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Novel metrics for feature extraction stability in protein sequence classication
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Abstract

Feature extraction is an unavoidable task, especially in the

critical step of preprocessing biological sequences. This

step consists for example in transforming the biological

sequences into vectors of motifs where each motif is a

subsequence that can be seen as a property (or attribute)

characterizing the sequence. Hence, we obtain an object-

property table where objects are sequences and properties

are motif extracted from sequences. This output can be used

to apply standard machine learning tools to perform data

mining tasks such as classification. Several previous works

have described feature extraction methods for bio-sequence

classification, but none of them discussed the robustness of

these methods when perturbing the input data. In this work,

we introduce the notion of stability of the generated motifs in

order to study the robustness of motif extraction methods.

We express this robustness in terms of the ability of the

method to reveal any change occurring in the input data

and also its ability to target the interesting motifs. We

use these criteria to evaluate and experimentally compare

four existing extraction methods for biological sequences.

keywords : Motif / feature extraction, classification of

protein sequences, motif stability, sensibility, stable motif

interest

1 Introduction.

Classification of biological sequences is a fundamental
task in bioinformatics [7]. In fact, biologists are con-
tinuously interested in identifying the family to which a
novel sequenced protein belongs [6]. This makes it possi-
ble to study the evolution of this protein and to discover
its biological functions. Generally, biologists use align-
ment to classify new biological sequences into already
known families/classes by searching similarity and ho-
mology among sequences. However, this approach is
often inefficient. For instance, in metagenomics, one of
the major problems encountered during the application
of such approach is that between 25% and 65% of the se-
quences have no homologous (orphan sequences) in the
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databases, making these sequences unusable [9].
Machine learning techniques are one way to deal

with such a problem. But, with the format of biological
sequences where characteristics are encoded into the
sequence itself, it is not possible to use the well-
known classification algorithms which have proved to
be very efficient in real data mining tasks [19] with data
described in a relational data format. Consequently,
a preprocessing step is necessary in order to parse the
biological data into a new format suitable for different
data mining tools [1].

For protein sequences, motif extraction represents
a widely used solution to perform this preprocessing
phase. The protein sequences are chains of amino acids
residues where each residue is represented by a char-
acter within an alphabet of size 20. Discovering mo-
tifs from these sequences is a delicate task aiming to
find substrings or words that can serve as descriptors.
These descriptors form the feature space that allows
transforming the biological sequences into vectors of
values, thus facilitating the processing of such data by
machine learning and data mining tools. This prepro-
cessing phase is the key step towards a reliable process
of knowledge discovery because it directly affects the
quality of obtained results [23]. Each protein sequence
is described by a set of motifs to achieve a vector of
values where the values depend on the nature of the de-
scription function that binds the sequence and the motif
such as:

- Presence / absence of the motif in the sequence,

- Number of occurrences of the motif in the sequence,

- First position of the motif in the sequence...

These motifs, which will serve as descriptors, are
extracted from biological sequences according to prede-
fined parameters such as frequency, length, composition.
However, designing and developing a suitable method
for finding motifs that may reduce any loss of informa-
tion due to the format change and help solve problems
of data mining, remains a nontrivial task [33] [36].

Several motif extraction methods have been pro-
posed [22]. Meanwhile, various studies have made as-
sessments and comparisons between these methods and
have tried to study the impact of one method or another



on the quality of the learning task to be performed (clas-
sification, prediction, shape recognition ...). So, the best
methods are those that allow having the best values of
quality metrics such as accuracy rate in the case of su-
pervised classification.

In this paper we introduce the concept of stability
to compare motif extraction methods. We call stability
of a motif extraction method from a dataset, the non-
variability in its set of motifs, when applying a technique
of variation on the input data. The robustness of a
method is the coupling of the non-stability and the
ability to retain or improve the quality of the associated
data mining task. In our case we will use the supervised
classification accuracy as quality measure.

