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Abstract

Thanks to averaging processes and Γ-convergence techniques, we

are able to link a microscopic description of ferromagnetic materials

based on spin lattices and their mesoscopic description in the static

framework for the three fundamental contributions: exchange, mag-

netostatics and external. The results are in accordance with the clas-

sical continuous description of ferromagnetic phenomena and justifies

it. This work is a seed towards a dynamic description of ferromagnetic

materials.

1 Introduction

The continuous description of ferromagnetic materials has been introduced
since the 60’s via the micromagnetism model developed by W.-F. Brown [6].
This model, based on a thermodynamical description of ferromagnetic phe-
nomena, has proved its efficiency in numerous works via relevant simulations
([3, 9, 14, 7]). Nevertheless, several problems persist in the description, from
the thermic effects to the magnetostrictive behaviors. These problems are
very sharp and, in order to understand their modeling, one need to under-
stand the microscopic behavior of magnetization (atomic scale) and the link
between this scale and the mesoscopic scale (continuous magnetic matter
scale of ferromagnetic effects). In this paper, we focus on the beginning of
this program: the link between a microscopic description of ferromagnetic
materials and their mesoscopic description in the static framework for the
three fundamental contributions: exchange, magnetostatic and external field
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[1, 11, 12]. Here, the microscopic scale designates the atomic scale where
atom nuclei are assumed to be point-wize electric charges bearing one mag-
netic moment induced by the atom’s electronic cloud; the mesoscopic scale
designates the continuous description of matter for which the ferromagnetic
effects are significative. One of the first formal approach of the link between
the mesoscopic behavior of ferromagnetic materials and a microscopic ther-
modynamic description of this behavior can found in [5] for a model focused
on the magnetoelastic phenomena. In this book, the author gives a formal
approach of the asymptotic.
We can cite also several mathematical studies connected to the problem we
study in this article. First, in [10], authors study the convergence of energies
for given sequences of magnetizations and various oscillations behaviors of the
magnetization. This approach do not consider the convergence of minimizers
but of energies and shows the importance of controlling local variations of the
magnetization in order to obtain a micromagnetic model whose respect the
that the modulus of the limit magnetization is constant on the ferromagnetic
domain. We can also notice the study performed in [13] who emphasis on the
importance of controlling local oscillation of the magnetization in the aces of
the magnetostatic interactions. In this article, authors build the mechanical
stress interaction between two magnetic domains. This study is a derivation
of the interaction forces between two magnetic bodies for given magnetic
configurations built form the microscopic interactions between magnetic mo-
ments. It gives interesting informations about the magnetostatic field of a
body depending of the local regularity of the magnetization. The study of
limit mechanical stress is also studied in [8] where author build a theory for
the description of deformable magnetic bodies. A micro-meso approach is
adopted in order to justify, form microscopic well interactions of dipoles, the
interaction at the meso-scale but does not tackle the problem of the limit
of minimizers. Nevertheless, in [2], a study of the minimizers convergence
is performed in the case of Ginzburg-Landau systems. Authors focus on a
Γ-convergence with a Dirichlet energy where the limit constraint is the di-
vergence free condition and not the constraint on the local modulus of the
obtain field. In this case, the constraint on modulus derives from a penal-
ization term and not form the modelisation hypothesis. In our article, we
are interested in the convergence of minimizers sequels of the microscopic
description of ferromagnetic materials toward and continuous micromagnetic
description who respect the constraint of uniformity of the local modulus of
the magnetization. This constraint is obtained thanks to the hypothesis on
local variations of the magnetization. In particular, this control of the local
variation induced by the Heisenberg interaction model, has to be temperated
with an hypothesis of authorized defects. To forget defects will give a to con-
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straint system and in particular limits in HspΩq for s strictly greater than 1.
Such a regularity would not allow key microstructures of the micromagnetism
theory: the vortices.

At the microscopic scale, we describe the material as a regular periodic
spin lattice intersected with the magnetic domain (a bounded open set of R3).
Section 2 is dedicated to the mathematical description of the microscopic
model (the spin lattice) and to an averaging process towards a mesoscopic
models which leads to a constant norm magnetic field, in accordance with
usual models of micromagnetism. The microscopic energies are introduced
and several modeling hypotheses are set. The main hypothesis is induced by
the adiabatic behavior of the Heisenberg energy compared to the global ferro-
magnetic energy. This hypothesis gives a constraint on neighboring magnetic
moments. In fact, this constraint is verified by a set of minimizers for a given
lattice.

The energy induced by the Heisenberg interaction is more difficult to
treat. Section 3 addresses the study of this contribution and, in particu-
lar, its asymptotic behavior for sequences of lattices verifying the modeling
hypothesis. This hypothesis ensures compactness which allows to use Γ-
convergence tools in H1. The limiting energy constructed from the discrete
magnetization is the exchange energy (Theorem 1).

In Section 4, we introduce the demagnetization energy both for discrete
lattices and the continuous model and finally obtain a convergence result for
the sum of the Heisenberg and demagnetization contributions (Theorem 2).

2 Mathematical descriptions of a spin lattice

2.1 Atomic lattice description

We consider a collection of spins which are located on the nodes of a periodic
lattice L in the Rd space (d “ 1, 2, 3) with mesh size a ą 0. In the scope
of this paper we will restrict to the case of 1D, square or cubic lattices, L is
simply aZd, but we can think of more complex lattices. Here all the nodes
play the same role to ensure a unique definition of neighbors. In the opposite
case a multi-species model should be used.

The nodes are indexed by i P N and we denote by xi the ith spin location
and µxi the corresponding spin value (magnetic moment). The norm of these
magnetic moments are scaled to the unit value and therefore for all i P N,
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µxi P S2, where S2 is the unit sphere of R3.
Instead of describing a collection of magnetic moments, we can gather all

the values in one single vector field µ defined by

@x P R
d, µpxq “

ÿ

iPN

µxiδxipxq,

where δxi is the Dirac delta function centered at xi.

2.2 Scaling

We want to obtain an homogenized model of the spin lattice, i.e. give a
description when this lattice is seen from far. Instead of really doing this,
we will perform some dual transformation, i.e. consider only nodes that are
included in some fixed bounded domain Ω, and shrink the lattice (as shown
on Figure 1 for d “ 2). More precisely, we suppose that 0 P Ω̊ and for all
n P N˚, using the homothety hnpxq :“ x{n, @x P Rd, we define

• Ln “ hnpLq, the shrunk lattice;

• Ln,Ω “ Ln X Ω, the nodes of the shrunk lattice that belong to Ω;

• µn P pS2qLn,Ω , the shrunk vector field.

