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Static ferromagnetic materials: from the microscopic to the mesoscopic scale

Thanks to averaging processes and Γ-convergence techniques, we are able to link a microscopic description of ferromagnetic materials based on spin lattices and their mesoscopic description in the static framework for the three fundamental contributions: exchange, magnetostatics and external.The results are in accordance with the classical continuous description of ferromagnetic phenomena and justifies it. This work is a seed towards a dynamic description of ferromagnetic materials.

Introduction

The continuous description of ferromagnetic materials has been introduced since the 1960 via the micromagnetism model developed by Brown [START_REF] Fuller Brown | [END_REF]. This model, based on a thermodynamical description of ferromagnetic phenomena, has proved its efficiency in numerous works via relevant simulations ( [START_REF] Boust | 3D dynamic micromagnetic simulations of susceptibility spectra in soft ferromagnetic particles[END_REF][START_REF] Fuller Brown | Structure and energy of one-dimensional domain walls in ferromagnetic thin films[END_REF][START_REF] Fisher | Grainsize dependence of remanence and coercive field of isotropic nanocrystalline composite permanent magnets[END_REF][START_REF] Vukadinovic | Influence of magnetic parameters on microwave absorption of domain mode ferromagnetic resonance[END_REF]). Nevertheless, several problems persist in the description, from the thermic effects to the magnetostrictive behaviors. These problems are very sharp and, in order to understand their modeling, one need to understand the microscopic behavior of magnetization (atomic scale) and the link between this scale and the mesoscopic scale (continuous magnetic matter scale of ferromagnetic effects). In this paper, we focus on the beginning of this program: the link between a microscopic description of ferromagnetic materials and their mesoscopic description in the static framework for the three fundamental contributions: exchange, magnetostatic and external field [START_REF] Aharoni | Introduction to the theory of ferromagnetism[END_REF][START_REF] Halpern | La théorie du micromagnétisme. Modélisation et simulation du comportement des matériaux magnétiques[END_REF][START_REF] Labbé | Microwave polarizability of ferrite particles with non-uniform magnetization[END_REF]. Here, the microscopic scale designates the atomic scale where atom nuclei are assumed to be pointwise electric charges bearing one magnetic moment induced by the atom electronic cloud; the mesoscopic scale designates the continuous description of matter for which the ferromagnetic effects are significative. One of the first formal approach of the link between the mesoscopic behavior of ferromagnetic materials and a microscopic thermodynamic description of this behavior can be found in [START_REF] Fuller Brown | Magnetoelastic Interactions, volume 9 of Tracts in Natural Philosophy[END_REF] for a model focused on the magnetoelastic phenomenon. In this book, the authors gives a formal approach of the asymptotics.

We can cite also several mathematical studies connected to the problem we study in this paper. First, in [START_REF] James | Internal variables and fine-scale oscillations in micromagnetics[END_REF], authors study the convergence of energies for given sequences of magnetizations and various oscillatory behaviors of the magnetization. This approach does not consider the convergence of minimizers but of energies and shows the importance of controlling local oscillations of the magnetization in order to obtain a micromagnetic model which ensures that the modulus of the limit magnetization is constant on the ferromagnetic domain. We can also mention the study performed in [START_REF] Schlmerkemper | Mathematical derivation of the continuum limit of the magnetic force between two parts of a rigid crystalline material[END_REF] who emphasizes the importance of controlling local oscillations of the magnetization in order to compute the limit magnetostatic interactions. This study is a derivation of the interaction forces between two magnetic bodies for given magnetic configurations built from the microscopic interactions between magnetic moments. It gives interesting information about the magnetostatic field of a body depending on the local regularity of the magnetization. The study of the limit mechanical stress is also studied in [START_REF] Desimone | On the continuum theory of deformable ferromagnetic solids[END_REF] where the authors build a theory for the description of deformable magnetic bodies. A micro-meso approach is adopted in order to justify, from microscopic well interactions of dipoles, the interaction at the meso-scale, but this does not tackle the problem of the limit of minimizers. Nevertheless, in [START_REF] Alicandro | Variational analysis of the asymptotics of the XY model[END_REF], a study of the minimizer convergence is performed in the case of Ginzburg-Landau systems. Authors focus on a Γ-convergence with a Dirichlet energy where the limit constraint is the divergence-free condition and not the constraint on the local modulus of the obtained field. In this case, the constraint on the modulus derives from a penalization term and not from the modeling hypothesis.

In our paper, we are interested in the convergence of minimizer sequences of the microscopic description of ferromagnetic materials toward a continuous micromagnetic description which respects the constraint of uniformity of the local modulus of the magnetization. This constraint is obtained by a hypothesis on the local variations of the magnetization. In particular, this control of the local variation induced by the Heisenberg interaction model has to be tempered with a hypothesis on allowed defects. Forgetting defects would give rise to a constrained system and in particular limits in H s pΩq for s strictly greater than 1. Such a regularity would not allow key microstructures of the micromagnetism theory: the vortices.

At the microscopic scale, we describe the material as a regular periodic spin lattice intersected with the magnetic domain (a bounded open set of R 3 ). Section 2 is dedicated to the mathematical description of the microscopic model (the spin lattice) and to an averaging process towards a mesoscopic model which leads to a constant norm magnetic field, in accordance with usual models of micromagnetism. The microscopic energies are introduced and several modeling hypotheses are set. The main hypothesis is induced by the adiabatic behavior of the Heisenberg energy compared to the global ferromagnetic energy. This hypothesis gives a constraint on neighboring magnetic moments. In fact, this constraint is verified by a set of minimizers for a given lattice.

The energy induced by the Heisenberg interaction is more difficult to treat. Section 3 addresses the study of this contribution and, in particular, its asymptotic behavior for sequences of lattices verifying the modeling hypothesis. This hypothesis ensures compactness which allows to use Γconvergence tools in H 1 . The limiting energy constructed from the discrete magnetization is the exchange energy (Theorem 1).

In Section 4, we introduce the demagnetization and external energies both for discrete lattices and the continuous model and finally obtain a convergence result for the sum of the Heisenberg, demagnetization, and external contributions (Theorem 2).

2 Mathematical descriptions of a spin lattice

Atomic lattice description

We consider a collection of spins which are located on the nodes of a periodic lattice L in the R d space (d " 1, 2, 3) with mesh size a ą 0. In the scope of this paper we will restrict to the case of 1D, square or cubic lattices, L is simply aZ d , but we can think of more complex lattices. Here all the nodes play the same role to ensure a unique definition of neighbors. In the opposite case a multi-species model should be used. The nodes are indexed by i P N and we denote by x i the ith spin location and µ x i the corresponding spin value (magnetic moment). The norm of these magnetic moments are scaled to the unit value and therefore for all i P N, µ x i P S 2 , where S 2 is the unit sphere of R 3 .

