement pris en compte. De plus, il est intéressant de remarquer que l'hyperparamètre g 2 représente le rapport signal à bruit (RSB) de la scène observée puisque

g 2 = E[s T s] E[n T n]
. Finalement, une structure bayésienne hiérarchique est introduite en choisissant un a priori conjugué pour l'hyperparamètre g 2 de la forme p(g 2 ) ∝ 1 (1+g 2 ) 1+α . Notons que ce dernier a priori ne satisfait plus au principe d'invariance. Néanmoins, le paramètre g 2 étant déjà une grandeur normalisée (un RSB), le choix de l'hyperparamètre α ne s'avère pas crucial quant à la robustesse du modèle (typiquement, des valeurs telle que α = 10 -3 garantissant une loi suffisamment vague sont suffisantes).

Distribution a posteriori conditionnellement à une configuration u

La distribution a posteriori des paramètres, conditionnellement à une configuration u, se déduit directement de la vraisemblance associée au problème direct ainsi que des a priori introduits au paragraphe précédent selon la formule de Bayes.

p(w, m, σ 2 , g 2 |u, y) ∝ 1 2πσ 2 M +n(u) 2 +1 1 g 2 n(u) 2 × exp - Z T Z + 1 g 2 w T X T Xw 2σ 2 × 1 (1 + g 2 ) α+1 1 (0,+∞) 2 (m, σ 2 ) (3)
Le modèle ainsi obtenu dépend néanmoins du vecteur w qui représente un très grand nombre de paramètres d'intensité par feuillet, ce qui s'avère notamment inefficace du point de vue échantillonnage. Par conséquent, ces paramètres sont par la suite considérés comme des paramètres de nuisance. Ceci conduit à intégrer la loi a posteriori par rapport à ces paramètres afin d'obtenir la loi a posteriori marginalisée suivante :

p(m, σ 2 , g 2 |y, u) ∝ 1 σ 2 M 2 +1 1 1 + g 2 n(u) 2 +α+1 × e - (y-1m) T I- g 2 1+g 2 X(X T X) -1 X T (y-1m) 2σ 2 × 1 (0,+∞) 2 (m, σ 2 ). (4) 

A priori sur la configuration et distribution a posteriori

La configuration d'objets u = {u 1 , u 2 , . . .} correspondant aux galaxies est modélisée comme un processus ponctuel marqué [START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF] défini par référence à la mesure d'un processus de Poisson homogène d'intensité β défini sur l'espace produit des espaces des points et des marques. Un terme de pénalisation "hardcore" est introduit afin de régulariser la solution et d'éviter les détections multiples :

h(u) = 0 si ∃i = j tel que max s∈u i ∩u j x i,s s∈u i x i,s , s∈u i ∩u j x i,s s∈u j x i,s > t,
1 sinon, où s ∈ u k désigne l'ensemble des pixels appartenant au support spatial de l'objet k, x k,s est la réponse associée à cet objet au pixel s, et où t est fixé à la valeur déterministe t = 1 2 . Ainsi, les configuration où deux objets dont les réponses via l'instrument partagent plus de la moitié de leur puissance sur la même région sont interdites. De plus, un second niveau de hiérarchie est introduit en choisissant un a priori non-informatif impropre sur l'intensité β du processus : p(β) = 1/ √ β. Après marginalisation par rapport à ce paramètre, on obtient l'a priori suivant 3 Echantilloneur à saut réversible L'algorithme RJMCMC utilisé pour échantillonner conjointement la configuration des objets et les hyperparamètres fait intervenir plusieurs types de mouvements : 1) des mouvements simples pour mettre pour mettre à jour les hyperparamètres (mouvements de type Gibbs, ou Gibbs par bloc) ou les caractéristiques géométriques des objets de la configuration, et 2) des mouvements plus complexes qui modifient la dimension du modèle (naissance/mort,...). Ces différents mouvements sont ensuite aléatoirement sélectionnés dans la chaine.

p(u) ∝ Γ (n(u) + 1/2) h(u)µ(u), (5) où Γ(a) 

Echantillonnage des paramètres

Les lois conditionnelles des paramètres, étant donné les autres, qui peuvent être obtenues directement à partir de (4), sont utilisés comme lois de proposition. Il s'ensuit des mouvements de Gibbs, les mises à jour des paramètres étant effectuées séquentiellement dans la dynamique de la chaîne.

Echantillonnage des paramètres du fond

(m, σ 2 ) On note ν = M -1, et W = I - g 2 1 + g 2 X(X T X) -1 X T , δ 2 = (1 T W 1) -1 , m = δ 2 1 T W y, s 2 = ν -1 δ 2 y T W y -δ 2 (1 T W y) 2 . (7) 
A partir de (4) et [START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF], il vient que le paramètre de variance

σ 2 est distribué selon la loi Inverse-Gamma σ 2 |(m, g 2 , y, u) ∼ IG M 2 , 1 2δ 2 (νs 2 + (m -m) 2
) . En intégrant maintenant σ 2 , il vient que le paramètre m est conditionnellement distribué selon une loi de Student tronquée positive T + (ν, m, s) de degré de liberté ν, de paramètre de location m, et de paramètre d'échelle s :

p(m|g 2 , y, u) ∝ ν + m - m s 2 -ν+1 2 1 (0,+∞) (m).
Ceci conduit à considérer le mouvement de Gibbs par bloc suivant :

1. simulation de m|(λ 2 , y, u)

∼ T + (ν, m, s), 2. simulation de σ 2 |(m, λ 2 , y, u) ∼ IG( M 2 , 1 2δ 2 [νs 2 +(m- m) 2 ]).