We notice that for all y P Rd,

µnpyq “
ÿ

xPLn,Ω

µn,xδxpyq,

where µn,x “ µh´1
n pxq. We assume that Ω has a sufficiently regular boundary

in order that the number of nodes belonging to Ln,Ω is

#Ln,Ω “ Cndp1 ` Op
1

n
qq.

where C is a constant which only depends on L, a and Ω (which are constants
of our problem).
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(a) (b) (c)

Figure 1: Scaling of a 2D spin lattice: each sub-plot represents the domain
Ω and (a) the square lattice L; (b) the shrunk square lattice L2; (c) the
homogeneized lattice in Ω as n Ñ 8.

2.3 Regularity assumptions

In order to pass to the limit as n Ñ 8, we have to assume that the magnetic
moments are locally almost aligned. The definition of locality is given by an
integer multiple k P N˚ of the shrunk mesh size a{n.

We define a first regularity assumption that only depends on the distance.
For all x P R

d and r ą 0, we denote by Bpx, rq the ball of center x and radius
r in Rd.

Hypothesis 1. For all n P N˚, there exists ζn ą 0 such that

@x P Ω, @y, z P Ln,Ω X B

ˆ
x,
ka

n

˙
, 1 ´ ζn ď µn,y ¨ µn,z ď 1,

where ζn “ Op1{n2q.

We are indeed interested in the limit when we have a more and more dense
lattice of more and more aligned spins. We therefore perform a diagonal
process and correlate n and the spin alignment.

To define the averaging process we will also need to assume the Ω has the
uniform cone property.

Hypothesis 2. There exists an angle α and a radius r, such that for all y P Ω
there exists a cone Cy of angle α with vertex at y such that Bpy, rq XCy Ă Ω.
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2.4 Partitions adapted to the lattices

Let us first work on the initial lattice. To this aim, we define a partition of
unity pρxqxPkL adapted to the dilated lattice kL. Since our lattice is uniform
and all the nodes are equivalent, all the ρx are equal up to a translation (see
Figure 2), i.e. there exists ρ‹ P C8

0 pRd;Rq such that

@x P kL, @y P R
d, ρxpyq “ ρ‹py ´ xq.

a ka

Figure 2: Partition pρxqxPkL in dimension 1.

Without lack of generality, we assume that ρ‹ ą 0 and supp ρ‹ P Bpkaq.
By definition of a partition

@y P R
d,

ÿ

xPkL

ρxpyq “
ÿ

xPkL

ρ‹py ´ xq “ 1.

Let nk be the number of nodes in Bp0, kaq, which is e.g. nk ď p2k` 1qd for a
cubic lattice (number of nodes contained in the cube around the sphere). If
we now sum over all the x P L, we have the same translation property and

@y P R
d,

ÿ

xPL

ρ‹py ´ xq “ nk.

Defining ρ “ n´1
k ρ‹, we have

@y P R
d,

ÿ

xPL

ρpy ´ xq “ 1,

and therefore a continuous partition of unity on Rd.

Now, we adapt this partition to the shrunk lattice Ln. Defining

@n P N
˚, ρnpxq “ ρph´1

n xq,

we have a continuous partition adapted to the shrunk lattice (see Figure 3)

@y P R
d,

ÿ

xPLn

ρnpy ´ xq “ 1 and supp ρn Ă Bp0,
ka

n
q.
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a{n ka{n

Figure 3: Partition pρxqxPLn
in dimension d “ 1.

Since ∇ρ‹ is uniformly bounded (i.e. Op1q), then ∇ρn is uniformly Opnq.

To define an averaging process we will have to use a truncated partition
of unity, namely

Φnpyq “
ÿ

xPLn,Ω

ρnpy ´ xq.

We clearly have 0 ď Φnpyq ď 1 and as a finite sum of C8 functions, Φn P
C8pRd;Rq. We also have a stronger result, namely Φnpyq is bounded from
below uniformly in n and y P Ω: there exists b ą 0 and n0 P N˚ such that

@y P Ω, @n ě n0, b ď Φnpyq ď 1.

This result stems from the ”cone property” (Hypothesis 2). Besides ∇Φn is
uniformly Opnq.

2.5 Averaging process

From the sequence pµnqnPN˚ of vector fields, we now define a new sequence
pmnqněn0

of regular vector fields on Ω: for all n ě n0, we define

mn “
1

Φn
µn ‹ ρn,

Remark 1. Since ρn and Φn P C8pRd;Rq, and Φn is bounded from below by
b ą 0, it immediately follows that mn P C8pΩ;R3q. In particular, since Ω is
bounded, mn P H1pΩ;R3q.

Lemma 1. The sequence pmnqněn0
is bounded in L8pΩ;R3q and L2pΩ;R3q.

Proof. Recall
µn “

ÿ

xPLn,Ω

µn,xδx,
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hence, for all y P Ω,

mnpyq “
1

Φnpyq

ÿ

xPLn,Ω

µn,xρnpy ´ xq.

We clearly have
ˇ̌
ˇ̌
ˇ̌

1

Φnpyq

ÿ

xPLn,Ω

µn,xρnpy ´ xq

ˇ̌
ˇ̌
ˇ̌ ď

1

Φnpyq

ÿ

xPLn,Ω

|µn,x|ρnpy ´ xq “
Φnpyq

Φnpyq
“ 1,

}mn}L8pΩ;R3q ď 1,

}mn}L2pΩ;R3q ď
a

|Ω|.

Proposition 1. Under Hypothesis 1, pmnqněn0
is a bounded sequence in

H1pΩ;R3q.

Proof. For all y P Ω, we write

∇mnpyq “ ∇

ˆ
1

Φnpyq

˙ ÿ

xPLn,Ω

µn,xρnpy ´ xq `
1

Φnpyq
∇

ÿ

xPLn,Ω

µn,xρnpy ´ xq,

“ ´
∇Φnpyq

Φnpyq
b mnpyq `

1

Φnpyq

ÿ

xPLn,Ω

∇ρnpy ´ xq b µn,x.

Let xy P Ln,Ω X supp ρnpy ´ ¨q, we can write
ÿ

xPLn,Ω

∇ρnpy ´ xq b µn,x “
ÿ

xPLn,Ω

∇ρnpy ´ xq b pµn,xy ` pµn,x ´ µn,xyqq

“
ÿ

xPLn,Ω

∇ρnpy ´ xq b µn,xy

`
ÿ

xPLn,Ω

∇ρnpy ´ xq b pµn,x ´ µn,xyq

“ ∇Φnpyq b µn,xy

`
ÿ

xPLn,Ω

∇ρnpy ´ xq b pµn,x ´ µn,xyq.

Hence

∇mnpyq “ ´
∇Φnpyq

Φnpyq
b mnpyq `

∇Φnpyq

Φnpyq
b µn,xy

`

ˆ
1

Φnpyq

˙ ÿ

xPLn,Ω

∇ρnpy ´ xq b pµn,x ´ µn,xyq
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“ ´
∇Φnpyq

Φnpyq
b

¨
˝µn,xy `

1

Φnpyq

ÿ

xPLn,Ω

pµn,x ´ µn,xyqρnpy ´ xq

˛
‚

`
∇Φnpyq

Φnpyq
b µn,xy `

ˆ
1

Φnpyq

˙ ÿ

xPLn,Ω

∇ρnpy ´ xq b pµn,x ´ µn,xyq

“
∇Φnpyq

Φnpyq2
b

¨
˝ ÿ

xPLn,Ω

pµn,xy ´ µn,xqρnpy ´ xq

˛
‚

`

ˆ
1

Φnpyq

˙ ÿ

xPLn,Ω

∇ρnpy ´ xq b pµn,x ´ µn,xyq.