Instead of describing a collection of magnetic moments, we can gather all the values in one single vector field µ defined by

@x P R d , µpxq " ÿ iPN µ x i δ x i pxq,
where δ x i is the Dirac delta function centered at x i .

Scaling

We want to obtain an homogenized model of the spin lattice, i.e. give a description when this lattice is seen from far. Instead of really doing this, we will perform some dual transformation, i.e. consider only nodes that are included in some fixed bounded domain Ω, and shrink the lattice (as shown on Figure 1 for d " 2). More precisely, we suppose that 0 P Ω and for all n P N ˚, using the homothety h n pxq :" x{n, @x P R d , we define

• L n " h n pLq, the shrunk lattice;

• L n,Ω " L n X Ω, the nodes of the shrunk lattice that belong to Ω;

• µ n P pS 2 q L n,Ω , the shrunk vector field.

We notice that for all y P R d ,

µ n pyq " ÿ xPL n,Ω
µ n,x δ x pyq, where µ n,x " µ h ´1 n pxq . We assume that Ω has a sufficiently regular boundary in order that the number of nodes belonging to L n,Ω is

#L n,Ω " Cn d ˆ1 `O ˆ1 n ˙˙.
where C is a constant which only depends on L, a and Ω (which are constants of our problem). 

Regularity assumptions

In order to pass to the limit as n Ñ 8, we have to assume that the magnetic moments are locally almost aligned. The definition of locality is given by an integer multiple k P N ˚of the shrunk mesh size a{n.

We define a first regularity assumption that only depends on the distance. For all x P R d and r ą 0, we denote by Bpx, rq the ball of center x and radius r in R d . Hypothesis 1. For all n P N ˚, there exists ζ n ą 0 such that @x P Ω, @y, z P L n,Ω X B ˆx, ka n ˙, 1 ´ζn ď µ n,y ¨µn,z ď 1, where ζ n " Op1{n 2 q.

We are indeed interested in the limit when we have a more and more dense lattice of more and more aligned spins. We therefore perform a diagonal process and correlate n and the spin alignment.

To define the averaging process we will also need to assume the Ω has the uniform cone property. Hypothesis 2. There exists an angle α and a radius r, such that for all y P Ω there exists a cone C y of angle α with vertex at y such that Bpy, rq X C y Ă Ω.

Partitions adapted to the lattices

Let us first work on the initial lattice. To this aim, we define a partition of unity pρ x q xPkL adapted to the dilated lattice kL. Since our lattice is uniform and all the nodes are equivalent, all the ρ x are equal up to a translation (see Figure 2), i.e. there exists ρ ‹ P C 8 0 pR d ; Rq such that @x P kL, @y P R d , ρ x pyq " ρ ‹ py ´xq. Without lack of generality, we assume that ρ ‹ ą 0 and supp ρ ‹ P Bpkaq. By definition of a partition

@y P R d , ÿ xPkL ρ x pyq " ÿ xPkL ρ ‹ py ´xq " 1.
Let n k be the number of nodes in Bp0, kaq, which is e.g. n k ď p2k `1q d for a cubic lattice (number of nodes contained in the cube around the sphere). If we now sum over all the x P L, we have the same translation property and

@y P R d , ÿ xPL ρ ‹ py ´xq " n k .
Defining ρ " n ´1 k ρ ‹ , we have

@y P R d , ÿ xPL ρpy ´xq " 1,
and therefore a continuous partition of unity on R d . Now, we adapt this partition to the shrunk lattice L n . Defining

@n P N ˚, ρ n pxq " ρph ´1 n xq,
we have a continuous partition adapted to the shrunk lattice (see Figure 3) Since ∇ρ ‹ is uniformly bounded (i.e. Op1q), then ∇ρ n is uniformly Opnq.

@y P R d , ÿ xPLn
To define an averaging process we will have to use a truncated partition of unity, namely Φ n pyq " ÿ

xPL n,Ω
ρ n py ´xq.

We clearly have 0 ď Φ n pyq ď 1 and as a finite sum of C 8 functions, Φ n P C 8 pR d ; Rq. We also have a stronger result, namely Φ n pyq is bounded from below uniformly in n and y P Ω: there exists b ą 0 and n 0 P N ˚such that

@y P Ω, @n ě n 0 , b ď Φ n pyq ď 1.
This result stems from the "cone property" (Hypothesis 2). Besides ∇Φ n is uniformly Opnq.

Averaging process

From the sequence pµ n q nPN ˚of vector fields, we now define a new sequence pm n q něn 0 of regular vector fields on Ω: for all n ě n 0 , we define

m n " 1 Φ n µ n ‹ ρ n ,
Remark 1. Since ρ n and Φ n P C 8 pR d ; Rq, and Φ n is bounded from below by b ą 0, it immediately follows that m n P C 8 pΩ; R 3 q. In particular, since Ω is bounded, m n P H 1 pΩ; R 3 q.

Lemma 1. The sequence pm n q něn 0 is bounded in L 8 pΩ; R 3 q and L 2 pΩ; R 3 q.

Proof. Recall µ n " ÿ xPL n,Ω µ n,x δ x ,
hence, for all y P Ω,

m n pyq " 1 Φ n pyq ÿ xPL n,Ω
µ n,x ρ n py ´xq.

We clearly have ˇˇˇˇˇ1

Φ n pyq

ÿ xPL n,Ω µ n,x ρ n py ´xq ˇˇˇˇˇď 1 Φ n pyq ÿ xPL n,Ω |µ n,x |ρ n py ´xq " Φ n pyq Φ n pyq " 1, }m n } L 8 pΩ;R 3 q ď 1,
}m n } L 2 pΩ;R 3 q ď a |Ω|.
Proposition 1. Under Hypothesis 1, pm n q něn 0 is a bounded sequence in H 1 pΩ; R 3 q.

Proof. For all y P Ω, we write

∇m n pyq " ∇ ˆ1 Φ n pyq ˙ÿ xPL n,Ω µ n,x ρ n py ´xq `1 Φ n pyq ∇ ÿ xPL n,Ω µ n,x ρ n py ´xq, " ´∇Φ n pyq Φ n pyq b m n pyq `1 Φ n pyq ÿ xPL n,Ω
∇ρ n py ´xq b µ n,x .

