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Abstract

Thanks to averaging processes and I'-convergence techniques, we
are able to link a microscopic description of ferromagnetic materials
based on spin lattices and their mesoscopic description in the static
framework for the three fundamental contributions: exchange, magne-
tostatic and external field. The results are in accordance with the clas-
sical continuous description of ferromagnetic phenomena and justifies
it. This work is a seed towards a dynamic description of ferromagnetic
materials.

1 Introduction

The continuous description of ferromagnetic materials has been introduced
since the 60’s via the micromagnetism model developed by W.-F. Brown [4].
This model, based on a thermodynamical description of ferromagnetic phe-
nomena, has proved its efficiency in numerous works via relevant simulations
([2, 6, 9, 5]). Nevertheless, several problems persist in the description, from
the thermic effects to the magnetostrictive behaviors. These problems are
very sharp and, in order to understand their modeling, one need to under-
stand the microscopic behavior of magnetization (atomic scale) and the link
between this scale and the mesoscopic scale (continuous magnetic matter
scale of ferromagnetic effects). In this paper, we focus on the beginning of
this program: the link between a microscopic description of ferromagnetic
materials and their mesoscopic description in the static framework for the
three fundamental contributions: exchange, magnetostatic and external field



[1, 7, 8]. Here, the microscopic scale designates the atomic scale where atom
nuclei are assumed to be point electric charges bearing one magnetic moment
induced by the atom’s electronic cloud; the mesoscopic scale designates the
continuous description of matter for which the ferromagnetic effects are sig-
nificative.

At the microscopic scale, we describe the material as a regular periodic
spin lattice intersected with the magnetic domain (a bounded open set of R?).
Section 2 is dedicated to the mathematical description of the microscopic
model (the spin lattice) and to an averaging process towards a mesoscopic
models which leads to a constant norm magnetic field, in accordance with
usual models of micromagnetism. The microscopic energies are introduced
and several modeling hypotheses are set. The main hypothesis is induced by
the adiabatic behavior of the Heisenberg energy compared to the global ferro-
magnetic energy. This hypothesis gives a constraint on neighboring magnetic
moments. In fact, this constraint is verified by a set of minimizers for a given
lattice.

The energy induced by the Heisenberg interaction is more difficult to
treat. Section 3 addresses the study of this contribution and, in particu-
lar, its asymptotic behavior for sequences of lattices verifying the modeling
hypothesis. This hypothesis ensures compactness which allows to use I'-
convergence tools in H'. The limiting energy constructed from the discrete
magnetization is the exchange energy (Theorem 1).

In Section 4, we introduce the demagnetization energy both for discrete
lattices and the continuous model and finally obtain a convergence result for
the sum of the Heisenberg and demagnetization contributions (Theorem 2).

2 Mathematical descriptions of a spin lattice

2.1 Atomic lattice description

We consider a collection of spins which are located on the nodes of a periodic
lattice £ in the R? space (d = 1,2,3) with mesh size a > 0. In the scope
of this paper we will restrict to the case of 1D, square or cubic lattices, L is
simply aZ?, but we can think of more complex lattices. Here all the nodes
play the same role to ensure a unique definition of neighbors. In the opposite
case a multi-species model should be used.



The nodes are indexed by i € N and we denote by z; the 7th spin location
and p,, the corresponding spin value (magnetic moment). The norm of these
magnetic moments are scaled to the unit value and therefore for all ¢ € N,
tz, € S?, where S? is the unit sphere of R3.

Instead of describing a collection of magnetic moments, we can gather all
the values in one single vector field p defined by

Vr e Rd? ,u(x) = ZM$151:1($)7

ieN

where 0,, is the Dirac delta function centered at x;.

2.2 Scaling

We want to obtain an homogenized model of the spin lattice, i.e. give a
description when this lattice is seen from far. Instead of really doing this,
we will perform some dual transformation, i.e. consider only nodes that are
included in some fixed bounded domain €2, and shrink the lattice (as shown
on Figure 1 for d = 2). More precisely, we suppose that 0 € Q) and for all
n € N*, using the homothety h,(z) := x/n, Vx € R, we define

e L, = hy(L), the shrunk lattice;
o L,q=2L, N, the nodes of the shrunk lattice that belong to €2;
o /i, € (S?)*"2, the shrunk vector field.

We notice that for all y € R,

pn(Y) = Y, Hnade(y),

Z'El:mg

where (i, , = Pt (). We assume that 2 has a sufficiently regular boundary
in order that the number of nodes belonging to L, o is

WL = Cnt(1 + 0(%)).

where C'is a constant which only depends on £, a and 2 (which are constants
of our problem).



(c)

Figure 1: Scaling of a 2D spin lattice: each sub-plot represents the domain
2 and (a) the square lattice £; (b) the shrunk square lattice Lo; (c) the
homogeneized lattice in {2 as n — 0.

2.3 Regularity assumptions

In order to pass to the limit as n — oo, we have to assume that the magnetic
moments are locally almost aligned. The definition of locality is given by an
integer multiple k& € N* of the shrunk mesh size a/n.