In both sums there is only an Op1q number of terms for which ρn or ∇ρn

is non zero. In the first sum, by Hypothesis 1, |µn,x ´ µn,xy | “ Opζ
1{2
n q “

Op1{nq. Besides |∇Φnpyq| “ Opnq and Φn is bounded from below. The
first term is therefore Op1q. In the second sum |µn,x ´ µn,xy | “ Op1{nq and
∇ρnpy ´ xq “ Opnq. Hence there exists C 1 ą 0 such that, for all y P Ω and
n ě n0, |∇mnpyq| ď C 1.

Finally, Ω being bounded, hence p}∇mn}L2pΩ;R3dqqněn0
is a bounded se-

quence.

2.6 Asymptotics towards a mesoscopic model

Since H1pΩ;R3q is weakly compact, Proposition 1 implies that there exists
m P H1pΩ;R3q such that

mn á m weakly in H1pΩ;R3q.

From now on, we have to assume that Ω is compact (closed) and has a
piecewise C1 boundary, to ensure that this implies that this convergence is
strong in L2pΩ;R3q.

Proposition 2. Under Hypothesis 1, m has a constant norm equal to 1
almost everywhere on Ω.

Remark 2. We recover here a property of the magnetization field in Brown’s
model of micromagnetism [6], where the constant norm is assumed.

Proof. We have seen that for all n ě n0 and y P Ω, |mnpyq| ď 1. We want to
show that it is also bounded from below and pass to the limit. For all y P Ω,
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since |µn,x|2 “ 1,

|mnpyq|2 “
ˇ̌
ˇ 1

Φnpyq

ÿ

xPLn,Ω

µn,xρnpy ´ xq
ˇ̌
ˇ
2

“
1

Φnpyq2

ÿ

x,x1PLn,Ω

µn,x ¨ µn,x1 ρnpy ´ xqρnpy ´ x1q.

Since supp ρn Ă Bp0, ka{nq, the sum runs indeed on Ln,Ω X Bpy, ka{nq:

|mnpyq|2 “
1

Φnpyq2

ÿ

x,x1PLn,ΩXBpy, ka
n

q

µn,x ¨ µn,x1 ρnpy ´ xqρnpy ´ x1q.

Hypothesis 1 implies that

@x, x1 P Ln,Ω X Bpy,
ka

n
q, 1 ´ ζn ď µn,x ¨ µn,x1 ď 1.

and we also have that

@y P Ω,
ÿ

x,x1PLn,Ω

ρnpy ´ xqρnpy ´ x1q “ Φnpyq2,

therefore

1

Φnpyq2
p1 ´ ζnqΦnpyq2 ď |mnpyq|2 ď

1

Φnpyq2
Φnpyq2,

1 ´ ζn ď |mnpyq|2 ď 1.

In the L2pΩ;R3q limit, we therefore have |m| “ χΩ almost everywhere.

3 Towards the exchange energy

3.1 Heisenberg interaction

The interaction of the spins is described by the Heisenberg energy, which can
be written as follows:

ex,y “ ´
1

2
Ax,ypµx ¨ µy ´ 1q,

where Ax,y ě 0 only depends on the distance between x and y. We make the
assumption that each node x only interacts with its neighbors Nx.

Let N0 Ă L be the set of neighboring nodes in interaction with the node
p0, 0, 0q via the Heisenberg energy. In the shrunk lattice, we will restrict
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the computation of this energy to elements x and y in P Ln,Ω. Since the
lattice is homogeneous, the neighbors of any given node x P Ln,Ω can be
deduced from the definition of N0: Nn,Ω,x “ ptxu ` h´1

n pN0qq X Ω. We also
assume that (a) N0 (and hence Nn,Ω,x) is a finite set; (b) N0 Ă Bp0, kaq (i.e.
Nn,Ω,x Ă Bpx, ka{nq).

We therefore define the node energy by

ex “
ÿ

yPNx

ex,y “ ´
1

2

ÿ

yPNx

Ax,ypµx ¨ µy ´ 1q.

In what follows we will restrict the study to 3D cubic lattices. Dimensions
1 and 2 are also possible to treat in the same way. The fact that the lattice
is cubic is used in the explicit computations, but our proof may be extended
to other classes of regular lattices. We also consider as neighbors only the 6
closest ones on the cubic lattice, which are at the same distance. Since Ax,y
only depends on the distance, which is now equal for all the neighbors, we
can set

Ax,y “

#
A ą 0, if y P Nx;

0, else.

For all n P N˚, we define the exchange energy of the domain Ω associated
to the spin distribution µn summing up the node energies

En,expµnq “
ÿ

xPLn,Ω

ex “
a

n

ÿ

xPLn,Ω

ÿ

yPNn,Ω,x

A|µn,y ´ µn,x|2.

3.2 Spaces and convergence

We define the space sequence pWnqnPN˚ by Wn “ pR3q
Ln,Ω . In the sequel, we

set W “
ś

nPN˚ Wn.

Hypothesis 3. Let µ “ pµnqnPN˚ P
ś

nPN˚ Wn. There exists c ą 0 such that

@n P N
˚, @x P Ln,Ω, @y P Nn,Ω,x, |µn,x ´ µn,y|

2 ď
c

n2
,

except possibly for a subset ln,Ω Ă Ln,Ω such that #pln,Ωq “ Opnq, and there
exists a sequence pcnqně1 P RN˚

such that cn ÝÝÝÑ
nÑ8

0 and

@n P N
˚, @x P ln,Ω, @y P Nn,Ω,x, |µn,x ´ µn,y|

2 ď cn.

More precisely, given the constant c, we can state that x P ln,Ω if there
exists y P Nn,Ω,x such that |µn,x ´ µn,y|

2 ą c{n2. Hypothesis 3 is a little
weaker than Hypothesis 1.
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We denote by W h Ă W the set of µ “ pµnqnPN˚ for which Hypothesis 3
holds and W h

1 Ă W h the set of µ P W h for which |µn,x| “ 1, @n P N˚, @x P
Ln,Ω.

We want to define the convergence of elements of W towards elements of
the limit space H1pΩ;R3q. To this aim we define a partition of the domain
Ω Ă R3 in tetrahedra, by groups of 5 tetrahedra (see Figure 4 and Section
3.3.1).

Figure 4: Partition of a single 3D lattice cell. These five tetrahedra are ele-
ments Tn, and Tn for the corner tetrahedra, and T

˚
n for the center tetrahedron

(see Section 3.3.1).