Let In both sums there is only an Op1q number of terms for which ρ n or ∇ρ n is non-zero. In the first sum, by Hypothesis 1, |µ n,x ´µn,xy | " Opζ 1{2 n q " Op1{nq. Besides |∇Φ n pyq| " Opnq and Φ n is bounded from below. The first term is therefore Op1q. In the second sum |µ n,x ´µn,xy | " Op1{nq and ∇ρ n py ´xq " Opnq. Hence there exists C 1 ą 0 such that, for all y P Ω and

n ě n 0 , |∇m n pyq| ď C 1 .
Finally, Ω being bounded, hence p}∇m n } L 2 pΩ;R 3d q q něn 0 is a bounded sequence.

Asymptotics towards a mesoscopic model

Since H 1 pΩ; R 3 q is weakly compact, Proposition 1 implies that there exists m P H 1 pΩ; R 3 q such that m n á m weakly in H 1 pΩ; R 3 q.

From now on, we have to assume that Ω is compact (closed) and has a piecewise C 1 boundary, to ensure that this implies that this convergence is strong in L 2 pΩ; R 3 q. Proposition 2. Under Hypothesis 1, m has a constant norm equal to 1 almost everywhere on Ω.

Remark 2. We recover here a property of the magnetization field in Brown's model of micromagnetism [START_REF] Fuller Brown | [END_REF], where the constant norm is assumed.

Proof. We have seen that for all n ě n 0 and y P Ω, |m n pyq| ď 1. We want to show that it is also bounded from below and pass to the limit. For all y P Ω, since |µ n,x | 2 " 1,

|m n pyq| 2 " ˇˇˇˇˇ1 Φ n pyq ÿ xPL n,Ω µ n,x ρ n py ´xq ˇˇˇˇˇ2 " 1 Φ n pyq 2 ÿ x,x 1 PL n,Ω
µ n,x ¨µn,x 1 ρ n py ´xqρ n py ´x1 q.

Since supp ρ n Ă Bp0, ka{nq, the sum runs indeed on L n,Ω X Bpy, ka{nq:

|m n pyq| 2 " 1 Φ n pyq 2 ÿ x,x 1 PL n,Ω XBpy, ka n q
µ n,x ¨µn,x 1 ρ n py ´xqρ n py ´x1 q.

Hypothesis 1 implies that @x,

x 1 P L n,Ω X B ˆy, ka n ˙, 1 ´ζn ď µ n,x ¨µn,x 1 ď 1.
and we also have that

@y P Ω, ÿ x,x 1 PL n,Ω ρ n py ´xqρ n py ´x1 q " Φ n pyq 2 , therefore 1 Φ n pyq 2 p1 ´ζn qΦ n pyq 2 ď |m n pyq| 2 ď 1 Φ n pyq 2 Φ n pyq 2 , 1 ´ζn ď |m n pyq| 2 ď 1.
In the L 2 pΩ; R 3 q limit, we therefore have |m| " χ Ω almost everywhere.

3 Towards the exchange energy

Heisenberg interaction

The interaction of the spins is described by the Heisenberg energy, which can be written as follows:

e x,y " ´1 2 A x,y pµ x ¨µy ´1q,
where A x,y ě 0 only depends on the distance between x and y. We make the assumption that each node x only interacts with its neighbors N x .

Let N 0 Ă L be the set of neighboring nodes in interaction with the node p0, 0, 0q via the Heisenberg energy. In the shrunk lattice, we will restrict the computation of this energy to elements x and y in L n,Ω . Since the lattice is homogeneous, the neighbors of any given node x P L n,Ω can be deduced from the definition of N 0 : N n,Ω,x " ptxu`h ´1 n pN 0 qqXΩ. We also assume that (a) N 0 (and hence N n,Ω,x ) is a finite set; (b) N 0 Ă Bp0, kaq (i.e. N n,Ω,x Ă Bpx, ka{nq).

We therefore define the node energy by

e x " ÿ yPNx e x,y " ´1 2 ÿ yPNx A x,y pµ x ¨µy ´1q.
In what follows we will restrict the study to 3D cubic lattices. Dimensions 1 and 2 are also possible to treat in the same way. The fact that the lattice is cubic is used in the explicit computations, but our proof may be extended to other classes of regular lattices. We also consider as neighbors only the 6 closest ones on the cubic lattice, which are at the same distance. Since A x,y only depends on the distance, which is now equal for all the neighbors, we can set

A x,y " # A ą 0, if y P N x , 0, else. 
For all n P N ˚, we define the exchange energy of the domain Ω associated to the spin distribution µ n summing up the node energies

E n,ex pµ n q " ÿ xPL n,Ω e x " a n ÿ xPL n,Ω ÿ yPN n,Ω,x
A|µ n,y ´µn,x | 2 .

Spaces and convergence

We define the space sequence pW n q nPN ˚by W n " pR 3 q L n,Ω . In the sequel, we set W " ś nPN ˚Wn .

Hypothesis 3. Let µ " pµ n q nPN ˚P ś nPN ˚Wn . There exists c ą 0 such that

@n P N ˚, @x P L n,Ω , @y P N n,Ω,x , |µ n,x ´µn,y | 2 ď c n 2 ,
except possibly for a subset l n,Ω Ă L n,Ω such that #pl n,Ω q " Opnq, and there exists a sequence pc n q ně1 P R N ˚such that c n Ý ÝÝ Ñ nÑ8 0 and @n P N ˚, @x P l n,Ω , @y P N n,Ω,x , |µ n,x ´µn,y | 2 ď c n .

More precisely, given the constant c, we can state that x P l n,Ω if there exists y P N n,Ω,x such that |µ n,x ´µn,y | 2 ą c{n 2 . Hypothesis 3 is a little weaker than Hypothesis 1.

We denote by W h Ă W the set of µ " pµ n q nPN ˚for which Hypothesis 3 holds and W h 1 Ă W h the set of µ P W h for which |µ n,x | " 1, @n P N ˚, @x P L n,Ω .

We want to define the convergence of elements of W towards elements of the limit space H 1 pΩ; R 3 q. To this aim we define a partition of the domain Ω Ă R 3 in tetrahedra, by groups of 5 tetrahedra (see Figure 4 and Section 3.3.1).

Figure 4: Partition of a single 3D lattice cell. These five tetrahedra are elements T n , and T n for the corner tetrahedra, and T n for the center tetrahedron (see Section 3.3.1). Definition 1. We define the projection P n : W n ÝÑ H 1 pΩ; R 3 q such that P n pµ n q is equal to µ n on the lattice nodes and linear on each element of the partition.

Definition 2. We say that µ P W converges to m P H 1 pΩ; R 3 q if P n pµ n q converges weakly in H 1 pΩ; R 3 q to m as n Ñ 8. We denote this µ n Ý ÝÝ Ñ nÑ8 m. Definition 3. We define the projection p n : CpΩ; R 3 q ÝÑ W n , such that for all m P CpΩ; R 3 q, p n pmq P W n and for all x P L n,Ω , pp n pmqq x " mpxq.