We define a first regularity assumption that only depends on the distance.
For all z € R and r > 0, we denote by B(x,r) the ball of center z and radius
r in R?

Hypothesis 1. For all n e N*, there exists ¢, > 0 such that
ka
VeeQ, Vy,ze Loon Bz, — ], 1= Gp < flny * nz < 1,
n

where ¢, = O(1/n?).

We are indeed interested in the limit when we have a more and more dense
lattice of more and more aligned spins. We therefore perform a diagonal
process and correlate n and the spin alignment.

To define the averaging process we will also need to assume the €2 has the
uniform cone property.

Hypothesis 2. There exists an angle o and a radius r, such that for all y €
there exists a cone Cy of angle o with vertex aty such that B(y,r)nC, < Q.



2.4 Partitions adapted to the lattices

Let us first work on the initial lattice. To this aim, we define a partition of
unity (p,)zerc adapted to the dilated lattice kL. Since our lattice is uniform
and all the nodes are equivalent, all the p, are equal up to a translation (see
Figure 2), i.e. there exists p* € C®(R% R) such that

Voe kL, YyeRY p.(y) = p*(y — ).

a ka

Figure 2: Partition (p;)zerc in dimension 1.

Without lack of generality, we assume that p* > 0 and supp p* € B(ka).
By definition of a partition

VyeRY Y ply)= >, p'(y—2) =L

€KL zekL

Let ny be the number of nodes in B(0, ka), which is e.g. ny = (2k +1)? for a
cubic lattice. If we now sum over all the x € £, we have the same translation
property and

Yy e RY, Z p(y —x) = ng.

€L

Defining p = n; 'p*, we have

Vye R, Y iply—2) =1,

zel
and therefore a continuous partition of unity on R
Now, we adapt this partition to the shrunk lattice £,,. Defining
vn e N* p,(x) = p(h;'z),

we have a continuous partition adapted to the shrunk lattice (see Figure 3)

ka
Vy e R? w(y —z) =1 and n . —).
y e RY Z pn(y — ) and supp p, < B(0 - )

x€Ly,



a/n ka/n

Figure 3: Partition (p,)zer, in dimension d = 1.

Since Vp* is uniformly bounded (i.e. O(1)), then Vp,, is uniformly O(n).

To define an averaging process we will have to use a truncated partition
of unity, namely
Ouly) = >, puly—x).
ZBELn’Q

We clearly have 0 < ®,(y) < 1 and as a finite sum of C* functions, ®,, €
C*(R%R). We also have a stronger result, namely @, (y) is bounded from
below uniformly in n and y € €2: there exists b > 0 and ny € N* such that

Yy € Q, Vn = no, b<d,(y) <1.

This result stems from the ”cone property” (Hypothesis 2). Besides V&, is
uniformly O(n).

2.5 Averaging process

From the sequence (g, )nen+ of vector fields, we now define a new sequence
(M) nsn, of regular vector fields on Q: for all n = ng, we define

1 .
n n mny
My = (I)nu p

Remark 1. Since p, and ®,, € C*(R%:R), and @, is bounded from below by
b > 0, it immediately follows that m,, € C*(Q;R3). In particular, since §) is
bounded, m,, € H'(2;R?).

Lemma 1. The sequence (Mg, )nsn, s bounded in L®(2;R3) and L?(2; R3).

Proof. Recall
Hn = Z ,un,:vézvu

Z'El:mg



hence, for all y € €2,

M (Y

xeLn Q

We clearly have

1 P, (y)
2 Mo, mpn ) < 2 |Nn,m|/)n(y - x) = =1,
xeLn o P, (y) 2L @, (y)

[ e 2sm9)

V9.

7 | L2(;m3)

Proposition 1. Under Hypothesis 1, (my)nsn, @S a bounded sequence in
H'(;R3).

Proof. For all y € ), we write

an(y) = ( nl(y) Z :unarpn - ) ﬁ(y)vz Mn,xpn(y_x)a

xG,C Q xG,C ,Q
P, (y)

<I>n(y) Z onl fin

xEE Q

Let x, € L, o N supp p,(y — -), we can write

D Vo =) ®ptne = D) Vpuly — ) ® (fney + (Hnw — bnay))
€LY, 0 z€Ly 0
= Z Vouly —2)® Fon,z,
€LY O
+ D) Vouly =) © (tine = tina,)
€LY O
+ ), VoY = 2) @ (pne — finz,)-
€LY, O
Hence
Vi, (y) % (?(/)) W3 (?5)) o
1
”( ) €L, O



Vo, (y) 1

= — X Hon,z, + Hna — Pnay, )Pn\Y — T
%.(0) 5,2 | )only =)
Vo, (y) ( >
+ ® nmy vpn - ,unm ,un,:vy
V,(y)
= ® ,un,my — Mnz)Pn\Y — T
3. (y)° me%g( )pn(y — )
1
+ ( > Z v/)n - (Nnm ,un,:vy)-
xG,C Q

In both sums there is only an O(1) number of terms for which p, or Vp,
is non zero. In the first sum, by Hypothesis 1, |pn 2 — pinz,| = O(Ca \ 2) =
O(1/n). Besides |V®,(y)| = O(n) and ®,, is bounded from below. The
first term is therefore O(1). In the second sum |tz — fine,| = O(1/n) and
Vpn(y — ) = O(n). Hence there exists C’ > 0 such that, for all y € Q and
n = ng, |[Vm,(y)| < C".