Definition 1. We define the projection Pn : Wn ÝÑ H1pΩ;R3q such that
Pnpµnq is equal to µn on the lattice nodes and linear on each element of the
partition.

Definition 2. We say that µ P W converges to m P H1pΩ;R3q if Pnpµnq
converges weakly in H1pΩ;R3q to m as n Ñ 8. We denote this µn ÝÝÝÑ

nÑ8
m.

Definition 3. We define the projection pn : CpΩ;R3q ÝÑ Wn, such that for
all m P CpΩ;R3q, pnpmq P Wn and for all x P Ln,Ω, ppnpmqqx “ mpxq.

3.3 Main result

The exchange energy En,ex is a functional defined on Wn. The main result of
this paper is the following

Theorem 1. Let pµnqnPN˚ P W h. In the sense of the topology defined by
Definition 2

En,ex
Γ

ÝÝÝÑ
nÑ8

E8,ex,

where
E8,ex : H1pΩ;R3q ÝÑ R`

m ÞÝÑ 2A

ż

Ω

|∇mpxq|2dx.
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Moreover, this convergence is compatible with the unit norm constraint.

Remark 3. The Γ-convergence result is two-fold [4]:

construction: for all m P H1pΩ;R3q, there exists µ P W such that µn Ñ m

and lim supnÑ8 En,expµnq ď E8,expmq.

lower semi-continuity: for all µ P W , such that }µn} ď B, µn Ñ m8 P
H1pΩ;R3q and lim infnÑ8 En,expµnq ě E8,expm8q.

Proof. The proof of Theorem 1 splits into many steps to which various lem-
mas are devoted, the technical proofs of which are postponed.

Lemma 2. Let pµnqnPN˚ P W h, then there exists m8 P H1pΩ;R3q such that
µn ÝÝÝÑ

nÑ8
m8.

Now this function m8 is only in H1pΩ;R3q, and not continuous, and
we need to use pointwise values of this function. Therefore, for all ε, we
approximatem8 by a C1pΩ;R3q which coincides withm8 on a smaller domain
Ωε. We denote by λ the Lebesgue measure on Rd.

Lemma 3. Let u P H1pΩ;R3q, for all ε ą 0, there exists an open set ωu,ε
and a function uε P C1pΩ;R3q such that for all x P Ωzωu,ε, uεpxq “ upxq,
λpωu,εq ă ε, and

lim
nÑ8

#pLn,Ω X ωu,εq

#pLn,Ωq
ă ε.

Corollary 1. Let u P H1pΩ,R3q, for all ε ą 0, there exists an open set
Ωu,ε Ă Ω with piecewise C1 boundary such that λpΩzΩu,εq ď ε and

u|Ωu,ε
P C

1pΩu,ε;R
3q.

Lemma 4. Let u P C1pΩ;R3q, then ppnpuqqnPN˚ P W h, pnpuq ÝÝÝÑ
nÑ8

u and

limnÑ8 En,exppnpuqq “ E8,expuq. Moreover if u has a constant unit norm,

then ppnpuqqnPN˚ P W h
1 .

For all ε ą 0, we can therefore associate to m8 an open set Ωε on which
it is C1 and define the approximate energies:

E
ε
n,expµnq “

a

n

ÿ

xPLn,Ωε

ÿ

yPNn,Ωε,x

A|µn,y ´ µn,x|2, for all n P N
˚,

E
ε
8,expm8q “ 2A

ż

Ωε

|∇m8pxq|2dx.

Comparing Eεn,expµnq and Eεn,exppnpm8qq, we first show that
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Lemma 5. For all ε ą 0, lim infnÑ8 Eεn,expµnq ě Eε8,expm8q.

Estimating the remainder of the sums and integrals on ωε, we can then
prove

Lemma 6. lim infnÑ8 En,expµnq ě E8,expm8q.

3.3.1 Proof of Lemma 2: Limit of a lattice of spins

Lemma 2 is proved using an explicit computation of the projection Pnpµnq.
To this aim, we define, for all n P N˚,

• Tn, the set of tetrahedra which form the partition of Ln,Ω;

• Tn, the set of corner tetrahedra (4 for each mesh of the lattice, see
Figure 4);

• T ˚
n , the set of center tetrahedra (1 for each mesh of the lattice, see

Figure 4);

• En, the set of edges of the mesh of Ln,Ω (given by couples of the indices
of the lattice nodes);

• Cn, the set of edges of elements of T ˚
n ;

• Sn, the set of outer surfaces of Tn (triplets pi, j, kq where pi, jq P Cn,
pi, kq and pj, kq P En).

s P Sn

e P En

e P Cn

Figure 5: Different sets of tetraedra and edges.

Remark 4. Generically Ωn ” YτPTnτ Ł Ω. We suppose that the geometry of
Ω is such that λpΩzΩnq “ Op1{nq, i.e. there are order n2 tetrahedra covering
the difference set. We set Pnpµnq to zero on ΩzΩn .
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Step 1. Estimate of
ş
Ω

|Pnpµnqpxq|2dx.
Let x P Ωn, then there exists τ P Tn and x P τ . Since Pnpµnq is linear

on τ , then Pnpµnqpxq is a pondered mean of the µn,xτi , i “ 1, . . . , 4, where
pxτ1 , x

τ
2, x

τ
3, x

τ
4q P pLn,Ωq4 are the vertices of τ . Therefore |Pnpµnqpxq| ď 1.

Hence
ż

Ω

|Pnpµnqpxq|2dx “

ż

Ωn

|Pnpµnqpxq|2dx “
ÿ

τPTn

ż

τ

|Pnpµnqpxq|2dx

ď
ÿ

τPTn

λpτq “ λpΩnq.

Step 2. Explicit computation of
ş
Ω

|∇Pnpµnqpxq|2dx.
We compute

ş
Ω

|∇Pnpµnqpxq|2dx explicitly using the tetrahedron decom-
position of the lattice. On each tetrahedron Pnpµnq is linear, and therefore
its gradient is constant.

If τ P Tn, we can construct an orthogonal system using the lattice nodes
pxτ1 , x

τ
2, x

τ
3, x

τ
4q P pLn,Ωq4, for example pµn,xτi ´ µn,xτ

1
qi“2,...,4. Each direction

yields one component of the gradient. Since the length of the edges are a{n,
the component of the gradient are the pµn,xτi ´µn,xτ

1
qn{a. Besides the volume

of τ is 1
6
pa{nq3, therefore

ż

τ

|∇Pnpµnqpxq|2dx “
a

6n

4ÿ

i“2

|µn,xτi ´ µn,xτ
1
|2.

