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ABSTRACT

This paper deals with the analysis of brain functional network using

fMRI data. It recapitulates the concept of decomposable connec-

tivity graph. Graphs are a usual tool to represent complex systems

behavior, although edge strength estimation issues have not yet re-

ceived a universally adopted solution. In the framework of linear

Gaussian instantaneous exchanges, the well known partial correla-

tion is usually introduced. However its estimation remains a chal-

lenge for highly connected or dense systems. Here, we propose to

combine a wavelet decomposition and a graphical Gaussian model

approach relying on decomposable graphs. This is shown to im-

prove the estimations of brain function networks in the presence of

long range dependence; the results are compared to those obtained

with classical partial correlation estimators.

Index Terms— functional MRI, brain connectivity, partial cor-

relation, graphical Gaussian model, maximum likelihood, decom-

posable graphs

1. INTRODUCTION

The observation and description of the living brain has attracted a

lot of research during the last centuries. First, it has been shown

that brain areas can be associated to a specific function, which is

called phrenology. However, during the 19th century, a connection-

ist approach was introduced in order to model the brain as a global

complex function. Since the development of functional Magnetic

Resonance Imaging (fMRI), it is possible to observe the whole liv-

ing brain during several minutes with a high spatial resolution (vox-

els up to one mm3) and a temporal resolution of one or two seconds.

Consequently, some authors [?] attempt to model and characterize

brain functional connectivity networks.

Indeed, neuroimagery provides us with time series, associated

with voxels, which correspond to the information processed by a

brain area in time. These data have brought to light the dynamic

nature of the brain, which follows complex time patterns. The

complexity of the signals obtained from fMRI prevents from using

classical statistical techniques to analyse the dependence between

time series. Prior works [?, ?, ?] have shown that brain dynamics

are typically long memory with fractal scaling properties, and that

brain function networks have a complex, modular, small-world or-

ganization which is topologically conserved over multiple frequency

scales.

The approach introduced in [?] consisted in using wavelets to

take into account the long memory property of the fMRI time se-

ries after averaging the voxels for a given anatomical brain region.
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Then, the brain function networks were extracted using pairwise cor-

relations of the wavelet coefficients. Thanks to this approach, the

fMRI time series can be assumed to be Gaussian, and we propose to

combine a wavelet decomposition and a graphical Gaussian model

approach [?] in order to improve the estimations of brain function

networks.

Section 2 presents the concept of conditional dependence, and

its relation to correlation and partial correlation estimators. In sec-

tion 3, we recall the maximum likelihood estimator for graphical

Gaussian models. Finally, in section 4, the two approaches are com-

pared on simulated multivariate data with long memory properties

and a fixed model of connections extracted from real fMRI data.

In the sequel of the paper, all the estimations will be based on

the wavelet coefficients extracted at a given scale. We will denote

(x1, . . . ,xn), the wavelet coefficients obtained at a specific scale.

In the context of maximum likelihood estimations, (x1, . . . ,xn) is

assumed to be independent which is a reasonable hypothesis since it

has been shown that for long memory time series the wavelet coeffi-

cients are stationary and asymptotically decorrelated [?].

2. INSTANTANEOUS CONDITIONAL DEPENDENCE

Let xt
i , t ∈ {1, . . . , n} be the time series associated to the voxel

of index i, i ∈ V = {1, . . . , p}. Connectivity between voxels will

be assessed by studying dependences between the associated time

series. For practical issues, dependence analysis is often restricted to

linear dependence between time series [?], and the analysis is sum-

marized by the variance or covariance matrix of the p dimensional

multivariate process x
t = (xt

1, . . . , x
t
p)

T . An appealing approach

is to relate high correlation value (eventually normalized) to the

existence of an ’information exchange’ between the time series.

This leads to a major pitfall: two series may seem dependent of

each other and exhibit a high correlation, although they are not ’con-

nected’. This situation appears if both voxels receive information

from a common third one, whilst they are independent conditionally

to that voxel. The importance of conditioning was already quoted

in Granger’s seminal work [?], and was recently revisited in a non

Gaussian framework, for directional dependences [?].