Echantillonnage du paramètre de RSB g 2

A partir de (4), la loi a posteriori de g 2 s'obtient comme

p(g 2 |m, σ 2 , y, u) ∝ 1 1 + g 2 n(u) 2 +α+1 e - β 1+g 2 , où β = (y -1m) T X(X T X)X T (y -1m)/(2σ 2 ). Ceci mon- tre que la variable v = 1 + g 2 est distribuée selon une loi Gamma G (∞,+∞) ( n(u)
2 + α, β) tronquée sur (1, +∞) qui peut être simulée directement. La variable g 2 est alors mise à jour comme g 2 = v -1.

Mouvements sur la configuration

Afin de simuler la configuration des objets, des mouvements de naissance/mort sont effectués. Pour une configuration u donnée, on note p B (u) la probabilité de choisir le mouvement de naissance, p D (u) = 1-p B (u) étant la probabilité de choisir le mouvement réversible (mort) (en pratique, p B (u) = p D (u) = 1/2).

Dans le cas d'une naissance, le nouvel objet proposé v est tiré indépedemment de la configuration u selon le processus de Poisson de référence. Dans le cas d'une mort, l'objet proposé pour être supprimé est sélectionné uniformément dans la configuration courante, donc avec une probabilité p S (u i |u) = 1/n(u).

Finalement, pour une naissance, la configuration proposée est v = u ∪ {v} et le rapport de Metropolis-Hastings-Green a pour expression

r(u, v) = p D (v) p B (u)
p(v, θ|y) p(u, θ|y) p S (v|v).

Dans le cas d'une mort, la configuration proposée est v = u\{u i } et le rapport de Metropolis-Hastings-Green devient

r(u, v) = p B (v) p D (u)
p(v, θ|y) p(u, θ|y)

1 p S (u i |u)
. 

Résultats

L'algorithme décrit précédemment a été appliqué sur un cube de données "quasi-réelles" synthétisé par le CRAL [START_REF]Official website of the CRAL laboratory[END_REF] dans le cadre de l'ANR Dahlia [9]. Ces données synthétiques reproduisent de manière extrêmement fidèle (d'un point de vue statistique, en terme de RSB, de densité d'objets, de contenu spectral,...) les données qui seront acquises par l'instrument MUSE.

Le cube ainsi étudié a été partiellement intégré par rapport à λ : au lieu de considérer les 3578 longueurs d'onde, de fines tranches provenant de l'intégration de 8 longueurs d'ondes consécutives sont prises en compte. Il en résulte un nouveau cube réduit de taille 300 × 300 × 448. Le profil des intensités associées à chaque ellipse u i est modélisé comme une densité gaussienne bivariée f 2D pour laquelle l'ellipse u i est une surface d'iso-probabilité au niveau α : (x,y)∈ui f 2D (x, y)dxdy = 1α. Une projection (intégration par rapport à λ) du cube débruité, où le bruit et le fond astrophysique estimés ont été soustraits, est représentée Fig. 1 (en niveau de gris inversés). Les contours des 384 galaxies détectées sont également représentés en rouge. Ces premiers résultats s'avèrent très encourageants. Différents exemples caractéristiques de spectres estimés parmi les galaxies détectées sont tracés sur la figure 2. La première ligne correspond à des spectres de galaxies brillantes, alors que sur la seconde sont représentées des galaxies faibles et probablement distantes. Ce sont ces dernières qui sont particulièrement intéressantes en vue de l'interprétation astrophysique. 

Conclusions

Un processus ponctuel marqué bayésien a été proposé afin d'extraire et estimer automatiquement les galaxies observées dans les cubes de données MUSE. Différentes perspectives se dégagent parmi lesquelles la prise en compte d'un modèle réaliste de la fonction d'étalement du point de l'instrument, ou encore l'amélioration du modèle afin de mieux prendre en compte les grandes variations de dynamique entre les différents objets détectés.
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 01 -t dt est la fonction Gamma classique et µ la mesure d'un processus de Poisson d'intensité unitaire. La loi a posteriori jointe de la configuration u et du vecteur de paramètre θ = (m, σ 2 , g 2 ) se déduit finalement comme p(u, θ|y) ∝ p(θ|u, y)p(u) (6) où p(θ|u, y) et p(u) représentent respectivement la loi a posteriori sur les hyperparamètres (4) et l'a priori sur la configuration (5).
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 1 FIGURE 1 -Projection du cube débruité (niveaux de gris inversées) et contours (rouge) des 384 galaxies détectées

FIGURE 2 -

 2 FIGURE 2 -Exemples de spectres estimés sur la configuration détectée. Courbe bleue : galaxie, courbe noire : fond astrophysique, ligne haut : galaxies brillantes, ligne bas : galaxies faiblement brillantes