For a center tetrahedron τ˚ P T ˚
n , it is a bit more tricky since the edges are

not orthogonal. The volume is of course the complement of the volumes of
the corner tetrahedra, namely 1

3
pa{nq3. The computation yields

|∇Pnpµnqpxq|2 “
n2

4a2

ÿ

1ďi,jď4

|µn,xτ˚

i
´ µn,xτ˚

j
|2

and hence
ż

τ˚

|∇Pnpµnqpxq|2dx “
a

12n

ÿ

1ďi,jď4

|µ
n,xτ

˚

i
´ µ

n,xτ
˚

j
|2.
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Gathering all the contributions
ż

Ω

|∇Pnpµnqpxq|2dx

“
ÿ

τPTn

ż

τ

|∇Pnpµnqpxq|2dx

“
ÿ

τPTn

ż

τ

|∇Pnpµnqpxq|2dx `
ÿ

τ˚PT˚
n

ż

τ˚

|∇Pnpµnqpxq|2dx

“ 4
ÿ

pi,jqPEn

a

6n
|µn,xi ´ µn,xj |

2 ` 2
ÿ

pi,jqPCn

a

12n
|µn,xi ´ µn,xj |

2 ´ Sn,Ω.

The coefficient 4 in front of the sum on En occurs because each element of
En is an element of four τ P Tn. Similarly each element of Cn belongs to two
τ˚ P T ˚

n . The positive error Sn,Ω is due to an over-estimation because some
of the edges e P En are on the outer surface of Ωn and have been counted
too many times. Following Remark 4, the contribution of Sn,Ω will always
be Op1{nq less than that of the other terms, and therefore will tend to zero
as n Ñ 8.

We rewrite the first sum

4
ÿ

pi,jqPEn

a

6n
|µn,xi ´ µn,xj |

2 “
ÿ

xPLn,Ω

ÿ

yPNn,Ω,x

a

3n
|µn,x ´ µn,y|

2

(here each edge is counted twice through the couples px, yq and py, xq). For
x P ln,Ω, we can only estimate pa{3nq|µn,x ´ µn,y|

2 ď 4a{3n, but there are
only Opnq such terms. For x P Ln,Ωzln,Ω, pa{3nq|µn,x ´ µn,y|

2 ď ac{3n3 and
there are Opn3q such terms. Therefore

4
ÿ

pi,jqPEn

a

6n
|µn,xi ´ µn,xj |

2 “ Op1q.

For the second sum
ÿ

pi,jqPCn

a

6n
|µn,xi ´ µn,xj |

2 “
1

2

ÿ

pi,j,kqPSn

a

6n
|µn,xi ´ µn,xk ` µn,xk ´ µn,xj |

2

“
ÿ

pi,j,kqPSn

a

12n

´
|µn,xi ´ µn,xk |2 ` |µn,xj ´ µn,xk|2

` 2pµn,xi ´ µn,xkq ¨ pµn,xk ´ µn,xjq
¯

“
ÿ

pi,jqPEn

a

3n
|µn,xi ´ µn,xj |

2 `
ÿ

pi,j,kqPSn

a

6n
pµn,xi ´ µn,xkq ¨ pµn,xk ´ µn,xjq

“
ÿ

xPLn,Ω

ÿ

yPNn,Ω,x

a

6n
|µn,x ´ µn,y|

2 `
ÿ

pi,j,kqPSn

a

6n
pµn,xi ´ µn,xkq ¨ pµn,xk ´ µn,xjq.
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As for the previous sum, we can decompose these sums into two Op1q con-
tributions. There are at most Opnq terms contributing to Sn,Ω and stem-
ming from an x P ln,Ω, therefore Sn,Ω “ Op1q. Therefore }Pnpµnq}H1pΩ;R3q

is uniformly bounded and Pnpµnq is weakly convergent in H1pΩ;R3q. This,
together with our convergence definition 2, leads to Lemma 2.

A by-product of this proof is the fact that we can write

}∇Pnpµnq}2L2pΩ;LpR3;R3qq “

ż

Ω

|∇Pnpµnqpxq|2dx “
1

2A
En,expµnq ` αnpµnq

where

αnpµnq “
a

6n

ÿ

pi,j,kqPSn

pµn,xi ´ µn,xkq ¨ pµn,xk ´ µn,xjq ´ Sn,Ω.

3.3.2 Proof of Lemma 3: C1 approximation of a H1 function

Following Ziemer theorem ([15], Theorem 3.11.6), we know that for any func-
tion u P H1pΩ;R3q and for all ε ą 0, there exists a function uε P C1pΩ;R3q
such that λpωu,εq ď ε, where

ωu,ε :“ tx P Ω such that upxq ‰ uεpxqu.

We want to extend this result and be able to localize the irregularities of
u with respect to a shrinking lattice.

Let u P H1pΩ;R3q, and Xu be the set of points where u is not C1. Since
the gradient of u P H1pΩ;R3q has to be defined almost everywhere, there

cannot be an open ball in Xu and therefore
˝

Xu “ H.
We now fix ε ą 0. The Lebesgue and H3 Hausdorff measures coincide in

R3 and therefore we both have λpXuq ď ε and H3pXuq ď ε.
Hence there exists a sequence of open balls pBiqiPN such that

Xu Ă
ď

iPN

Bi and
8ÿ

i“1

diampBiq
3 ă ε.

Since Xu is closed and bounded, it is compact and we can extract from
this open cover a finite subcover.

Hence there exists N P N such that

Xu Ă
Nď

i“1

Bi and
Nÿ

i“1

diampBiq
3 ă ε.
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Obviously
ŤN

i“0Bi is bounded with a piecewise C1 boundary, hence

lim
nÑ8

#pLn,Ω X
ŤN

i“1Biq

#pLn,Ωq
“ λ

˜
Nď

i“1

Bi X Ω

¸
ă ε

Besides u|YN
i“1

Bi
P H1pYN

i“1Bi;R
3q, and we therefore can choose uε such

that ωu,ε Ă YN
i“1Bi. Finally

lim
nÑ8

#pLn,Ω X ωu,εq

#pLn,Ωq
ď ε.

In our proof, we set Ωε “ 8ŔΩzωm8,ε and begin to work on the restricted
shrunk lattice Ln,Ωε

“ Ln,Ω
Ş

Ωε. We also denote Dn,Ωε
the subset of ele-

ments x P Ln,Ωε
such that #pNn,Ω,x XΩεq ‰ 6, that is the set of nodes which

are too close to BΩε to have their 6 nearest neighbors in Ωε.

Since BΩε is piecewise C1 for all ε ą 0, we know that #Dn,Ωε
“ Opn2q.

3.3.3 Proof of Lemma 4: Construction

Let x P Ln,Ω and y P Nn,Ω,x. Since u P C1pΩ;R3q, ∇u is bounded by some
constant C on Ω and

|pnpuqx ´ pnpuqy|
2 ď C2|x´ y|2 ď C2

´a
n

¯2

“
C2a2

n2
.

Therefore pnpuq P W h. Clearly if |u| “ 1 on Ω, forall x P Ln,Ω, |pnpuqx| “ 1

and pnpuq P W h
1 .