Finally, © being bounded, hence (||Vm,|r2(rsd))n=n, is a bounded se-
quence. ]

2.6 Asymptotics towards a mesoscopic model

Since H'(Q;R3) is weakly compact, Proposition 1 implies that there exists
m € H*(Q;R3) such that

m, — m weakly in H'(Q; R?).

From now on, we have to assume that €2 is compact (closed) and has a

piecewise C! boundary, to ensure that this implies that this convergence is
strong in L?(Q; R3).

Proposition 2. Under Hypothesis 1, m has a constant norm equal to 1
almost everywhere on §2.

Remark 2. We recover here a property of the magnetization field in Brown’s
model of micromagnetism [4], where the constant norm is assumed.

Proof. We have seen that for all n > ng and y € Q, |m,(y)| < 1. We want to
show that it is also bounded from below and pass to the limit. For all y € €2,



since |pin* = 1,

1 2
may)F = | D, Hnapaly =)
q)n(y) $E£n’ﬂ
1 '
= 2 Z Hn,z * Hn o’ pn(y - x)pn(y - )
q)n (y) I,m'El:n’Q

Since supp p, < B(0, ka/n), the sum runs indeed on L, o n B(y, ka/n):
1
ma(y)]® = = > fn * Hna Py — T)pa(y — o).
¢n(y) ’ ka
z,a'€Ln 0By, )

Hypothesis 1 implies that

k
Va,2' € L, 0 n By, ?a), 1—Co < g * o < 1.

and we also have that

VyeQ, > paly —2)paly —2') = Bu(y)’,

z,2'€Ln 0
therefore
1
1_qu)ny2< mny2< (I)ny27
S~ RS )P < )
1—G < Ima(y)f <1

In the L?(Q; R?) limit, we therefore have |m| = yq almost everywhere.

3 Towards the exchange energy

3.1 Heisenberg interaction

The interaction of the spins is described by the Heisenberg energy, which can

be written as follows:

1
Cry = _§Am,y(ﬂm “fy — 1)7

where A, , > 0 only depends on the distance between = and y. We make the

assumption that each node x only interacts with its neighbors N,.

Let Vo © L be the set of neighboring nodes in interaction with the node
(0,0,0) via the Heisenberg energy. In the shrunk lattice, we will restrict

9



the computation of this energy to elements x and y in € £, o. Since the
lattice is homogeneous, the neighbors of any given node x € £, o can be
deduced from the definition of Ny: Ny, = ({x} + h, (Ny)) n Q. We also
assume that (a) Ny (and hence N, q.) is a finite set; (b) Ny = B(0, ka) (i.e.
Npa. < B(z, ka/n)).

We therefore define the node energy by

1
€m==§3<%g==—§ D Apy (e - 1y — 1)

YEN YENZ

In what follows we will restrict the study to 3D cubic lattices. Dimensions
1 and 2 are also possible to treat in the same way. The fact that the lattice
is cubic is used in the explicit computations, but our proof may be extended
to other classes of regular lattices. We also consider as neighbors only the 6
closest ones on the cubic lattice, which at at the same distance. Since A, ,
only depends on the distance, which is now equal for all the neighbors, we
can set

{A>0, if y e N,
Ty

0, else.

For all n € N*  we define the exchange energy of the domain €2 associated
to the spin distribution u,, summing up the node energies scales to

5n,ex(/h@) = Z €r = % Z Z A|/~Ln,y - /~Ln,m|2'

z€Ly 0 €L, 0 YENR Q.

3.2 Spaces and convergence

We define the space sequence (W,,)nen+ by W,, = (R?’)L"’Q. In the sequel, we
set W = [1,,exx Wa-

Hypothesis 3. Let p = (pn)nens € [ [,,ene Wa- There exists ¢ > 0 such that

C

2
Vn e N*, Ve Ln,Qa vy € Nn,Q,a:a |Mn,x - Mn,y| < PR

n
except possibly for a subset l,, o < L, q such that #(l, o) = O(n), and there

. ES
exists a sequence (Cp)n=1 € RN such that ¢, —— 0 and
n—00

2
Vn e N*7 Ve e ln,ﬂa vy € Nn,ﬂ,xa |/~Ln,m - ,un,y| < Cp.

More precisely, given the constant ¢, z € [,, o if there exists y € N,, o, such
that |fne — pnyl* > ¢/n*. Hypothesis 3 is a little weaker than Hypothesis 1.

10



We denote by W" < W the set of gt = (pn)nen= for which Hypothesis 3
holds and W) < W the set of g € W9 for which |, .| = 1, Vn e N*, Vz e
Lq.

We want to define the convergence of elements of W towards elements of
the limit space H'(2;R3). To this aim we define a partition of the domain
Q) < R? in tetrahedra, by groups of 5 tetrahedra (see Figure 4 and Section
3.3.1).