Main result

The exchange energy E n,ex is a functional defined on W n . The main result of this paper is the following. Theorem 1. Let pµ n q nPN ˚P W h . In the sense of the topology defined by Definition 2,

E n,ex Γ Ý ÝÝ Ñ nÑ8 E 8,ex ,
where

E 8,ex : H 1 pΩ; R 3 q ÝÑ R m Þ ÝÑ 2A ż Ω |∇mpxq| 2 dx.
Moreover, this convergence is compatible with the unit norm constraint.

Remark 3. The Γ-convergence result is two-fold [START_REF] Braides | Gamma-Convergence for Beginners[END_REF]:

construction: for all m P H 1 pΩ; R 3 q, there exists µ P W such that µ n Ñ m and lim sup nÑ8 E n,ex pµ n q ď E 8,ex pmq.

lower semi-continuity: for all µ P W , such that }µ n } ď B, µ n Ñ m 8 P H 1 pΩ; R 3 q and lim inf nÑ8 E n,ex pµ n q ě E 8,ex pm 8 q.

Proof. The proof of Theorem 1 splits into many steps to which various lemmas are devoted, the technical proofs of which are postponed.

Lemma 2. Let pµ n q nPN ˚P W h . Then there exists

m 8 P H 1 pΩ; R 3 q such that µ n Ý ÝÝ Ñ nÑ8 m 8 .
Now this function m 8 is only in H 1 pΩ; R 3 q, and not continuous, and we need to use pointwise values of this function. Therefore, for all ε, we approximate m 8 by a C 1 pΩ; R 3 q which coincides with m 8 on a smaller domain Ω ε . We denote by λ the Lebesgue measure on R d . Lemma 3. Let u P H 1 pΩ; R 3 q, for all ε ą 0, there exists an open set ω u,ε and a function u ε P C 1 pΩ; R 3 q such that for all x P Ωzω u,ε , u ε pxq " upxq, λpω u,ε q ă ε, and

lim nÑ8 #pL n,Ω X ω u,ε q #pL n,Ω q ă ε.
Corollary 1. Let u P H 1 pΩ, R 3 q; for all ε ą 0, there exists an open set Ω u,ε Ă Ω with piecewise C 1 boundary such that λpΩzΩ u,ε q ď ε and

u |Ωu,ε P C 1 pΩ u,ε ; R 3 q. Lemma 4. Let u P C 1 pΩ; R 3 q. Then pp n puqq nPN ˚P W h , p n puq Ý ÝÝ Ñ nÑ8
u and lim nÑ8 E n,ex pp n puqq " E 8,ex puq. Moreover if u has a constant unit norm, then pp n puqq nPN ˚P W h 1 . For all ε ą 0, we can therefore associate to m 8 an open set Ω ε on which it is C 1 and define the approximate energies:

E ε n,ex pµ n q " a n ÿ xPL n,Ωε ÿ yPN n,Ωε ,x
A|µ n,y ´µn,x | 2 for all n P N ˚,

E ε 8,ex pm 8 q " 2A ż Ωε |∇m 8 pxq| 2 dx.
Comparing E ε n,ex pµ n q and E ε n,ex pp n pm 8 qq, we first show the following. Lemma 5. For all ε ą 0, lim inf nÑ8 E ε n,ex pµ n q ě E ε 8,ex pm 8 q. Estimating the remainder of the sums and integrals on ω ε , we can then prove the following. Lemma 6. lim inf nÑ8 E n,ex pµ n q ě E 8,ex pm 8 q.

Proof of Lemma 2: Limit of a lattice of spins

Lemma 2 is proved using an explicit computation of the projection P n pµ n q. To this aim, we define, for all n P N ˚,

• T n , the set of tetrahedra which form the partition of L n,Ω ;

• T n , the set of corner tetrahedra (4 for each mesh of the lattice, see Figure 4);

• T n , the set of center tetrahedra (1 for each mesh of the lattice, see Figure 4);

• E n , the set of edges of the mesh of L n,Ω (given by couples of the indices of the lattice nodes);

• C n , the set of edges of elements of T n ;

• S n , the set of outer surfaces of T n (triplets pi, j, kq where pi, jq P C n , pi, kq and pj, kq P E n ). Remark 4. Generically Ω n " Ť τ PTn τ Ł Ω. We suppose that the geometry of Ω is such that λpΩzΩ n q " Op1{nq, i.e. there are order n 2 tetrahedra covering the difference set. We set P n pµ n q to zero on ΩzΩ n .

s P S n e P E n e P C n
Step 1. Estimate of ş Ω |P n pµ n qpxq| 2 dx. Let x P Ω n , then there exist τ P T n and x P τ . Since P n pµ n q is linear on τ , then P n pµ n qpxq is a pondered mean of the µ n,x τ i , i " 1, . . . , 4, where px τ 1 , x τ 2 , x τ 3 , x τ 4 q P pL n,Ω q 4 are the vertices of τ . Therefore |P n pµ n qpxq| ď 1. Hence ż

Ω |P n pµ n qpxq| 2 dx " ż Ωn |P n pµ n qpxq| 2 dx " ÿ τ PTn ż τ |P n pµ n qpxq| 2 dx ď ÿ τ PTn
λpτ q " λpΩ n q.

Step 2. Explicit computation of ş Ω |∇P n pµ n qpxq| 2 dx. We compute ş Ω |∇P n pµ n qpxq| 2 dx explicitly using the tetrahedron decomposition of the lattice. On each tetrahedron P n pµ n q is linear, and therefore its gradient is constant.

If τ P T n , we can construct an orthogonal system using the lattice nodes px τ 1 , x τ 2 , x τ 3 , x τ 4 q P pL n,Ω q 4 , for example pµ n,x τ i ´µn,x τ 1 q i"2,...,4 . Each direction yields one component of the gradient. Since the length of the edges are a{n, the components of the gradient are the pµ n,x τ i ´µn,x τ 1 qn{a. Besides the volume of τ is 1 6 pa{nq 3 , therefore ż τ |∇P n pµ n qpxq| 2 dx " a 6n

4 ÿ i"2 |µ n,x τ i ´µn,x τ 1 | 2 .
For a center tetrahedron τ ˚P T n , it is a bit more tricky since the edges are not orthogonal. The volume is of course the complement of the volumes of the corner tetrahedra, namely 

a 6n |µ n,x i ´µn,x j | 2 " 1 2 ÿ pi,j,kqPSn a 6n |µ n,x i ´µn,x k `µn,x k ´µn,x j | 2 " ÿ pi,j,kqPSn a 12n ´|µ n,x i ´µn,x k | 2 `|µ n,x j ´µn,x k | 2 `2pµ n,x i ´µn,x k q ¨pµ n,x k ´µn,x j q " ÿ pi,jqPEn a 3n |µ n,x i ´µn,x j | 2 `ÿ pi,j,kqPSn a 6n pµ n,x i ´µn,x k q ¨pµ n,x k ´µn,x j q " ÿ xPL n,Ω ÿ yPN n,Ω,x a 6n
|µ n,x ´µn,y | 2 `ÿ pi,j,kqPSn a 6n pµ n,x i ´µn,x k q ¨pµ n,x k ´µn,x j q.