Lemma 2 implies that there exists u8 P H1pΩ;R3q such that pnpuq ÝÝÝÑ
nÑ8

u8. Since u P C1pΩ;R3q, Pnppnpuqq converges towards u. This convergence
is pointwise and even uniform on Ω. Hence u8 “ u.

Last

En,exppnpuqq “
a

n

ÿ

xPLn,Ω

ÿ

yPNn,Ω,x

A|pnpuqy ´ pnpuqx|2

“
a

n

ÿ

xPLn,Ω

ÿ

yPNn,Ω,x

A|upyq ´ upxq|2.

Since u P C1pΩ;R3q, for all x P Ln,Ω and all y P Nn,Ω,x,

|upyq ´ upxq|2

|y ´ x|2
“

ˇ̌
ˇ̌∇upxq ¨

y ´ x

|y ´ x|

ˇ̌
ˇ̌
2

` en,x,y,
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and therefore for all x P Ln,ΩzDn,Ω

´n
a

¯2 ÿ

yPNn,Ω,x

|upyq ´ upxq|2 “ 2|∇upxq|2 ` en,x,

and the errors en,x are uniformly op1q as n Ñ 8. Hence

En,exppnpuqq “ 2A
ÿ

xPLn,Ω

´a
n

¯3

p|∇upxq|2 ` en,xq ` Op
1

n
q,

where the Op1{nq stems from x P Dn,Ω. Since limnÑ8

ř
xPLn,Ω

pa{nq3en,x “ 0,

and the border of Ω is piecewise C1

lim
nÑ8

ÿ

xPLn,Ω

´a
n

¯3

|∇upxq|2 “

ż

Ω

|∇upxq|2dx

and
lim
nÑ8

En,exppnpuqq “ E8,expuq.

3.3.4 Proof of Lemma 5: Lower semi-continuity

With Definition 2 for the convergence, Pnpµnq á m8 in H1pΩ;R3q, and

lim inf
nÑ8

}Pnpµnq}H1pΩ;R3q ě }m8}H1pΩ;R3q

(see [4], Proposition 2.3).
Since we have assumed that Ω is compact and has a piecewise C1 bound-

ary, we have already seen that the convergence is strong in L2pΩ;R3q and
therefore

lim inf
nÑ8

}∇Pnpµnq}2L2pΩ;LpR3;Rdqq ě }∇m8}2L2pΩ;LpR3;Rdqq.

Let us first fix ε and work in Ωε. Thanks to Proposition 4, we know that
m8 is continuous and

}∇Pnppnpm8qq}L2pΩε;LpR3;Rdqq ÝÝÝÑ
nÑ8

}∇m8}L2pΩε;LpR3;Rdqq.

This implies that

lim inf
nÑ8

´
}∇Pnpµnq}2L2pΩε;LpR3;Rdqq ´ }∇Pnppnpm8qq}2L2pΩε;LpR3;Rdqq

¯
ě 0.

According to Lemma 2, we can write

}∇Pnpµnq}2L2pΩε;LpR3;Rdqq “
1

2A
pEεn,expµnq ` αεnpµnqq.
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We therefore know that

lim inf
nÑ8

ˆ
1

2A
E
ε
n,expµnq ´

1

2A
E
ε
n,exppnpm8qq ` αεnpµnq ´ αεnppnpm8qq

˙
ě 0.

We split this into 5 parts, namely

1

2A
E
ε
n,expµnq ´

1

2A
E
ε
n,exppnpm8qq “ an ` bn,

αεnpµnq ´ αεnppnpm8qq “ cn ` dn ` en ` fn,

which can be expressed using ψn,x :“ µn,x ´ m8pxq, defined for all n P N˚

and x P Ln,Ωε
:

an “
a

2n

ÿ

xPLn,Ωε

ÿ

yPNn,Ωε,x

|ψn,x ´ ψn,y|
2,

bn “
a

2n

ÿ

xPLn,Ωε

ÿ

yPNn,Ωε,x

2pm8pxq ´ m8pyqq ¨ pψn,x ´ ψn,yq,

cn “
a

6n

ÿ

pi,j,kqPSn

pm8pxiq ´ m8pxkqq ¨ pψn,xk ´ ψn,xjq,

dn “
a

6n

ÿ

pi,j,kqPSn

pψn,xi ´ ψn,xkq ¨ pm8pxkq ´ m8pxjqq,

en “
a

6n

ÿ

pi,j,kqPSn

pψn,xi ´ ψn,xkq ¨ pψn,xk ´ ψn,xj q,

fn “ Sn,Ωε
ppnpm8qq ´ Sn,Ωε

pµnq.

We show below that en ď an, and bn, cn, dn and fn tend to zero. This implies
that

lim inf
nÑ8

pαnpµnq ´ αnppnpm8qqq ď
1

2A
lim inf
nÑ8

pEεn,expµnq ´ E
ε
n,exppnpm8qqq

and therefore
lim inf
nÑ8

pEεn,expµnq ´ E
ε
n,exppnpm8qqq ě 0.

Lemma 4 implies that limnÑ8 Eεn,exppnpm8qq “ Eε8,expm8q, hence

lim inf
nÑ8

E
ε
n,expµnq ě E

ε
8,expm8q.

which ends the proof.
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Proof of en ď an. For all xi, xj , xk P Ln,Ωε
,

pψn,xi ´ ψn,xkq ¨ pψn,xk ´ ψn,xjq ď
1

2
p|ψn,xi ´ ψn,xk |2 ` |ψn,xk ´ ψn,xj |

2q.

Since each couple pi, jq P En is an element of 4 triples in Sn, we have
ÿ

pi,j,kqPSn

pψn,xi ´ ψn,xkq ¨ pψn,xk ´ ψn,xjq ď 2
ÿ

pi,jqPEn

|ψn,xi ´ ψn,xj |
2

ď
ÿ

xPLn,Ωε

ÿ

yPNn,Ωε,x

|ψn,x ´ ψn,y|
2,

which is a much stronger result than en ď an.

Proof of cn and dn Ñ 0. Let pψn,x ´ψn,yq ¨ pm8pyq ´m8pzqq be one term
of the sum in cn and set v “ z ´ y. Then

pψn,x ´ ψn,yq ¨ pm8pyq ´ m8pzqq “ pψn,x ´ ψn,yq ¨ pm8pyq ´ m8py ` vqq

and in the same sum there is also a term pψn,x ´ψn,yq ¨ pm8pyq ´m8py´ vqq,
except for y P Dn,Ωε

.
Now since µn P W h, there exists a constant Cψ ě 0 such that

|ψn,x ´ ψn,y| ď Cψ
a

n
,

except for y P ln,Ωε
, but since there are Opnq such nodes, their contribution

in cn tends to 0. We also have

n

a
ppm8pyq ´ m8py ´ vqq ` pm8pyq ´ m8py ` vqqq

ÝÝÝÑ
nÑ8

p∇m8pyq ´ ∇m8pyqq ¨
v

|v|
“ 0,

and therefore

a

6n

ÿ

pi,j,kqPSn

pψn,xi ´ψn,xkq¨pm8pxkq´m8pxjqq “ Op
1

n
qOpn3qOp

1

n
qop

1

n
q “ op1q.