In this paper, linear dependence model and Gaussian processes

are considered. Therefore, covariance provides an exhaustive repre-

sentation of the available information. Furthermore, only instanta-

neous dependence is considered here. All possible conditioning in

the instantaneous dependence between two series (xt
i , x

t
j) is taken

into account by evaluating the correlations between the innovations



processes εti and εtj defined below. Let

HV \{i,j}
k = span

{
xk
l , k ∈ V \ {i, j}

}

be the Hilbert subspace spanned all the observations but xt
i and xt

j .

The best (MS sense) linear estimator of xt
i , given HV \{i,j}

t writes

x̂t
i = P

(
xt
i|HV \{i,j}

t

)

where P(x|H) denotes the orthogonal projection of x on H. The

corresponding innovation is given by εti = x̂t
i − xt

i . The partial

correlation pi,j between the two series is defined as
{

ki,j = −cov[εti, ε
t
j ]

pi,j =
ki,j√
ki,ikj,j

for all 1 ≤ i, j ≤ p (1)

Equation (1) is an important result from multivariate analysis. It

states that the components of [P ]i,j = pi,j for the partial correlation

matrix are directly derived from the ki,j = [K]i,j = −[Σ−1]i,j for

i 6= j, where Σ−1 is the inverse of the covariance matrix of xt [?].

Note that the partial correlation matrix P satisfies −1 ≤ pi,j ≤ 1,

∀{i, j} ∈ V 2. Estimating P may be tackled in two ways; either it is

inferred by computing the inverse of the sample covariance matrix

Γ or it is directly estimated. In the former case, the estimator will

be noted P̂emp. This paper focuses on the latter approach, where a

robust estimation of P based on decomposable graph representation

is derived in the context of long range dependent process.

3. MAXIMUM LIKELIHOOD ESTIMATION FOR

GRAPHICAL MODELS

Graphical models are classically used to characterise conditional in-

dependence constraints between random variables. Let G = (V,E)
be an undirected graph, where V = {1, ..., p} denotes the set of

nodes, while E is the set of undirected edges (i, j) ∈ V × V . Then,

a multivariate model indexed by V is said to be Markov with respect

to the graph G if for any edge (i, j) in E, the ith and jth variables

are conditionally independent given all the other variables (see [?]

for more details on graphical models).

3.1. Graphical Gaussian Models

Let x be a p-dimensional centered Gaussian vector Np(0,Σ) whose

elements are indexed by V . Define K = Σ−1 to be the so-called pre-

cision matrix of x. A fundamental result about graphical Gaussian

models is that the Markov property induced by the graph G is equiv-

alent to impose some sparsity constraints on K = (ki,j)1≤i,j≤p:

ki,j = 0 for all (i, j) /∈ E. (2)

Consider now a sample (x1, . . . ,xn) from the graphical Gaussian

model associated with G. From the density expression of a Gaussian

vector, the likelihood is expressed as

p(x1, . . . ,xn;K) ∝ det(K)n/2 exp
[
−n

2
trace (KπG(Γ))

]
,

(3)

where Γ = 1
n

∑n
i=1(x

i)(xi)T is the sample covariance matrix,

πG(·) denotes the projection operator associated with the topology

of G:

πG(A) =

{
aij if (i, j) ∈ E,

0 otherwise,
(4)

and K belongs to the convex cone PG of symmetric definite ma-

trix satisfying the linear constraints (2). Expression (3) shows that

the graphical Gaussian model describes an exponential family with

canonical parameter K ∈ PG and sufficient statistic with the incom-

plete sample covariance πG(Γ). As a consequence, the maximum

likelihood estimator (MLE) K̂ of the precision matrix K is well de-

fined and exists with probability one for large enough sample size n.

Numerical iterative methods, such as Iterative Proportional Scaling

[?, p. 134] have been derived to evaluate this MLE. More recently,

covariance selection methods, with ℓ1 penalization to enforce spar-

sity, have received a great attention [?, ?, ?]. These last methods

aim at estimating jointly the entries of the covariance (or precision)

matrix and the conditional independence structure. However, even

when this structure is known, it is not possible to derive a tractable

analytic expression of the MLE in the general case.

3.2. Decomposable Graphical Gaussian Models

First, we recall that the cliques of a graph correspond to the max-

imal complete subgraphs, i.e. the fully connected subgraphs that

are not included in another fully connected subgraphs. A graph is

said to be decomposable if it admits a perfect ordering of its cliques

(C1, . . . , Ck): for i = 2, . . . , n, it exists l < i such that

Si = Ci

⋂
[
i−1⋃

j=1

Cj

]

⊆ Cl.