As for the previous sum, we can decompose these sums into two Op1q contributions. There are at most Opnq terms contributing to S n,Ω and stemming from an x P l n,Ω , therefore S n,Ω " Op1q. Therefore }P n pµ n q} H 1 pΩ;R 3 q is uniformly bounded and P n pµ n q is weakly convergent in H 1 pΩ; R 3 q. This, together with Definition 2, leads to Lemma 2.

A by-product of this proof is the fact that we can write

}∇P n pµ n q} 2 L 2 pΩ;LpR 3 ;R 3 qq " ż Ω |∇P n pµ n qpxq| 2 dx " 1 2A
E n,ex pµ n q `αn pµ n q where α n pµ n q " a 6n ÿ pi,j,kqPSn pµ n,x i ´µn,x k q ¨pµ n,x k ´µn,x j q ´Sn,Ω .

Proof of Lemma 3: C 1 approximation of a H 1 function

Following Ziemer theorem (see [START_REF] William | Weakly differentiable functions: Sobolev Spaces and Functions of Bounded Variation[END_REF], Theorem 3.11.6), we know that for any function u P H 1 pΩ; R 3 q and for all ε ą 0, there exists a function u ε P C 1 pΩ; R 3 q such that λpω u,ε q ď ε, where ω u,ε :" tx P Ω such that upxq ‰ u ε pxqu.

We want to extend this result and be able to localize the irregularities of u with respect to a shrinking lattice.

Let u P H 1 pΩ; R 3 q, and X u be the set of points where u is not C 1 . Since the gradient of u P H 1 pΩ; R 3 q has to be defined almost everywhere, there cannot be an open ball in X u and therefore Xu " H.

We now fix ε ą 0. The Lebesgue and H 3 Hausdorff measures coincide in R 3 and therefore we both have λpX u q ď ε and H 3 pX u q ď ε. Hence there exists a sequence of open balls pB i q iPN such that

X u Ă ď iPN B i and 8 ÿ i"1 diampB i q 3 ă ε.
Since X u is closed and bounded, it is compact and we can extract from this open cover a finite subcover.

Hence there exists N P N such that

X u Ă N ď i"1 B i and N ÿ i"1 diampB i q 3 ă ε.
Obviously

Ť N i"0 B i is bounded with a piecewise C 1 boundary, hence lim nÑ8 #pL n,Ω Ş Ť N i"1 B i q #pL n,Ω q " λ ˜N ď i"1 B i č Ω ¸ă ε. Besides u | Ť N i"1 B i P H 1 p Ť N i"1 B i ; R 3 q, and we therefore can choose u ε such that ω u,ε Ă Ť N i"1 B i . Finally lim nÑ8 #pL n,Ω Ş ω u,ε q #pL n,Ω q ď ε.
In our proof, we set Ω ε " 8 Ŕ Ωzω m8,ε and begin to work on the restricted shrunk lattice L n,Ωε " L n,Ω Ş Ω ε . We also denote D n,Ωε the subset of elements x P L n,Ωε such that #pN n,Ω,x

Ş Ω ε q ‰ 6, that is the set of nodes which are too close to BΩ ε to have their 6 nearest neighbors in Ω ε .

Since BΩ ε is piecewise C 1 for all ε ą 0, we know that #D n,Ωε " Opn 2 q.

Proof of Lemma 4: Construction

Let x P L n,Ω and y P N n,Ω,x . Since u P C 1 pΩ; R 3 q, ∇u is bounded by some constant C on Ω and

|p n puq x ´pn puq y | 2 ď C 2 |x ´y| 2 ď C 2 ´a n ¯2 " C 2 a 2 n 2 .
Therefore p n puq P W h . Clearly if |u| " 1 on Ω, for all x P L n,Ω , |p n puq x | " 1 and p n puq P W h 1 . Lemma 2 implies that there exists u 8 P H 1 pΩ; R 3 q such that p n puq Ý ÝÝ Ñ nÑ8 u 8 . Since u P C 1 pΩ; R 3 q, P n pp n puqq converges towards u. This convergence is pointwise and even uniform on Ω. Hence u 8 " u.

Last

E n,ex pp n puqq " a n ÿ xPL n,Ω ÿ yPN n,Ω,x A|p n puq y ´pn puq x | 2 " a n ÿ xPL n,Ω ÿ yPN n,Ω,x
A|upyq ´upxq| 2 .

Since u P C 1 pΩ; R 3 q, for all x P L n,Ω and all y P N n,Ω,x , 

|upyq
´a n ¯3 p|∇upxq| 2 `en,x q `O ˆ1 n ˙,
where the Op1{nq stems from x P D n,Ω . Since lim nÑ8 ř xPL n,Ω pa{nq 3 e n,x " 0, and the border of Ω is piecewise

C 1 lim nÑ8 ÿ xPL n,Ω ´a n ¯3 |∇upxq| 2 " ż Ω |∇upxq| 2 dx
and lim nÑ8 E n,ex pp n puqq " E 8,ex puq.

Proof of Lemma 5: Lower semi-continuity

With Definition 2 for the convergence, P n pµ n q á m 8 in H 1 pΩ; R 3 q, and lim inf nÑ8 }P n pµ n q} H 1 pΩ;R 3 q ě }m 8 } H 1 pΩ;R 3 q (see [START_REF] Braides | Gamma-Convergence for Beginners[END_REF], Proposition 2.3). Since we have assumed that Ω is compact and has a piecewise C 1 boundary, we have already seen that the convergence is strong in L 2 pΩ; R 3 q and therefore lim inf

nÑ8 }∇P n pµ n q} 2 L 2 pΩ;LpR 3 ;R d qq ě }∇m 8 } 2 L 2 pΩ;LpR 3 ;R d qq .
Let us first fix ε and work in Ω ε . Thanks to Proposition 4, we know that m 8 is continuous and