Concrete motivations behind the above-mentioned
stability can be found within distributed systems and
grid computing environments that are mining huge
amount of data. In such environments, the variation of
data is a common fact. This variation can be due to var-
ious events such as failed transfer of data portions, loss
of communication between nodes of the distributed sys-
tem, data updating... Another motivating application
is information retrieval from biological databases (such
as GenBank[5], EMBL[29], UniProt[4]). The problem
here lies in the fact that every database has its own ter-
minology and procedures which sometimes yield related
but not identical data [38]. Since the retrieved data are
the main materials of several delicate processes in both
industry and research like disease management and drug
development, it is crucial for database researcher, bio-
science user and bioinformatics practitioner to be aware
of any change in the preparation data samples [30]. In
addition, with the exploding amounts of data submitted
to the biological databases, there is an increasing pos-
sibility of finding erroneous data. In such conditions,
it is important to make sure that the motif extraction
methods, which are the start point of any mining pro-
cess, are robust enough to detect even slight variations
in input data like does any good sensor when describing
its context environment.

The goal of this study is to propose new metrics to
measure the robustness of motif extraction methods in
terms of their ability to reveal any change occurring
in the input data and also its ability to target the
interesting motifs. We experiment these measures on
protein data.

This paper is organized as follows. In the next
section, we present an overview on some works that
dealt with the concept of stability and present the
motivation behind our work. In section 3 we define the
various terms used in this paper. Section 4 describes
our experimental protocol then we discuss the obtained
results in section 4. A conclusion and some prospects

are presented in section 5.

2 Background.

The topic of stability with respect to motif extraction
methods has not been studied in the literature. How-
ever, this aspect was slightly studied in a very close
field to motif extraction which is the feature selection
[20] [35] [10] [13] [28] [34].

In [20], authors propose a measure which assesses
the stability of feature selection algorithms with respect
to random perturbation in data. In this work, the sta-
bility of feature selection algorithms can be assessed
through the properties of the generated probability dis-
tributions of the selected feature subsets. The interest
is, of course, in feature selection algorithms that pro-
duce probability distributions far from the uniform and
close to the peak one. Given a set of features, all possi-
ble feature combinations of size k are considered achiev-
ing n feature subsets. The frequencies F of selected fea-
ture subsets are recorded during data perturbation in
a histogram. For a size k, the stability Sk is measured
based on the Shannon entropy:

Sk = −
n∑

i=1

Fi logFi .(2.1)

In [35], authors perform an instance sub-sampling
to simulate data perturbation. Feature selection is
performed on each of the n sub-samples, and a measure
of stability is calculated. The output f of the feature
selection applied on each sub-sample is compared to
the outputs of the other sub-samples using Pearson
correlation coefficient, the Spearman rank correlation
coefficient and the Jaccard index as similarity measure
noted S. The more similar all outputs are, the higher
the stability measure will be. The overall stability
can then be defined as the average over all pairwise
similarity comparisons:

Stotal =
2×

∑n−1
i=1

∑n
j=i+1 S(fi, fj)

n(n− 1)
.(2.2)

In [10], different sub-samples (or training sets)
are created using the same generating distribution.
Stability quantifies how different training sets affect the
feature selection output. Authors take into account
three types of representations for feature subsets. In
the first type a weight or score is assigned to each
feature indicating its importance. The second type
of representation, ranks are assigned to features. The
third type consists only of sets of features in which no
weighting or ranking is considered. Measuring stability
requires a similarity measure for feature representations.
This obviously depends on the representation used by a



given feature selection algorithm to describe its feature
subset. The authors used three similarity measures:
the Pearson’s correlation coefficient, the Spearman rank
correlation coefficient and the Tanimoto distance.

3 Robustness of motif extraction methods.

3.1 Motivations. The application of the above-
presented measures of stability is not convenient in our
case (motif extraction). This comes from the nature of
input data used by feature selection methods [18] [21]
[16] [25].

In fact, these methods use an original set of features
(motifs) as input and try to merely select a subset of
relevant features. The perturbation of data is applied
to the original set of features. In the case of motif
extraction, the input data are still in rough state and
the data perturbation step is applied directly to row
data (before motif extraction step)(figure 1).

There are different kinds of data perturbation (in-
troducing noise in data) [27] [26], especially in the con-
text of biological data where it is possible to consider
also deletion, mutation and insertion of nucleotides or
amino acids into the sequences. In what follows, we will
consider only one kind of noise consisting of removing
a subset of sequences from the initial set. This case is
the one that often happens in the context of distributed
environment as described in section 1.