The sets Si are called the separators. In this case, the likelihood of

the graphical Gaussian model specified by G can be factorized

p(x;K) =

∏k
i=1 p(xCi

;KCi
)

∏k
i=2 p(xSi

;KSi
)
, (5)

where xA denotes the subvector of x corresponding to the elements

indexed by A ⊂ V , while KA stands for the inverse of the covari-

ance submatrix ΣA corresponding to the entries of Σ indexed by

A×A ⊂ V × V . Note that a necessary and sufficient condition for

decomposability is that the graph does not contain a cycle of length

greater than or equal to four as an induced subgraph (decomposable

graphs are also called triangulated or chordal graphs).

This hypothesis is in agreement with the concepts of hierar-

chy, modularity and “nearly-decomposability” (strong interactions

between the elements of a subsystem, here the elements of a clique,

and weaker interactions among the subsystems, here conditional in-

dependence of the cliques given a set of separators) introduced by

Simon [?] to characterize complex systems.

A consequence of property (5) is that the MLE of K admits the

following closed form expression

K̂MLE =
k∑

i=1

[
Γ−1
Ci

]0 −
k∑

i=2

[
Γ−1
Si

]0
, (6)

where Γ is the sample covariance matrix, and [MA]
0, for A ∈ V ,

denotes the completion on V of the submatrix MA with zero values.

Equation (6) ensures that the MLE exists with probability one if and

only if the sample size n is greater than or equal to the cardinal of

the clique with maximal size nC = max1≤i≤k |Ci|.
Furthermore, based on the MLE expression, the minimal vari-

ance unbiased estimator (MVUE) has been recently derived in [?]

K̂MVUE =

k∑

i=1

n− |Ci| − 1

n

[
Γ−1
Ci

]0 − n− |Si| − 1

n

k∑

i=2

[
Γ−1
Si

]0
.



Henceforth, we will focus on the estimation of the partial cor-

relation matrix (1). Partial correlations present the advantage to be

invariant from some scale changes that occurs in fMRI experiments.

By functional invariance principle, the MLE of P denoted as P̂MLE

is obtained directly by plugging K̂MLE in (1).

We will also consider the plug-in MVUE denoted as P̂PMVUE

derived by plugging K̂MVUE in (1). Note that this estimator of P
may be biased, even if it is based on the MVUE of K.

4. SIMULATION RESULTS

4.1. Data generation

A surrogate data generation approach has been adopted to allow for

realistic comparisons between the aforementioned estimators. First

a real fMRI dataset is considered as a basis for computing a real-

istic sparse precision matrix K, hence a graph of dependencies. In

order to achieve this step, the fMRI time series are first gathered

into ninety (p = 90) distinct components according to spatial con-

siderations. The sample correlation matrix is estimated on wavelet

decomposition on the frequency band 0.02-0.04 Hz (see [?] for de-

tails).

The resulting observed sample correlation matrix is then thresh-

olded (by keeping the highest ones among the absolute pairwise cor-

relations) such that the precision matrix K only contains sparse non-

zero entries. Among the
p(p−1)

2
= 4005 available off-diagonal en-

tries of the precision matrix, only 700 have been retained.

In the next step the artificial data generation is achieved by con-

trolling three crucial characteristics of the p = 90 times series,

namely the correlation matrix, the Hurst exponents, and the spectrum

of the series. An R1 [?] implementation of the algorithm described

in [?] by the authors allowed the generation of series of arbitrary

length, from 256 to 4096 points. The correlation matrix of the ar-

tificial multivariate series is set to the one extracted from real data.

Hurst exponents of the p series were set to 0.7. The rationale behind

this generation procedure is that clear long range memory effects

(Hurst exponents strictly greater than 0.5) have been observed in real

datasets, which results in biased correlation estimations mainly in-

fluenced by low-frequency components [?].

In order to alleviate long range dependence, a wavelet transform

is used to decompose the signal into successive scale-specific com-

ponents. In the sequel of the paper, only coefficients of the wavelet

transform at scale three are retained. Therefore the resulting time se-

ries used for the estimation are composed of various length between

32 and 512 points.