}∇P n pp n pm 8 qq} L 2 pΩε;LpR 3 ;R d qq Ý ÝÝ Ñ nÑ8 }∇m 8 } L 2 pΩε;LpR 3 ;R d qq . This implies that lim inf nÑ8 ´}∇P n pµ n q} 2 L 2 pΩε;LpR 3 ;R d qq ´}∇P n pp n pm 8 qq} 2 L 2 pΩε;LpR 3 ;R d qq ¯ě 0.
According to Lemma 2, we can write

}∇P n pµ n q} 2 L 2 pΩε;LpR 3 ;R d qq " 1 2A pE ε n,ex pµ n q `αε n pµ n qq.
We therefore know that

lim inf nÑ8 ˆ1 2A E ε n,ex pµ n q ´1 2A E ε n,ex pp n pm 8 qq `αε n pµ n q ´αε n pp n pm 8 qq ˙ě 0.
We split this into 5 parts, namely

1 2A E ε n,ex pµ n q ´1 2A E ε n,ex pp n pm 8 qq " a n `bn , α ε
n pµ n q ´αε n pp n pm 8 qq " c n `dn `en `fn , which can be expressed using ψ n,x :" µ n,x ´m8 pxq, defined for all n P N ånd x P L n,Ωε :

a n " a 2n ÿ xPL n,Ωε ÿ yPN n,Ωε,x |ψ n,x ´ψn,y | 2 , b n " a 2n ÿ xPL n,Ωε ÿ yPN n,Ωε,x
2pm 8 pxq ´m8 pyqq ¨pψ n,x ´ψn,y q, c n " a 6n ÿ pi,j,kqPSn pm 8 px i q ´m8 px k qq ¨pψ n,x k ´ψn,x j q, d n " a 6n ÿ pi,j,kqPSn pψ n,x i ´ψn,x k q ¨pm 8 px k q ´m8 px j qq, e n " a 6n ÿ pi,j,kqPSn pψ n,x i ´ψn,x k q ¨pψ n,x k ´ψn,x j q, f n " S n,Ωε pp n pm 8 qq ´Sn,Ωε pµ n q.

We show below that e n ď a n , and b n , c n , d n and f n tend to zero. This implies that lim inf nÑ8 pα n pµ n q ´αn pp n pm 8 qqq ď which ends the proof.

1 2A lim inf nÑ8 pE ε n,ex pµ n q ´Eε n,
Proof of e n ď a n . For all x i , x j , x k P L n,Ωε , pψ n,x i ´ψn,x k q ¨pψ n,x k ´ψn,x j q ď 1 2 p|ψ n,x i ´ψn,x k | 2 `|ψ n,x k ´ψn,x j | 2 q.

Since each couple pi, jq P E n is an element of 4 triples in S n , we have ÿ pi,j,kqPSn pψ n,x i ´ψn,x k q ¨pψ n,x k ´ψn,x j q ď 2 ÿ pi,jqPEn

|ψ n,x i ´ψn,x j | 2 ď ÿ xPL n,Ωε ÿ yPN n,Ωε ,x |ψ n,x ´ψn,y | 2 ,
which is a much stronger result than e n ď a n .

Proof of c n and d n Ñ 0. Let pψ n,x ´ψn,y q ¨pm 8 pyq ´m8 pzqq be one term of the sum in c n and set v " z ´y. Then pψ n,x ´ψn,y q ¨pm 8 pyq ´m8 pzqq " pψ n,x ´ψn,y q ¨pm 8 pyq ´m8 py `vqq and in the same sum there is also a term pψ n,x ´ψn,y q ¨pm 8 pyq ´m8 py ´vqq, ) and |m 8 pyq ´m8 pzq| ď C m a{n, and since #D n,Ωε " Opn 2 q, the contribution of these nodes in c n is a

except
Opn 2 qO ˆ1 n ˙O ˆ1 n ˙O ˆ1 n ˙`OpnqO ˆ1 n ˙O ˆ1 n ˙" O ˆ1 n ˙.
The sum d n is treated in the same way.

Proof of f n Ñ 0. The quantity S n,Ωε pµ n q is a sum of Opn 2 q terms reading like pa{6nq|µ n,x i ´µn,x j | 2 for pi, jq P E n , or pa{12nq|µ n,x i ´µn,x j | 2 for pi, jq P C n . By Hypothesis 3, only Opnq among these terms can be only op1{nq and the others are Op1{n 3 q. Hence S n,Ωε pµ n q " op1q.

On the other hand, the fact that u 8 P C 1 pΩ ε , R 3 q ensures that all the terms in S n,Ωε pp n pm 8 qq are Op1{n 3 q, and therefore S n,Ωε pp n pm 8 qq " Op1{nq.

Proof of b n Ñ 0. We use the fact that C 8 pΩ ε ; R 3 q is dense in H 1 pΩ ε ; R 3 q for the } ¨}H 1 pΩε;R 3 q norm. Let η ą 0, there exists m η P C 8 pΩ ε ; R 3 q such that }m 8 ´mη } H 1 pΩε;R 3 q ď η. Thanks to the compact injection of H 1 pΩ; R 3 q in L 1 pΩ; R 3 q, we deduce that this term vanishes. We obviously have Since m 8 P C 1 pΩ ε ; R 3 q, the elements of the sum converge uniformly towards 0 as n Ñ 8, and therefore the integral is opn 3 q.

|b 1 η n | ď a 2 C ψ n 2 ÿ xPL n,
Hence lim nÑ8 |b 1 η n | ď η and therefore lim nÑ8 |b n | ď η, for all η ą 0. This leads to lim nÑ8 |b n | " 0, and the lemma is proved.

Proof of Lemma 6

The terms that occur in E n,ex pµ n q but not in E ε n,ex pµ n q are those involing couples px, yq where one at least of the nodes belong to ΩzΩ ε . There are εOpn 3 q such nodes. Hence, by Hypothesis 3, the contribution of l n,Ω in E n,ex pµ n q tends to zero, and there exists c ą 0 such that for all tµ n u nPN ˚P W h , lim nÑ8 |E ε n,ex pµ n q ´En,ex pµ n q| ď cε.

We have already estimated P n pµq on ΩzΩ n,ε , where Ω n,ε is a polyhedral subset of Ω which, like ω ε , has an Opεq Lebesgue measure. We already know that P n pµ n q |ΩzΩn,ε P H 1 pΩzΩ n,ε ; R 3 q and P n pu n q |ωε á m 8|ΩzΩ n,ε in the sense of H 1 pΩzΩ n,ε ; R 3 q, therefore ż

ΩzΩn,ε n,ex pµ n qq ě E 8,ex pm 8 q ´pc `c1 qε.

Since this holds for all ε ą 0, we finally deduce that lim inf nÑ8 E n,ex pµ n q ě E 8,ex pm 8 q.