Remark 5. When y P Dn,Ωε
, we can only say that |ψn,x ´ ψn,y| ď Cψa{n

(except on ln,Ωε
) and |m8pyq ´m8pzq| ď Cma{n, and since #Dn,Ωε

“ Opn2q,
the contribution of these nodes in cn is a

Opn2qOp
1

n
qOp

1

n
qOp

1

n
q ` OpnqOp

1

n
qOp

1

n
q “ Op

1

n
q.

The sum dn is treated in the same way.
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Proof of fn Ñ 0. The quantity Sn,Ωε
pµnq is a sum of Opn2q terms reading

like pa{6nq|µn,xi ´ µn,xj |
2 for pi, jq P En, or pa{12nq|µn,xi ´ µn,xj |

2 for pi, jq P
Cn. By Hypothesis 3, only Opnq among these terms can be only op1{nq and
the others are Op1{n3q. Hence Sn,Ωε

pµnq “ op1q.
On the other hand, the fact that u8 P C1pΩε,R

3q ensures that all the terms
in Sn,Ωε

ppnpm8qq are Op1{n3q, and therefore is Sn,Ωε
ppnpm8qq “ Op1{nq.

Proof of bn Ñ 0. We use the fact that C8pΩε;R
3q is dense in H1pΩε;R

3q
for the } ¨ }H1pΩε;R3q norm. Let η ą 0, there exists mη P C8pΩε;R

3q such
that }m8 ´ mη}H1pΩε;R3q ď η. Then bn can be split into two contributions

bn “ bηn ` b
1η
n where

bηn “
a

n

ÿ

xPLn,Ωε

ÿ

yPNn,Ωε,x

pmηpxq ´ mηpyqq ¨ pψn,x ´ ψn,yq,

b
1η
n “

a

n

ÿ

xPLn,Ωε

ÿ

yPNn,Ωε,x

ppm8 ´ mηqpxq ´ pm8 ´ mηqpyqq ¨ pψn,x ´ ψn,yq.

For the first term, we notice that

bηn “
a

n

ÿ

xPLn,Ωε

ÿ

yPNn,Ω,x

pmηpxq ´ mηpyqq ¨ ψn,x

´
a

n

ÿ

yPLn,Ωε

ÿ

xPNn,Ω,y

pmηpxq ´ mηpyqq ¨ ψn,y.

As in the previous proof, we write y as x ` v and

bηn “
a

n

ÿ

xPLn,Ωε

ÿ

vPVn,0

ppmηpxq ´ mηpx` vqq ´ pmηpx ´ vq ´ mηpxqqq ¨ ψn,x.

We estimate

pmηpxq ´ mηpx` vqq ´ pmηpx ´ vq ´ mηpxqq

“

ż 0

t“1

∇mηpx` tvq ¨ v dt´

ż ´1

t“0

∇mηpx` tvq ¨ v dt

“ ´∇mηpxq ¨
v

|v|
` ∇mηpxq ¨

v

|v|
` Op|v|2q ď

ca2

n2
,

where the constant c only depends on the second derivative of mη, which is
bounded on Ωε. Thus

|bηn| ď
ca3

n3

ÿ

xPLn,Ωε

ÿ

yPNn,Ω,x

|ψn,x|.
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Thanks to the compact injection of H1pΩ;R3q in L1pΩ;R3q, we deduce
that this term vanishes. We obviously have

|b
1η
n | ď

a2Cψ

n2

ÿ

xPLn,Ωε

ÿ

yPNn,Ωε,x

|pm8 ´ mηqpxq ´ pm8 ´ mηqpyq|.

For any function u P C1pΩ;R3q, and y “ x` v, if rx, ys Ă Ω, then

upyq ´ upxq “

ż 0

t“1

∇upx` tvq ¨ v dt

“ ∇upxq ¨ v `

ż 0

t“1

p∇upx` tvq ´ ∇upxqq ¨ v dt

Applying this to m8 and mη,

pm8 ´ mηqpyq ´ pm8 ´ mηqpxq “ p∇m8pxq ´ ∇mηpxqq ¨ v

`

ż 0

t“1

p∇m8px ` tvq ´ ∇m8pxqq ¨ v dt

´

ż 0

t“1

p∇mηpx ` tvq ´ ∇mηpxqq ¨ v dt.

‹ By definition of mη, }m8 ´mη}H1pΩ;R3q ď η, which implies that }∇m8pxq´
∇mηpxq}L2pΩε;R3q ď η. Hence

a2Cψ

n2

ˇ̌
ˇ̌
ˇ̌

ÿ

xPLn,Ωε

ÿ

yPNn,Ωε,x

p∇m8pxq ´ ∇mηpxqq.py ´ xq

ˇ̌
ˇ̌
ˇ̌

ď 2Cψ
ÿ

xPLn,Ωε

´a
n

¯3

|∇m8pxq ´ ∇mηpxq|

ď 2Cψ

¨
˝ ÿ

xPLn,Ωε

´a
n

¯3

˛
‚

1{2 ¨
˝ ÿ

xPLn,Ωε

´a
n

¯3

|∇m8pxq ´ ∇mηpxq|2

˛
‚

1{2

.

Since

lim
nÑ8

ÿ

xPLn,Ωε

´a
n

¯3

|∇m8pxq ´ ∇mηpxq|2 “

ż

Ωε

|∇m8pxq ´ ∇mηpxq|2dx,

lim
nÑ8

a2Cψ

n2

ÿ

xPLn,Ωε

ÿ

yPNn,Ωε,x

p∇m8pxq ´ ∇mηpxqq.py ´ xq|

ď C}∇m8pxq ´ ∇mηpxq}L2pΩε;R3q ď Cη.
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‹ Let us treat the second contribution involving the C8 function mη. Since

ż 0

t“1

p∇mηpx` tvq ´ ∇mηpxqq ¨ v dt “

ż 0

t“1

ż t

t1“0

∇
2mηpx ` t1vq ¨ v b v dt1dt,

and ∇2mη is uniformly bounded on Ωε, we can estimate

a2Cψ

n2

ÿ

xPLn,Ωε

ÿ

yPNn,Ωε,x

ż 0

t“1

p∇mηpx` tpy ´ xqq ´ ∇mηpxqq ¨ py ´ xq dt “ Op
1

n
q.