In our work, the motivation behind exploring the
motif extraction method stability is to provide evidence
that even slight changes in the data must also be
followed by changes in the output results (extracted
motifs). These changes must concern the motifs that
are no longer significant for the perturbed input data;
which means that the motifs that have been conserved
must prove to be interesting i.e. help with better
classification. Since the set of features are not known
a priori we can not apply the measures quoted in the
feature selection related works. For our purposes let be
the two following assumptions:

Assumption 1. We suppose that a motif extrac-
tion method allows a reliable description of input data
if any variation within these data affects the set of the
generated motifs. That is to say that it reveals any
change occurring in the input data.

Assumption 2. After changes in the set of gener-
ated motifs, the motifs that are conserved, are interest-
ing i.e., help to better classify unknown sequences.

In the next subsection we define and describe the
terms we use to formally express our assumptions and
to evaluate the robustness of motif extraction methods.

3.2 Terminology. Based on assumption 1, we intro-
duce the concept of sensibility . This concept reflects
the ability to produce a different set of motifs i.e., a dif-
ferent data description, whenever we make a variation
within the input data. The sensitivity criterion can be
studied by means of the conserved motifs called stable
motifs. It is also interesting to test the assumption 2,
that is to say the quality of the stable motifs, by assess-
ing their benefits in an artificial learning task.

Below we formally define the terms used in this
paper. Consider the following:

- A dataset D, divided into n subsets D1, D2,.., Dn.

- A motif extraction method M applied to D on one
side and to D1, D2,.., Dn on the other side and
respectively generating the sets of motifs SM from
D and SM1, SM2, .., SMn from D1, D2,.., Dn.

- An artificial learning task T and a quality metric
Mtr of T . Let MtrT (SM) denote the value of the
metric obtained if T is performed using the set SM
as a feature space.

We define the following:

Definition 3.1. (Motif Stability) A motif x is
said to be stable if and only if its occurrence rate in
all SMi, i = 1..n, exceeds a threshold . The occurrence
rate is simply the ratio of the number of SMi, i = 1..n,
where x appears to n. Formally:

Number of SMi/x ∈ SMi

n
≥ τ, with i = 1..n .(3.3)

Definition 3.2. (Rate of stable motifs) The rate
of stable motifs (RSM) of a method M is the ratio of
the number of stable motifs to the number of distinct
motifs of all SMi, i = 1..n. Formally:

RSM =
Number of stable motifs

|
∪n

i=1 SMi|
.(3.4)

Definition 3.3. (Method sensibility) A method
M1 is more sensible than another method M2 if and
only if for the same changes within the same dataset,
the rate of stable motifs of M1 is lower than that of M2.
Thus, the sensibility S of a method is complementary
to its rate of stable motifs. It may be noted:

S = 1−RSM .(3.5)

Definition 3.4. (Conservation) A motif extraction
method M conserves the quality metric value of a
datamining task T if the use of the set of stable motifs
SSM in T preserves the quality metric values for this
task as when we use the set of motifs SM generated from



Figure 1: Data perturbation in feature selection and motif extraction

the original dataset D. However, it is noteworthy that
we can not judge that conservation unless the method
is already sensible. Indeed, an insensible method tends
to generate the same motifs even after perturbations in
the input data indicating that its extraction approach is
rigid and does not adopt a concept of ”choice”. This
conservation C can be measured by:

C = 1− |MtrT (SM)−MtrT (SSM)| .(3.6)

Definition 3.5. (Interest) A set of stable motifs
SSM is considered to be interesting if it allows inter-
esting values of conservation and sensibility. Formally,
we can measure this interest I by:

I = 2× S × C

S + C
.(3.7)

This measure is inspired from the F1-Score which is
a statistical measure of a test’s accuracy that combines
Precision and Recall. The F1-score can be interpreted
as a weighted average of the precision and recall, where
an F1-score reaches its best value at 1 and worst score at
0. In our case, we combine conservation and sensibility
to quantify the interest of stable motifs.