Figure 4: Partition of a single 3D lattice cell. These five tetrahedra are ele-
ments 7, and 7, for the corner tetrahedra, and 7' for the center tetrahedron
(see Section 3.3.1).

Definition 1. We define the projection P, : W,, — H(S;R?) such that
P, (i) is equal to p, on the lattice nodes and linear on each element of the
partition.

Definition 2. We say that p € W converges to m € H*(;R3) if P, ()

converges weakly in H'(S;R3) to m as n — o. We denote this p, — m.
n—0

Definition 3. We define the projection p, : C(S;R?) — W,,, such that for
all m e C(QR?), po(m) € W, and for all x € L, 0, (pn(m)), = m(x).

3.3 Main result

The exchange energy &, o is a functional defined on W,,. The main result of
this paper is the following

Theorem 1. Let (ii,)nens € WP, In the sense of the topology defined by
Definition 2
gn,ex L’ goo,exa
n—00

where
Ever: HI(GRY) — R,

m — 2AJ |Vm(z)]*dz.
Q

11



Moreover, this convergence is compatible with the unit norm constraint.
Remark 3. The I'-convergence result is two-fold [3]:

construction: for all m e H'(Q;R3), there exists u € W such that ji,, — m
and imsup,,_, ., Enex(fin) < Eupex(m).

lower semi-continuity: for all p € W, such that |u,| < B, pin — Mo €
HY(Q;R3) and liminf,, o Ep ex(pin) = Eopex(Mop)-

Proof. The proof of Theorem 1 splits into many steps to which various lem-
mas are devoted, the technical proofs of which are postponed.

Lemma 2. Let (fiy)nens € W, then there exists my, € HY(;R3) such that

oy, —> Mo
n—a0

Now this function me is only in H'(£2;R3), and not continuous, and
we need to use pointwise values of this function. Therefore, for all €, we
approximate my by a C'(€2; R?) which coincides with mg, on a smaller domain
Q.. We denote by A the Lebesgue measure on R%.

Lemma 3. Let u € HY(Q;R?), for all € > 0, there exists an open set w, .
and a function u. € CH(;R3) such that for all v € N\wye, u(z) = u(z),
Mwye) <€, and

I; #(‘Cn,ﬂ M wu,a)

im

Corollary 1. Let u € H'Y(Q,R?), for all ¢ > 0, there exists an open set
Q.. < Q with piecewise C* boundary such that A(Q\,.) < € and

<E.

U, . € C'(Qy - R?).

Lemma 4. Let u € C*(;R3), then (pp(u))nenx € WP, po(u) —— u and
n—00

limy, o Enex(Pn(w)) = Exex(w). Moreover if u has a constant unit norm,

then (pp())nen € WY.

For all € > 0, we can therefore associate to my an open set €. on which
it is C! and define the approximate energies:

Enexttn) = % Z Z Alptny = tnzl?, for all n € N*,
:L'El:n’gs yENn7QE,x
£ (mw) = 24 L Vi (2)2de

Comparing &2 _ (u,) and EE . (pn(Mms)), we first show that

n,ex n,ex

12



Lemma 5. For all ¢ > 0, iminf, o & o (itn) = €5 ox(Meo).

n,ex

Estimating the remainder of the sums and integrals on w., we can then

prove

Lemma 6. liminf, o &y ex(tin) = v ex(Moo).

3.3.1 Proof of Lemma 2: Limit of a lattice of spins

Lemma 2 is proved using an explicit computation of the projection P, (i)
To this aim, we define, for all n € N*,

7., the set of tetrahedra which form the partition of £, q;

T,, the set of corner tetrahedra (4 for each mesh of the lattice, see
Figure 4);

T, the set of center tetrahedra (1 for each mesh of the lattice, see
Figure 4);

E,, the set of edges of the mesh of £, o (given by couples of the indices
of the lattice nodes);

Chp, the set of edges of elements of T¥;

Sy, the set of outer surfaces of T,, (triplets (i, j, k) where (i,j) € C,,
(i, k) and (j, k) € E,,).

s VeeEn
\ —ecC,

Figure 5: Different sets of tetraedra and edges.

Remark 4. Generically ), = Urer, 7 & Q. We suppose that the geometry of
Q is such that A\(Q\2,) = O(1/n), i.e. there are order n? tetrahedra covering
the difference set. We set P, (i) to zero on Q\§2, .

13



Step 1. Estimate of {, |P,(u,)(x)|*dx.

Let z € Q,, then there exists 7 € T, and x € 7. Since P,(j,) is linear
on 7, then P,(u,)(7) is a pondered mean of the p, .7, i = 1,...,4, where
(27,23, 25, 27) € (L,0)* are the vertices of 7. Therefore |P,(u,)(z)] < 1.
Hence

| 1Ps @) P

| 1P @Pas = 3 [ 1P @) P
Qn reT, YT
< Z A7) = AM€2).

TETn

Step 2. Explicit computation of { [V P, (u,)(x)|*dx.

We compute §, |V P,(u,)(z)|?dz explicitly using the tetrahedron decom-
position of the lattice. On each tetrahedron P, (u,,) is linear, and therefore
its gradient is constant.