4 Other energy contributions

Magnetostatics: demagnetizing energy

We can define a mapping h d : L 2 pR 3 ; R 3 q Þ Ñ L 2 pR 3 ; R 3 q by: for all u P L 2 pR 3 ; R 3 q, h d puq is solution in the sense of distributions to " rot h d puq " 0, div h d puq " ´div u.

When u is the magnetization, h d puq is the demagnetizing field. Its energy is

E d puq " µ 0 2 }h d puq} L 2 pR 3 ;R 3 q .
For u P L 2 pΩ; R 3 q, we denote by ũ the L 2 pR 3 ; R 3 q function which equals u inside Ω, and 0 outside Ω. Hence for a spin distribution µ n P pS 2 q L n,Ω , the demagnetizing energy is defined by E n,d pµ n q " µ 0 2 › › ›h d ´Č P n pµ n q ¯› › › L 2 pR 3 ;R 3 q .

External energy

The external energy, or Zeeman contribution, models the influence of an external magnetic field on the magnetization. Given such a field h Z in C 0 pR 3 ; R 3 q, for all u P L 2 pR 3 ; R 3 q supported in Ω, we set

E Z puq " ´żΩ h Z ¨u dx,
this energy in maximized when u is almost everywhere in Ω in the direction of h Z . At the micro-scale, for a spin distribution µ n P pS 2 q L n,Ω , we set E n,Z pµ n q " ´´a n

¯3 ÿ

xPL n,Ω h Z pxq ¨µn,x .

Total energy

We define the total energy summing up the exchange, demagnetizing, and external energies both in the lattice context: @µ n P pS 2 q L n,Ω , E n pµ n q " E n,ex pµ n q `En,d pµ n q `En,Z pµ n q, and the limit continuous one: @u P H 1 pΩ; R 3 q, E 8 puq " E 8,ex puq `E8,d puq `EZ puq.

Theorem 2. Let pµ n q nPN ˚P W h . In the sense of the topology defined by Definition 2

E n Γ Ý ÝÝ Ñ nÑ8 E 8 .
Moreover, this convergence is compatible with the unit norm constraint.

Proof. We have already shown that

E n,ex Γ Ý ÝÝ Ñ nÑ8 E 8,ex .
Moreover h d : L 2 pR 3 ; R 3 q Þ Ñ L 2 pR 3 ; R 3 q is linear and continuous. We therefore choose pµ n q nPN ˚P W h such that µ n Ý ÝÝ Ñ nÑ8 µ P H 1 pΩ; R 3 q. This means that the sequence pP n pµ n qq is weakly convergent in H 1 pΩ; R 3 q to µ. Hence P n pµ n q L 2 pΩ;R 3 q Ý ÝÝÝÝ Ñ nÑ8 µ and Č P n pµ n q L 2 pR 3 ;R 3 q Ý ÝÝÝÝÝ Ñ nÑ8 μ.

In particular E n,d pµ n q Ý ÝÝ Ñ nÑ8 E 8,d pµq.

Besides if µ P H 1 pΩ; R 3 q, we know that p n pµq Ý ÝÝ Ñ nÑ8 µ in H 1 pΩ; R 3 q, which ends the proof of

E n,d Γ Ý ÝÝ Ñ nÑ8 E 8,d .
Last, we notice that E n,Z pµ n q " ´´a n

¯3 ÿ

xPL n,Ω h Z pxq ¨µn,x " ´´a n

¯3 ÿ

xPL n,Ω h Z pxq ¨Pn pµ n qpxq, which can be re-written as the approximation of ´şΩ h Z pxq ¨Pn pµ n qpxqdx thanks to piecewise approximations. Then, using the regularity of h Z and the convergence of µ n in L 2 pΩ; R 3 q toward µ, we prove that E n,Z pµ n q Ý ÝÝ Ñ nÑ8 E Z pµq.

Conclusion

In this paper, we prove a Γ-convergence result from a discrete description of ferromagnetic materials at the microscopic scale to the continuous one. This result has been shown thanks to a rigidity hypothesis on the lattice of magnetic moments. This modeling hypothesis is based on the Heisenberg interaction phenomenon and could be justified by a time multi-scale study.

The new hypothesis would take into account the speed of the Heisenberg relaxation compared to the Larmor precession process. The results in this paper are the seed in order to address the micromesoscopic limit for dynamic processes to be able to better understand the dissipation phenomena involved in the mesoscopic Landau-Lifchitz system.
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 1 Figure 1: Scaling of a 2D spin lattice: each sub-plot represents the domain Ω and (a) the square lattice L; (b) the shrunk square lattice L 2 ; (c) the homogeneized lattice in Ω as n Ñ 8.
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 5 Figure 5: Different sets of tetraedra and edges.

  The coefficient 4 in front of the sum on E n occurs because each element of E n is an element of four τ P T n . Similarly each element of C n belongs to two τ ˚P T n . The positive error S n,Ω is due to an over-estimation because some of the edges e P E n are on the outer surface of Ω n and have been counted too many times. Following Remark 4, the contribution of S n,Ω will always be Op1{nq less than that of the other terms, and therefore will tend to zero as n Ñ 8.

	ż	Gathering all the contributions
		|∇P n pµ n qpxq| 2 dx
		Ω	"	ÿ	ż	|∇P n pµ n qpxq| 2 dx
			τ PTn ÿ τ PTn " 4 " ÿ τ ż τ pi,jqPEn |∇P n pµ n qpxq| 2 dx a 6n |µ n,x i ´µn,x j | 2 `2 ÿ n ż τ ˚|∇P n pµ n qpxq| 2 dx `ÿ τ ˚PT pi,jqPCn a 12n |µ n,x i ´µn,x j | 2 ´Sn,Ω .
		We rewrite the first sum 4 ÿ pi,jqPEn a 6n |µ n,x i ´µn,x j | 2 "	ÿ xPL n,Ω	ÿ yPN n,Ω,x	a 3n	|µ n,x ´µn,y | 2
	1 3 pa{nq 3 . The computation yields |∇P n pµ n qpxq| 2 " n 2 4a 2 ÿ 1ďi,jď4 |µ n,x τ i ´µn,x τ j | 2 pi,jqPEn a 6n |µ n,x For the second sum ÿ
	and hence pi,jqPCn		ż		a	ÿ
						12n	1ďi,jď4

τ ˚|∇P n pµ n qpxq| 2 dx " |µ n,x τ i ´µn,x τ j | 2 .