3.3 Illustrative example. Considering a dataset D
in a supervised classification task T . The data pertur-

bation of D generates three subsets D1, D2 and D3.
The application of a motif extraction method M to D
on one side and to D1, D2 and D3 on another side gen-
erates the sets of motifs SM from D and SM1, SM2

and SM3 from D1, D2 and D3 respectively :
SM ={m1, m2, m3, m4, m5, m6, m7, m8, m9, m10}
SM1={m1, m4, m5, m6}
SM2={m1, m2, m3}
SM3={m1, m6, m7, m8}

Using τ such that τ = 65%, the motifs m1 and m6
are considered stable since they appear in more than
65% of the motifs subsets.
We can easily calculate the rate of stable motifs RSM
= 0.25, which is two over the set of eight motifs. We
consider that m9 and m10 are noise, and thus are not
relevant for the classification task.

The sensibility S of M is equal to 0.75. In this case,
the set of stable motifs SSM1 is equal to {m1, m6}.

Using τ > 66%, only the motif m1 are considered
stable since it appears in more than τ% of the motifs
subsets. We can easily calculate the rate of stable motifs
RSM as equal to 0.125. The sensibility S of M is equal
to 0.875, and SSM2 = {m1}.

Suppose we use sets of motifs SM and SSM1 as
variables space to measure the accuracy rate (MtrT )



of the supervised classification task T . Let consider the
following obtained values withMtrT : Mtr(SM) = 0.85
and Mtr(SSM) = 0.80

The set of stable motifs SSM1 enables a conserva-
tion of the quality metric value C = 0.95 Finally, we
can measure the interest of stable motifs by I = 0.83.

4 Experiments.

In this section, we describe an experimental study
conducted on four motif selection methods quoted in
[22]. Calculations were run on a duo CPU 1.46GHz PC
with 2GB memory, operating on Linux. The following is
a presentation of the input datasets and the used tools.

4.1 Experimental data. We used four datasets con-
taining 1327 protein sequences extracted from Swiss-
Prot [3] and described in table 1. These datasets differ
from one another in terms of size, number of class, class
distribution, complexity and sequence identity percent-
age (IdP ). The change in the nature of the datasets
allows us to avoid specific outcomes to data and to have
better interpretations.

Table 1: Experimental data
Dataset IdP Family / class #sequences

DS1

High-potential
Iron- Sulfur
Protein

19

48% Hydrogenase
Nickel Incorpo-
ration Protein
HypA

20

Glycine Dehydro-
genase

21

DS2 28%
Human TLR 14
Non-human TLR 26

DS3 48%
Chemokine 255
Melanocortin 255

DS4

Monomer 208
Homodimer 335
Homotrimer 40

25% Homotetramer 95
Homopentamer 11
Homohexamer 23
Homooctamer 5

4.2 Motif extraction methods. We compare the
motif extraction methods quoted in [22], i.e., n-grams
NG [15], active motifs AM [31], discriminative descrip-
tors DD [19] and discriminative descriptors with substi-
tution matrix DDSM [22]. In our experiments we use

the same default settings as in [22].
NG is a simple method that generate the distinct

words of fixed length by sliding a window of N charac-
ters on the whole sequences i.e., at every character i the
word [i, i+N ] is extracted.

The AM method allows generating the commonly
occurring motifs whose lengths are longer than a speci-
fied value in a set of biological sequences. The activity
of a motif is the number of matching sequences given an
allowed number of mutations [31]. The motif generation
is based on the construction of a generalized suffix tree
(GST) which is an extension of the suffix tree [2] and
is dedicated to represent a set of n sequences indexed
each one by i = 1..n.

The DD method allows building sub-strings that
can discriminate a family of proteins from other ones
[19]. This method is based on an adaptation of
the Karp, Miller and Rosenberg (KMR) algorithm
[14]. This algorithm identifies the repeats in charac-
ter strings. The extracted repeats are then filtered in
order to keep only the discriminative and minimal ones.
A substring is considered to be discriminative between
the family F and the other families if it appears in F
significantly more than in the other families.

The DDSM method is an extension of the DD
method that takes into account the phenomenon of
mutation within proteins. It uses the substitution
matrices [8] [12] to achieve a sort of clustering of motifs
and keep, for each cluster, the most mutable motif. It is
therefore a more concise representation than DD since
it reduces significantly the number of generated motifs
[22].