If 7 € T,,, we can construct an orthogonal system using the lattice nodes
(27,23, 25, 27) € (Lna)?, for example (pner — fine7)izs,..a- Bach direction
yields one component of the gradient. Since the length of the edges are a/n,
the component of the gradient are the (i, o7 — fin .7 )n/a. Besides the volume
of T is £(a/n)?, therefore

4
a
| P @ P = 3 s = o
T n 1=2

For a center tetrahedron 7+ € T'Y, it is a bit more tricky since the edges are
not orthogonal. The volume is of course the complement of the volumes of

the corner tetrahedra, namely #(a/n)3. The computation yields

2

n

1<i,j<4
and hence
a
P, (1, 2de = — e — |2
| PG @R = 1 3 e s

1<i,j<4

14



Gathering all the contributions

| 9P @) P
- 3 | 9P @) P

TETn
- 3 [ IvRGm@Par+ X | 9P @)Pds
TeT, TxeT¥
_4 Z |,un$z Mnxj|2+2 Z 12 |//JnxZ Mn,$j|2_8n,ﬂ.
7.7 EEn (7.7)60”

The coefficient 4 in front of the sum on FE, occurs because each element of
E, is an element of four 7 € T,,. Similarly each element of C), belongs to two
7% € T)Y. The positive error S, o is due to an over-estimation because some
of the edges e € E,, are on the outer surface of €2, and have been counted
too many times. Following Remark 4, the contribution of S, o will always
be O(1/n) less than that of the other terms, and therefore will tend to zero
as n — o0.
We rewrite the ﬁrst sum

2
+ Z Iun o= e, P = ) Z |,un ¢~ Hnyl
7.7 EEn xELn Q yENn Q,x

(here each edge is counted twice through the couples (z,y) and (y,x)). For
x € lyq, we can only estimate (a/3n)|tne — finy|*> < 4a/3n, but there are
only O(n) such terms. For z € £, o\ln.q, (a/3n)|pnz — finy|* < ac/3n® and
there are O(n?) such terms. Therefore
a
4 Z 6_|,un,:v¢ - ,Un,:vj|2 =0(1).
o n
(i,j)€En
For the second sum
a 1 a
Z 6_n|ﬂn,xi - Mn7$j|2 = ) Z 6_n|l’bn7$i — Mgy T Moz, — Mn,xj|2
(4,5)€Cn (4,5,k)ESR

2 ( ,un T :un,aﬂk |2 + |lu7l7$j - ﬂn,xk|2
(i,5,k)€S

+ Q(Mn,xl — ,Un,mk) ) (,un,:vk - ,un,mj)>

a a
= Z 3_n|,un,:vl - ,un,mj|2 + Z 6_n(,un,:cl - ,Un,:vk) ) (,un,:vk - ,un,mj)

(i,5)€EER (4,4,k)ESn
a
Z Z _|Mn T Mn,y|2 Z G_H(ﬂn,xl - Mn,xk) ) (Mn,xk — Mn7$j).
xELn Q yENn Q,x (z,j,k)ESn

15



As for the previous sum, we can decompose these sums into two O(1) con-
tributions. There are at most O(n) terms contributing to S, o and stem-
ming from an x € l,q, therefore S, o = O(1). Therefore |P,(jtn)| 1 (o;r3)
is uniformly bounded and P, (u,) is weakly convergent in H'(2;R®). This,
together with our convergence definition 2, leads to Lemma 2.

A by-product of this proof is the fact that we can write

1
V&WM@mﬂmm»ZLW”MMM@WM=§ZQMWM+QMM)

where

a
on(pin) = o 37 (tnae = tina) * (o, = fins,) = S
n. ..
(z,g,k)eSn

3.3.2 Proof of Lemma 3: C' approximation of a ' function

Following Ziemer theorem ([10], Theorem 3.11.6), we know that for any func-
tion u € H'(;R?) and for all € > 0, there exists a function u. € C'(Q; R?)
such that A(w, ) < e, where

wy e := {x € Q such that u(x) # u.(x)}.

We want to extend this result and be able to localize the irregularities of
u with respect to a shrinking lattice.

Let u e H*(Q;R3), and X, be the set of points where u is not C. Since
the gradient of u € H'(£2;R?) has to be defined almost everywhere, there

cannot be an open ball in X,, and therefore X, = .

We now fix € > 0. The Lebesgue and H? Hausdorff measures coincide in
R? and therefore we both have A(X,) < ¢ and H*(X,,) <.
Hence there exists a sequence of open balls (B;);en such that

o0
X, C UBi and Z diam(B;)? < e.
ieN i1

Since X, is closed and bounded, it is compact and we can extract from
this open cover a finite subcover.
Hence there exists N € N such that

N N
X, C U B; and Z diam(B;)® < e.
i=1

i=1

16



Obviously Uﬁio B, is bounded with a piecewise C' boundary, hence

. #(Lnan U]L Bi) "
lim ’ L =\ BinQ)] <e

Besides ),y g, € H'(U}L,Bi;R?), and we therefore can choose u. such
that w, . = UN,B;. Finally

lim #(Ln,ﬁ M wu,e)

X €.