(here each edge is counted twice through the couples px, yq and py, xq). For x P l n,Ω , we can only estimate pa{3nq|µ n,x ´µn,y | 2 ď 4a{3n, but there are only Opnq such terms. For x P L n,Ω zl n,Ω , pa{3nq|µ n,x ´µn,y | 2 ď ac{3n 3 and there are Opn 3 q such terms. Therefore 4 ÿ i ´µn,x j | 2 " Op1q.

  ex pp n pm 8 qqq

	and therefore	
	lim inf nÑ8	pE ε n,ex pµ n q ´Eε n,ex pp n pm 8 qqq ě 0.
	Lemma 4 implies that lim nÑ8 E ε n,ex pp n pm 8 qq " E ε 8,ex pm 8 q, hence
	lim inf nÑ8	E ε n,ex pµ n q ě E ε 8,ex pm 8 q.

  for y P D n,Ωε . Now since µ n P W h , there exists a constant C ψ ě 0 such that When y P D n,Ωε , we can only say that |ψ n,x ´ψn,y | ď C ψ a{n (except on l n,Ωε

		|ψ n,x ´ψn,y | ď C ψ	a n	,		
	except for y P l n,Ωε , but since there are Opnq such nodes, their contribution
	in c n tends to 0. We also have					
	n a	ppm 8 pyq ´m8 py ´vqq `pm 8 pyq ´m8 py `vqqq	
		Ý ÝÝ Ñ nÑ8	p∇m 8 pyq ´∇m 8 pyqq	¨v |v|	" 0,
	and therefore a 6n ÿ pi,j,kqPSn pψ n,x i ´ψn,x k q ¨pm 8 px k q ´m8 px j qq " O	ˆ1 n	˙Opn 3 qO	ˆ1 n	˙o	ˆ1 n	"
					op1q.	
	Remark 5.					

  Then b n can be split into two contributions b n " b η ppm 8 ´mη qpxq ´pm 8 ´mη qpyqq ¨pψ n,x ´ψn,y q. ppm η pxq ´mη px `vqq ´pm η px ´vq ´mη pxqqq ¨ψn,x .

	n	`b1 η n where
	b η n " b 1 η n "	a n a n	ÿ xPL n,Ωε ÿ xPL n,Ωε	ÿ yPN n,Ωε ,x ÿ yPN n,Ωε ,x	pm η pxq ´mη pyqq ¨pψ n,x ´ψn,y q,
	For the first term, we notice that
				b η n " ´a n a n	ÿ xPL n,Ωε yPL n,Ωε ÿ	ÿ yPN n,Ω,x xPN n,Ω,y ÿ	pm η pxq ´mη pyqq ¨ψn,x pm η pxq ´mη pyqq ¨ψn,y .
	As in the previous proof, we write y as x `v and
	b η n "	a n	ÿ xPL n,Ωε	ÿ vPV n,0
	We estimate		
	pm η pxq ´mη px `vqq ´pm η px ´vq ´mη pxqq ż 0	´1
						"	∇m η px `tvq ¨v dt	´ż	∇m η px `tvq ¨v dt
							t"1	t"0
						" ´∇m η pxq	¨v |v|	`∇m η pxq	¨v |v|	`Op|v| 2 q ď	ca 2 n 2 ,
	where the constant c only depends on the second derivative of m η , which is
	bounded on Ω ε . Thus
						|b η n | ď	ca 3 n 3	xPL n,Ωε ÿ	yPN n,Ω,x ÿ	|ψ n,x |.

  For any function u P C 1 pΩ; R 3 q, and y " x `v, if rx, ys Ă Ω, then Applying this to m 8 and m η , pm 8 ´mη qpyq ´pm 8 ´mη qpxq " p∇m 8 pxq ´∇m η pxqq ¨v C}∇m 8 pxq ´∇m η pxq} L 2 pΩε;R 3 q ď Cη. ‹ Let us treat the second contribution involving the C 8 function m η . Since ż 0 ∇ 2 m η px `t1 vq ¨v b v dt 1 dt, and ∇ 2 m η is uniformly bounded on Ω ε , we can estimate

	ż 0	ż t
	Ωε p∇m η px `tvq ´∇m η pxqq ¨v dt " ÿ yPN n,Ωε ,x |pm 8 ´mη qpxq ´pm 8 ´mη qpyq|. upyq ´upxq " ż 0 t"1 ∇upx `tvq ¨v dt " ∇upxq ¨v `ż 0 t"1 p∇upx `tvq ´∇upxqq ¨v dt. `ż 0 t"1 p∇m 8 px `tvq ´∇m 8 pxqq ¨v dt ´ż 0 t"1 a 2 C ψ n 2 ˇˇˇˇˇÿ xPL n,Ωε ÿ yPN n,Ωε ,x p∇m 8 pxq ´∇m η pxqq.py ´xq ˇˇˇˇď 2C ψ ÿ xPL n,Ωε ´a n ¯3 |∇m 8 pxq ´∇m η pxq| ď 2C ψ ¨ÿ xPL n,Ωε ´a n ¯3' 1{2 ¨ÿ xPL n,Ωε ´a n ¯3 |∇m 8 pxq ´∇m η pxq| 2 '1{2 . Since lim nÑ8 ÿ xPL n,Ωε ´a n ¯3 |∇m 8 pxq ´∇m η pxq| 2 " ż Ωε |∇m 8 pxq ´∇m η pxq| 2 dx, lim nÑ8 a 2 C ψ n 2 ÿ xPL n,Ωε ÿ yPN n,Ωε,x p∇m 8 pxq ´∇m η pxqq.py ´xq| t"1 t 1 "0 a 2 C ψ n 2 ÿ xPL n,Ωε ÿ yPN n,Ωε ,x ż 0 t"1 p∇m η px `tpy ´xqq ´∇m η pxqq ¨py ´xq dt " Op 1 n q. ‹ In the last contribution, function m 8 is only C 1 : ď t"1 a 2 C ψ ÿ ÿ ˇˇˇż 0 p∇m 8 px `tpy ´xqq ´∇m 8 pxqq ¨py ´xq dt ˇˇď n 2 xPL n,Ωε t"1 yPN n,Ωε,x a 2 C ψ ÿ ż 1 ÿ |p∇m 8 px `tvq ´∇m 8 pxqq ¨v| dt n 2 xPL n,Ωε t"0 vPN n,0 ď a 3 C ψ n 3 ż 1 t"0 ÿ xPL n,Ωε ÿ vPN n,0 |p∇m 8 px `tvq ´∇m 8 pxqq ¨v |v| | dt.

p∇m η px `tvq ´∇m η pxqq ¨v dt.

‹ By definition of m η , }m 8 ´mη } H 1 pΩ;R 3 q ď η, which implies that }∇m 8 pxq ∇m η pxq} L 2 pΩε;R 3 q ď η. Hence