Comparisons made in [22] between these methods
revealed that DDSM performs the best to help in
problems of protein sequences classification even in
difficult cases where other methods fail to produce
reliable descriptors for an accurate classification. In
this work, we try to find a relationship between this
performance and the concepts introduced in section 3.

4.3 Experimental process. In our experiments, we
perturb each input dataset in a systematic way and
we observe the impact of this perturbation on the set
of generated motifs. To do this, we use the 10-cross-
validation (10CV) and leave-one-out techniques (LOO)
[11]. Therefore, the variation of a dataset containing n
sequences consists in removing a partition (one tenth
with 10-cross-validation and a single sequence with
leave-one-out) from the dataset and the rest is used to
generate a set of motifs. This is done several times (ten
times with 10-cross-validation and n times with leave-
one-out). At each iteration, the number of occurrences
of generated motifs is updated. Otherwise, a sequences-



Figure 2: Experimental process

based perturbation can be applied here,
As already defined in Section 2, the technique we

adopt to measure the sensibility of motif extraction
methods from protein sequences is based on the rate
of stable motifs. Whereas the sensibility is related
to the amount of stable motifs, the interest of stable
motifs is related to their quality. In other words, if
these motifs are generated by the extraction method to
appear often enough then they should be ”interesting”.
We measure the interest in our experiments by their
usefulness in a supervised classification task. Once the
stable motifs are generated, they are used to convert
protein sequences into binary vectors where the value
’1’ denotes the presence of motif in the sequence and
’0’ its absence, all these binary vectors compose what is
called a learning context.

Thus the classification of proteins in this new format
is now possible with different classifiers. To do this,
we use the support vector machine classifier SVM of
WEKA workbench [32]. The effect of this choice
should be insignificant in the process of measuring the
robustness of motif extraction methods. However we
put our focus on a well-known and efficient classifier for
our experiments. In addition SVM classifier has shown
its efficiency in a previous study [22].

The classification is performed based on 10-cross-
validation (10CV) and leave-one-out (LOO) techniques
Hence, our experiments are conducted using the follow-
ing four combinations for data variation and classifica-
tion: (LOO; LOO), (LOO; 10CV), (10CV; LOO) and
(10CV; 10CV).

5 Results and discussion.

We show in table 2 the classification results of our
datasets using the motif extraction methods quoted in
section 4.2.

The classification is performed without making any
perturbation on our datasets using the SVM classifier
of WEKA [32] based on 10-cross-validation (10CV)
and leave-one-out (LOO). Comparing these results with
those obtained using the stable motifs allow us to better
evaluate the studied methods and test assumptions 1
and 2.

The experimental results are presented in tables 3
and 4. Table 3 contains the results obtained with a LOO
based variation and table 4 with 10CV based variation.
For each dataset and for each value of τ , we note the
rate of stable motifs and their corresponding accuracy if
we use these motifs to classify protein sequences of that
dataset based on 10-cross-validation and leave-one-out
tests. As shown in figure 3 and 4, we can notice that the
classification test technique i.e., 10CV or LOO does not
affect the obtained results (the classification accuracy
rates are almost the same). Using results from tables 2,
3 and 4, we draw the interest of stable motifs histogram
corresponding to dataset (figure 5 and 6).

Figure 3: Effect of classification test technique (LOO
and 10CV) to the classification accuracy rates using
LOO-based variation

Figure 4: Effect of classification test technique (LOO
and 10CV) to the classification accuracy rates using
10CV-based variation

We notice that NG is virtually insensible to varia-



Table 2: Accuracy rate of the studied methods using datasets without modification

Method
DS1 DS2 DS3 DS4

10CV LOO 10CV LOO 10CV LOO 10CV LOO
NG 96.7 96.7 67.5 67.5 100 100 44.9 45.5
AM 100 100 72.5 65 100 100 - -
DD 96.7 96.7 82.5 80 100 100 43.5 43.5
DDSM 96.7 96.7 95 95 100 100 82.5 87.5

tions in data. Indeed its rate of stable motifs is often
equal or very close to 100%. Therefore, the variation
of input data has no bearing on the generated motifs.
In other words, we often obtain the same motifs even in
the presence of variations in input data. In this case, we
can not evoke the interest of stable motifs (see figures 5
and 6).