In our proof, we set ). = Q@:e and begin to work on the restricted
shrunk lattice £, 0. = Lna[]2%. We also denote D,, o the subset of ele-
ments x € L,, o such that #(N, o, N ) # 6, that is the set of nodes which
are too close to 0€2. to have their 6 nearest neighbors in €)..

Since 0€). is piecewise C! for all € > 0, we know that #D,, . = O(n?).

3.3.3 Proof of Lemma 4: Construction

Let x € £, o and y € N, o ,. Since u € CY(€;R3), Vu is bounded by some
constant C' on {2 and

2 2.2
[Pa(w)e = pa(w)y* < C*le — y[* < C* (g> -5

n n? -’

Therefore p,(u) € WY. Clearly if |u] = 1 on Q, forall x € L, q, |pn(u).| =1
and p,(u) € W).
Lemma 2 implies that there exists u,, € H(£2;R3) such that p,(u) ——

n—00
U Since u € CH(Q;R3), P,(p,(u)) converges towards u. This convergence

is pointwise and even uniform on 2. Hence u, = u.
Last

Encxlpa@) = = D% D5 Alpa(u), — palu)al?

mEl:n,Q yENn,Q,x

= =0 Y Aluly) - @)

mEl:n,Q yENn,Q,x

Since u € CH(Q;R3), for all z € L,, g and all y € N, o4,

+ 6n7m7y7

u) v | y=a |
y—ap ‘V() y—z]

17



and therefore for all x € £,, 0\D, 0

(9)2 D July) — u(@)? = 2|Vu(@) + eng,

a
yENn,Q,x

and the errors e, , are uniformly o(1) as n — co. Hence

Ereelpa() =24 D) (2) (V@) + 0 + (),

Z'El:n Q

where the O(1/n) stems from x € Dy, q. Since lim, 0 Y., (a/n)%en. =0,
and the border of Q is piecewise C!

Jgrolo 2 ( ) Vu(z J|Vu )|*da

and

lingo Enex(Dn(u)) = Ep ex ().

3.3.4 Proof of Lemma 5: Lower semi-continuity

With Definition 2 for the convergence, P, (i,) — mq in H'(;R3), and
hm mf | P () | 1103y = [Moo || 11 03
(see [3], Proposition 2.3).
Since we have assumed that € is compact and has a piecewise C' bound-

ary, we have already seen that the convergence is strong in L?*(2;R3) and
therefore

lim inf IV Pun) 7200, £ r8 00y = VM0 [72(00, (5 0y -

Let us first fix € and work in €2.. Thanks to Proposition 4, we know that
My 1S continuous and

IV Bu(pu(moo)) | L2(0eie @iy ——— [V | 12z msmay).-
This implies that
hﬂ{gf (HVPN(:“N)H%?(QE;L(RS;R”Z)) - HVPn(pn(mOO))”%Q(QE;L(R?’;Rd))) = 0.
According to Lemma 2, we can write
1 € €
van(:un)”iQ(QE;E(R?’;Rd)) = ﬂ(gn ex(ttn) + 7, (1tn))-

18



We therefore know that

n—a0

it (51560 — 5 Enlinre)) + 05 00) — 05 pa02)) ) 0.

We split this into 5 parts, namely

ﬂgn ex( ) - ﬂgn ex( (moo)) = anp+ bn7

a(kn) = @ (Pn(me)) = Cn+dn + 0 + fo,

which can be expressed using 1, , = fn. — Mo (), defined for all n € N*
and z € L, q.:

Qp = % Z Z |¢n,x_wn,y|2a

$E£n,ﬂg yeNn,Qg \T

b, = % Z Z 2(Meo (1) = Moo (Y)) - (Ynw — Vny),

mEl:n,Qg yENn,Qg T

a
o= g 2 (M) = me(an)) - (U, — s,
(1,4,K)€S
a
S 6_n Z (,lvz)n,xZ o ¢n,xk) ’ (moo(l’k) B moo(l'j)),
(ivjvk)ES"
a
€n = 6_n Z (wn,l“z - w"#’?k) ) (w"’x’“ - wn’mj)’
(ivjvk)ES"

o = Sn,Qe(pn(mOO))_Sn,Qe(Nn)'

We show below that e, < a,, and b, ¢,, d,, and f, tend to zero. This implies
that

im (0 () = () < 57 T EE] o 0) — (P (m.2))

n—00
and therefore

i (65 (1) — €5 (P (o)) > 0.

n—0oo

Lemma 4 implies that lim, e &, o (Pn(Mw)) = €5 ox (M), hence

hm 1nf & eX( n) =& ex( )-

which ends the proof.
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Proof of e, < a,. Forall z;, z;, x € L, o,

1
(wn,:m - wn,mk) ’ (wn,:vk - wn,:vj) < i(wn,:vz - wn,mk|2 + W}n,rk - wn,:vj|2)-

Since each couple (7, j) € E, is an element of 4 triples in S,,, we have

2 (1/1,1712 - wn,mk) ' (wn,:vk - wn,xj) < 2 Z |1/}n,mZ - wn,xj |2

(i,j,k‘)ESn (Zvj)EEn

< Z 2 W}n,m - wn,y|27

:BEL’VL,Qg yEN’VL,Qg,SC
which is a much stronger result than e, < a,.