4.2. Graph triangulation

The realistic precision matrix used in the simulation does not yield a

decomposable graph. In this case, it is quite natural to embed it in a

decomposable graph by adding some edges. The resulting graph is a

so-called triangulation of the input graph: the induced cycles whose

length are greater than 4 are triangulated by adding new edges. Find-

ing the minimal width triangulation, i.e. that minimizes the number

of edges to be added, is NP-hard. However suboptimal solution can

be derived efficiently by node elimination heuristics. In this simula-

tion, a minimum degree heuristic is used for the triangulation [?]. It

results in a decomposable graph derived by adding 141 edges to the

original graph. The triangulation and factorization tasks have been

1Parts of the procedure are made available in the R package called brain-

waver

performed by using the java JPSGCS package [?]. The sparsity pat-

terns of the corresponding precision matrices are depicted in fig. 1.

It is important to note that even if a few conditional dependences

are artificially added in the model, the estimates of their magnitude

should be quite small.
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Fig. 1. Top: Anatomical representation of the 700 selected connec-

tions where short, < 7.5cm, (resp. long) euclidean distances are

grey (resp. black). Bottom: Pattern of the nonzero entries in the pre-

cision matrix. Marker •: before triangulation, marker ×: additional

edges due to the triangulation.

In this simulation, the maximal clique size of the decomposable

graph is nc = 28. Therefore, the MLE derived from the decompos-

able graphical Gaussian model is defined with probability one when

the sample size n is greater than or equal to 28.

4.3. Estimation performance

In order to appreciate the performance of the considered partial

correlation estimators, this section studies their mean square errors

(MSEs). Several experiments have been conducted correspond-

ing to different sizes of the wavelet coefficient time series, namely

n = 32, 64, 128, 256 or 512. For each experiment, the number of

Monte-Carlo runs is 1000.

In the simulations, the MSE are computed as

MSE (P̂ ) = E

[
||P̂ − P ||2

]
, (7)

where ||A|| =
√

trace (AAT ) is the classical Frobenius norm. It

is important to note that, by construction, the MSEs of the graphical



estimators P̂MLE and P̂PMVUE equal zero for all the entries indexed

by (i, j) /∈ E. This is not the case for the regression estimator P̂emp,

for which there is no prior on the covariance structure of the model.

Thus, to perform a fair comparison, only the errors corresponding

to the non fixed to zero entries in the precision matrix K are taken

into account. It leads to consider MSE
(
πG(P̂ )

)
. Finally the MSEs

are normalized by dividing by the number of nonzero entries in the

considered matrix. Thus, it corresponds to the average of the MSEs

associated with each nonzero entry of the partial correlation estima-

tor.

Fig. 2(a) displays the decimal logarithm of the normalized MSEs

of πG(P̂ ) as a function of the decimal logarithm of the sample size.

It shows that all the estimators have similar performance for large

enough samples. However, for small samples, the MLE appears well

behaved and clearly outperforms the regression estimator when it

exists, i.e. when n ≥ 90. More surprisingly, the MLE appears to

be also more accurate than the one derived from the MVUE of the

precision matrix.

Finally, fig. 2(b) displays the normalized MSEs associated with

the set of edges T added during the triangulation step. It is inter-

esting to note that the estimators behave quite similarly than on the

whole graph G. This result also illustrates that although the con-

straint of equality to zero has been relaxed, the maximum likelihood

estimates of the partial correlation associated with these edges are

very close to zero.

(a) Average MSEs over all the decomposable graph
edges
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(b) Average MSEs over the triangulated edges

Fig. 2. log10 normalized MSEs of the partial correlation estimators

vs the log10 of the sample size. Red solid line: MLE, blue dotted

line: PMVUE, black dashed line: P̂emp Estimator.

5. CONCLUSION

In this paper, we illustrated the potential of ML approaches for es-

timating partial correlation on decomposable graphs. In the case of

fMRI data exhibiting long range dependences, such graphs are con-

structed on wavelet transformed series. Although extracted graphs

from real data sets do usually not satisfy the decomposability prop-

erty, it may be forced by triangulation. It is shown that ML estima-

tion of partial correlation on the forced decomposable graph exhibit

good performances, even for small sample size. A future work will

focus on model selection for brain connectivity networks, as sug-

gested by Dempster in [?], with this new estimation scheme.