The AM method follows almost the same fluctuat-
ing behavior for all datasets (except for DS4 where we
could not conduct our experiments due to lack of mem-
ory). In fact, below τ = 0.7, AM is insensible (RSM is
equal or close to 100%). Beyond this value, AM becomes
sensible. This sensibility varies depending on dataset
and the variation technique (10CV or LOO). It is very
significant for DS1, average for DS2 and slight for DS3.
For example in table 3, for τ = 0.7, the rate of stable
motifs are 32.5, 83.6 and 98.3% respectively for DS1,
DS2 and DS3. Similarly, the interest of stable AM mo-
tifs is very fluctuating and varies as well depending on
the dataset (see figures 5 and 6). This method is some-
times completive to DD and DDSM. But, we note that
it is greedy in memory and can not handle large datasets
as it is the case with the dataset DS4 (see tables 3 and
4).

The approach adopted by the DD method offers it a
sensible nature. In fact, according to this method, each
motif must satisfy the conditions of discrimination and
minimality (see section 4.2). Therefore, it is likely that
a disruption of input yields not meeting these conditions
and thus the elimination of some existing motifs and/or
addition of new ones. At the same time, this method
generates sets of interesting stable motifs with all the
data samples and different values of τ . Indeed, it
generally allows better interest rates than NG and AM
(see figures 5 and 6).

The DDSM method is an extension of DD, which
adopts a competitive approach among the motifs to
generate. Indeed, to be chosen, a motif must be
the most mutable among other ones of equal size.
This constraint remarkably increases the sensibility of
the method vis-a-vis the changes in the input data.
This can be noticed by the decreasing rates of stable
motifs compared to the DD method. In addition,
this high sensibility is always accompanied by a set of

very interesting stable motifs manifested by generally
allowing the highest interest rates. However we note
that for τ = 1, DDSM does not often have the best rates
of interest especially with 10CV based variation (we
recall that this value of τ means that the stable motifs
are those that appear in all variations of data). This is
because that the substitution, which is a fundamental
criterion in the process of DDSM, is not taken into
account in the construction of the set of stable motifs.
Hence, similar forms of a given motif may be ignored.
But by relaxing the condition of τ = 1 and moving to
smaller values of τ we see that the interest rates get
improved considerably. This method reveals both the
property of sensibility and interest of its stable motifs
(see figures 5 and 6), which allows it to redescribe well
the input data, which is in accordance with results
quoted in [22] showing the efficiency of this method for
feature extraction in protein sequences.

6 Conclusion.

In this paper, we introduced the notions of stability and
sensibility as new criteria to compare motif extraction
methods from biological sequences. The sensibility of a
method is its ability to produce a different set of motifs,
so a different description, whenever a perturbation is
made in the dataset. This criterion must be accompa-
nied by a set of interesting stable motifs. This concept
of interest arises when a method eliminates certain mo-
tif and conserves others following a change in the input
data and that the conserved motifs are useful if used in
a data mining task.

The experimental study shows that the DDSM
method is more sensible compared to the other methods.
This sensibility is usually accompanied by sets of stable
interesting motifs. This confirms the results found by
[22] that show the contribution of the DDSM method
in supervised classification tasks.

As future works, the proposed feature extraction
approach is announced to be generic since it can be
coupled with any data mining task T . Hence, we plan
to apply it to other types of tasks such as clustering [17]
[37]. We will also explore its extension to text mining
supervised classification tasks [24].
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stability of feature selection methods, in Proceedings of
the 12th international conference on Computer analysis
of images and patterns, CAIP’07, Berlin, Heidelberg,
2007, Springer-Verlag, pp. 929–936.

[21] Y. Saeys, I. n. Inza, and P. Larrañaga, A review
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Figure 5: Interest of stable motifs using LOO-based variation

Figure 6: Interest of stable motifs using 10CV-based variation



Table 3: Rate of stable motifs and their classification accuracy using LOO-based variation
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Table 4: Rate of stable motifs and their classification accuracy using 10CV-based variation
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