Proof of ¢, and d,, = 0. Let (¢, —¥n,y) - (Mw(y) — mw(z)) be one term
of the sum in ¢, and set v = z —y. Then

(Une = Yny) - (Moo (y) = M (2)) = (Y = Pny) - (Mo (y) — Mo (y + 0))

and in the same sum there is also a term (¢, — Vny) - (Mo (y) — Moo (y —v)),
except for y € D, q..
Now since p,, € W, there exists a constant Cy, > 0 such that

a
W)n,x - wn,y| < nga

except for y € I, o, but since there are O(n) such nodes, their contribution
in ¢, tends to 0. We also have

(e ) — ey = ) + (M) — 1y + )
o (V) = Vmas(y) - 1 =0,
and therefore
i 2 (b (o) m(ey) = oh0m0 102 = o).

Remark 5. When y € D, ., we can only say that ¢, — ¢n,| < Cya/n
(except on l,q.) and |my(y) —me(2)] < Cra/n, and since #D,, . = O(n?),
the contribution of these nodes in ¢, is a

The sum d,, is treated in the same way.

20



Proof of f, —» 0. The quantity S, o_(is) is a sum of O(n?) terms reading
like (a/61)|ttnz;, = tina,|* for (i,7) € En, or (a/12n)|pinz, — ping,|* for (i,7) €
C,. By Hypothesis 3, only O(n) among these terms can be only o(1/n) and
the others are O(1/n?®). Hence S, q.(itn) = o(1).

On the other hand, the fact that u., € C'(Q.,R3) ensures that all the terms
in S, q.(pn(my)) are O(1/n?), and therefore is S, . (pn(Mme)) = O(1/n).

Proof of b, — 0. We use the fact that C*(£2;R?) is dense in H'({;R?)
for the || - |1 rsy norm. Let n > 0, there exists m, € C*(Q:;R?) such
that |me — my|p . rsy < 0. Then b, can be split into two contributions
b, = b7 + b where

o= = Y Y (@) =) (e — ),

mEl:n,Qg yENn,Qg x

b= o Y (me = my)(@) = (e = my) () - (b — ).

:L'El:n’gs yENsz,x
For the first term, we notice that

o= DY (@) —my () e

$E£n,ﬂg yeNn,Q,z

_ % Z Z (my(2) — my(y)) - Yny-

yeﬁnygs TENR Q,y
As in the previous proof, we write y as x + v and
a
bh =~ Y 2 (@) = my( +0)) = (my(x = v) = my(2))) - Y.
:L'El:n’gs ’UEVmo
We estimate

(my () = my (2 + ) = (my (2 = v) = my(z))
= J Vm,(z +tv) v dt — J Vm,(z + tv) - v dt

=1 t=0

ca?

+O0(]v]) < —

)
n2

v

| =

= —Vm,(z) + Vm,(x) -

where the constant ¢ only depends on the second derivative of m,,, which is

bounded on €2.. Thus

[l

I~

3
ca

:BEL’VL,Qg yENn,Q,x
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Thanks to the compact injection of H'(€;R3) in L'(Q;R3), we deduce
that this term vanishes. We obviously have

<5 S S e = ma) @) — (e~ m )0

z€L, Qe YEN, Qe ,x

For any function u € C1(Q;R3), and y = z + v, if [z,y] = , then

u(y) —u(x) = £_1 Vu(z + tv) - v dt

= Vu(z)-v+ J (Vu(x + tv) — Vu(z)) -v dt

t=1

Applying this to my and m,,
(Mmoo —my)(Yy) = (Moo —my) () = (Vme(z) = Vmy(z)) v
0
+ J (Vme(z + tv) — Vme(z)) - v dt

0
— J (Vmy,(z + tv) — Vm,(z)) - v dt.

* By definition of m,,, |mew —my | m1@rsy < n, which implies that |Vme(z) —
Vi (2)| 2. rsy < 7. Hence

a*C
nzw Z Z (Vme(z) — Vm,(x)).(y — )
TE€LR, 0 YENR, O,z

<20, 3 (2) [Vmal) = Ty (o)

€L, O,
1/2 1/2
3 3
e 5 @) (£ @ o
€Ly O €L, O
Since

lim Z (2)3 Vi (z) — Vm, (2)]* = J |V (z) — Vm, (2)|*dz
n—00 el n * K a Qe * ! ’

lm S5 S (Tmle) - Vmg(@)-(y — )]

n—o0 ’]’1,2

xEEn Qe yeNn Qe

< O Vman(x) = Vimy (@) (0. < O,
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* Let us treat the second contribution involving the C* function m,,. Since

0 0 [t
J (Vmy,(x + tv) — Vm,(z)) -v dt = J J Vim,(x + t'v) -v@uv dt'de,
t t=1 Jt'=0

=1

and V?m,, is uniformly bounded on (2., we can estimate

an?” ; NZ: Ll(an(x +t(y —x)) — Vm,(2)) - (y —z) dt = O(%)

» In the last contribution, function mg, is only C!.