‹ In the last contribution, function m8 is only C1.

a2Cψ

n2

ÿ

xPLn,Ωε

ÿ

yPNn,Ωε,x

ˇ̌
ˇ̌
ż 0

t“1

p∇m8px` tpy ´ xqq ´ ∇m8pxqq ¨ py ´ xq dt

ˇ̌
ˇ̌

ď
a2Cψ

n2

ÿ

xPLn,Ωε

ÿ

vPNn,0

ż 1

t“0

|p∇m8px ` tvq ´ ∇m8pxqq ¨ v| dt

ď
a3Cψ

n3

ż 1

t“0

ÿ

xPLn,Ωε

ÿ

vPNn,0

|p∇m8px ` tvq ´ ∇m8pxqq ¨
v

|v|
| dt.

Since m8 P C1pΩε;R
3q, the elements of the sum converge uniformly towards

0 as n Ñ 8, and therefore the integral is opn3q.

Hence limnÑ8 |b
1η
n | ď η and therefore limnÑ8 |bn| ď η, for all η ą 0. This

leads to limnÑ8 |bn| “ 0, and the lemma is proved.

3.3.5 Proof of Lemma 6

The terms that occur in En,expµnq but not in Eεn,expµnq are those involing
couples px, yq where one at least of the nodes belong to ΩzΩε. There are
εOpn3q such nodes. Hence, by Hypothesis 3, the contribution of ln,Ω in
En,expµnq tends to zero, and there exists c ą 0 such that for all tµnunPN˚ P W h,

lim
nÑ8

|Eεn,expµnq ´ En,expµnq| ď cε.

We have already estimated Pnpµq on ΩzΩn,ε, where Ωn,ε is a polyhedral
subset of Ω which, like ωε has an Opεq Lebesgue measure. We already know
that Pnpµnq|ΩzΩn,ε

P H1pΩzΩn,ε;R
3q and Pnpunq|ωε

á m8|ΩzΩn,ε
in the sense

of H1pΩzΩn,ε;R
3q, therefore

ż

ΩzΩn,ε

|∇m8pxq|2 dx ď lim inf
nÑ8

ż

ΩzΩn,ε

|∇Pnpµnqpxq|2 dx ď Cε.

24



lim inf
nÑ8

En,expµnq “ lim inf
nÑ8

pEεn,expµnq ` pEn,expµnq ´ E
ε
n,expµnqqq

ě lim inf
nÑ8

pEεn,expµnqq ` lim inf
nÑ8

pEn,expµnq ´ E
ε
n,expµnqq

ě E
ε
8,expm8q ` lim inf

nÑ8
pEn,expµnq ´ E

ε
n,expµnqq

ě E8,expm8q ` pEε8,expm8q ´ E8,expm8qq

` lim inf
nÑ8

pEn,expµnq ´ E
ε
n,expµnqq

ě E8,expm8q ´ pc ` c1qε.

Since this holds for all ε ą 0, we finally deduce that

lim inf
nÑ8

En,expµnq ě E8,expm8q.

4 Other energy contributions

4.1 Magnetostatics: demagnetizing energy

We can define a mapping hd : L2pR3;R3q ÞÑ L2pR3;R3q by: for all u P
L2pR3;R3q, hdpuq is solution in the sense of distributions to

"
rothdpuq “ 0,
div hdpuq “ ´ div u.

When u is the magnetization, hdpuq is the demagnetizing field. Its energy is

Edpuq “
µ0

2
}hdpuq}L2pR3;R3q.

For u P L2pΩ;R3q, we denote by ũ the L2pR3;R3q function which equals u
inside Ω, and 0 outside Ω. Hence for a spin distribution µn P pS2qLn,Ω, the
demagnetizing energy is defined by

En,dpµnq “
µ0

2

›››hd
´

ČPnpµnq
¯›››

L2pR3;R3q
.

4.2 External energy

The external energy, or Zeeman contribution, models the influence of an
external magnetic field on the magnetization. Given such a field hZee in
C0pR3;R3q, for all u P L2pR3;R3q supported in Ω, we set

EZeepµnq “ ´

ż

Ω

hZee ¨ u dx,
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this energy in maximized when u is almost every where in Ω in the direction
of hZee.
At the micro scale, for a spin distribution µn P pS2qLn,Ω, we set

En,Zeepuq “ ´
´a
n

¯3 ÿ

xPLn,Ω

hZeepxq ¨ µn,x.

4.3 Total energy

We define the total energy summing up the exchange and demagnetizing
energies both in the lattice context:

@µn P pS2qLn,Ω , Enpµnq “ En,expµnq ` En,dpµnq ` En,Zeepµnq,

and the limit continuous one:

@u P H1pΩ;R3q, E8puq “ E8,expuq ` E8,dpuq ` EZeepuq.

Theorem 2. Let pµnqnPN˚ P W h. In the sense of the topology defined by
Definition 2

En
Γ

ÝÝÝÑ
nÑ8

E8.

Moreover, this convergence is compatible with the unit norm constraint.

Proof. We have already shown that

En,ex
Γ

ÝÝÝÑ
nÑ8

E8,ex.

Moreover hd : L2pR3;R3q ÞÑ L2pR3;R3q is linear and continuous. We
therefore choose pµnqnPN˚ P W h such that µn ÝÝÝÑ

nÑ8
µ P H1pΩ;R3q. This

means that the sequencepPnpµnqq is weakly convergent in H1pΩ;R3q to µ.
Hence

Pnpµnq
L2pΩ;R3q
ÝÝÝÝÝÑ
nÑ8

µ and ČPnpµnq
L2pR3;R3q
ÝÝÝÝÝÝÑ

nÑ8
µ̃.

In particular En,dpµnq ÝÝÝÑ
nÑ8

E8,dpµq.

Besides if µ P H1pΩ;R3q, we know that pnpµq ÝÝÝÑ
nÑ8

µ in H1pΩ;R3q, which

ends the proof of

En,d
Γ

ÝÝÝÑ
nÑ8

E8,d.

Last, we remark that

En,Zeepµnq “ ´
´a
n

¯3 ÿ

xPLn,Ω

hZeepxq ¨ µn,x “ ´
´a
n

¯3 ÿ

xPLn,Ω

hZeepxq ¨ Pnpµnqpxq,
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which can be re-written as the approximation of ´

ż

Ω

hZeepxq ¨ Pnpµnqpxqdx

thanks to piecewise approximations. Then, using the regularity of hZee and
the convergence of µn in L2pΩ;R3q toward µ, we prove that

En,Zeepµnq ÝÝÝÑ
nÑ8

EZeepµq

and Theorem 2.

5 Conclusion

In this paper, we prove a Γ-convergence result from a discrete description
of ferromagnetic materials at the microscopic scale to the continuous one.
This result has been shown thanks to a rigidity hypothesis on the lattice of
magnetic moments. This modeling hypothesis is based on the Heisenberg
interaction phenomenon and could be justified by a time multi-scale study.
The new hypothesis would take into account the speed of the Heisenberg
relaxation compared to the Larmor precession process.

The results in this paper are the seed in order to address the micro–
mesoscopic limit for dynamic processes to be able to better understand the
dissipation phenomena involved in the mesoscopic Landau–Lifchitz system.
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