2C
DD

:BEL’VL,Qg yENn,Qg,ac

ft:l(Vmoo(a: +t(y —x)) — Vmy(x)) - (y —x) dt

<! (jw Z Z £=0 |(Vme(x + tv) — Vmg(z)) - v| dt

n
ZBELn’QE UENmo

<“€¢ LO NN [(Im(e + ) — Vimg(@) - | dt.

n :BE,Cn’QE UENmo |U|

Since my, € CH(§; R?), the elements of the sum converge uniformly towards
0 as n — oo, and therefore the integral is o(n?).

Hence lim,,_,o, |b| < 7 and therefore lim,,_, |b,| < 7, for all n > 0. This
leads to lim,,_, |b,| = 0, and the lemma is proved.

3.3.5 Proof of Lemma 6

The terms that occur in &, ex(p,) but not in & . (1,) are those involing
couples (x,y) where one at least of the nodes belong to Q\Q.. There are
£0(n®) such nodes. Hence, by Hypothesis 3, the contribution of [, in

Enex(pin) tends to zero, and there exists ¢ > 0 such that for all {pu, }nenx € W,

lim [E7 o (tn) — Enex(pin)] < ce.
n—00 ’

We have already estimated P, (u) on Q\2, ., where €, . is a polyhedral
subset of 2 which, like w. has an O(e) Lebesgue measure. We already know
that P (tn)jo\0n. € H' (Q\Qn o R?) and P, (un) . — Moo\, in the sense
of H'(2\Q,,.; R?), therefore

n—o0

f |V (z)]* do < lim inff VP, (1) (2)]* do < Ce.
N\ e N\,
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lim i(gf Enex(ptn) = lim glf(gfz,ex(ﬂn) + (Enex(pin) — 5Z,ex(ﬂn)))
lim i(gf(gfz,ex (#2n)) + lim iogf(gn,eX(/in) - 5Z,ex(:un))
goeo,ex (moo) + lim i(gf(gmex(:un) - gfb,ex (:un))

500,ex(moo) + (5§o,ex(moo) - 500,ex(moo))
+ lim iogf(gn,ex (fn) — 5ﬁ,ex (f1n))
Eovex(Ma) — (¢ +c1)e.

\ARR\Y

\Y

\Y

Since this holds for all € > 0, we finally deduce that

lim inf &, ex(ttn) = Ecoex(Moo)-
n—0o0

4 Other energy contributions

4.1 Magnetostatics: demagnetizing energy

We can define a mapping hq : L?*(R%R3) — L?(R3%R3) by: for all u €
L*(R3;R3), hq(u) is solution in the sense of distributions to

rot ha(u) = 0,
divhq(u) = —divu.

When u is the magnetization, hq(u) is the demagnetizing field. Its energy is
Ealw) = B2 Iha(w) | 2es zs).

For v € L*(Q;R?), we denote by @ the L?(R3;R?) function which equals u
inside 2, and 0 outside €. Hence for a spin distribution p, € (S*)“»2, the
demagnetizing energy is defined by

Enaliin) =5 [ha (Pulin))

L2(R3:R3)

4.2 Total energy

We define the total energy summing up the exchange and demagnetizing
energies both in the lattice context:

Vi, € (SQ)Ln’Qa Enlpin) = gmeX(,un) + gmd(,un)a

and the limit continuous one:

Vue H' (G R?), Ex(u) = Epox (1) + Epa(ur).
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Theorem 2. Let (ji,)nens € WP, In the sense of the topology defined by
Definition 2

r
E,—— Eyx.
n—o0
Moreover, this convergence is compatible with the unit norm constraint.

Proof. We have already shown that

gn,ex L’ 5oo,ex-
n—00
Moreover hg : L?*(R*R?) — L?(R%*R?) is linear and continuous. We
therefore choose (jtn)nen+ € WY such that p, —— p € H'(Q;R?). This
n—00

means that the sequence(P,(i1,)) is weakly convergent in H'(Q;R3) to u.
Hence

L2(;R3) L2(R3;R3)

P (pin) pand Py () f.

n—0o0 n—0

In particular &, q(pn) — Exp.a(h).

Besides if u € H'(Q; R?), we know that p, () — pin H*(€;R3), which

n—0o0
ends the proof of
Ena —— Ena
n—00
and Theorem 2. O

5 Conclusion

In this paper, we prove a I'-convergence result from a discrete description
of ferromagnetic materials at the microscopic scale to the continuous one.
This result has been shown thanks to a rigidity hypothesis on the lattice of
magnetic moments. This modeling hypothesis is based on the Heisenberg
interaction phenomenon and could be justified by a time multi-scale study.
The new hypothesis would take into account the speed of the Heisenberg
relaxation compared to the Larmor precession process.

The results in this paper are the seed in order to address the micro—

mesoscopic limit for dynamic processes to be able to better understand the
dissipation phenomena involved in the mesoscopic Landau—Lifchitz system.
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