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Abstract

The fact that the time optimal controls for parabolic equations have the bang-bang
property has been recently proved for controls distributed inside the considered domain
(interior control). The main result in this article asserts that the boundary controls
for the heat equation have the same property, at least in rectangular domains. This
result is proved by combining methods from traditionally distinct fields: the Lebeau-
Robbiano strategy for null controllability and estimates of the controllability cost in
small time for parabolic systems, on one side, and a Remez-type inequality for Müntz
spaces and a generalization of Turán’s inequality, on the other side.

1 Introduction and main result

Let m be a positive integer, let Ω ⊂ Rm be an open and bounded set and let Γ be a
non-empty open subset of ∂Ω. We consider the heat equation

∂z

∂t
(x, t) = ∆z(x, t) for (x, t) ∈ Ω× (0,∞), (1.1)

with the initial and boundary conditions

z(x, t) = u(x, t) on Γ× (0,∞), (1.2)

z(x, t) = 0 on (∂Ω \ Γ)× (0,∞), (1.3)

z(x, 0) = z0(x) for x ∈ Ω. (1.4)

It is known (see, for instance, Tucsnak and Weiss [24, Section 10.7]) that if ∂Ω is of class
C2 or Ω is a rectangular domain then, for every u ∈ L2([0,∞), L2(Γ)) and z0 ∈ H−1(Ω),
there exists a unique solution z ∈ C([0,∞),H−1(Ω)) of (1.1)-(1.4). It is also known that
the system defined by (1.1)-(1.4) is null controllable in any time τ > 0, in the sense that for
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every z0 ∈ H−1(Ω) there exists an input u ∈ L2([0, τ ], L2(Γ)) such that the corresponding
solution of (1.1)-(1.4) verifies

z(·, τ) = 0. (1.5)

Our aim consists in studying the associated time optimal control problems in an L∞

setting. To state the problem, we set, given M > 0,

Uad = {u ∈ L∞(Γ× [0,∞)) | |u(x, t)| 6M a. e. in Γ× [0,∞)}. (1.6)

Given z0 ∈ H−1(Ω), we define the set of reachable states from z0 as

R(z0,Uad) = {z(τ) | τ > 0 and z is the solution of (1.1)-(1.4) with u ∈ Uad}.

For z0 ∈ H−1(Ω) and z1 ∈ R(z0,Uad), the time optimal control problem for (1.1)-(1.4)
consists in determining an input u∗ ∈ Uad such that the corresponding solution z∗ of
(1.1)-(1.4) satisfies

z∗(τ∗(z0, z1)) = z1, (1.7)

where τ∗(z0, z1) is the minimal time needed to steer the initial data z0 towards target z1
with controls in Uad,

τ∗(z0, z1) = inf
u∈Uad

{τ | z(·, τ) = z1}. (1.8)

General conditions ensuring the existence of at least one solution for the above time
optimal control problem (i.e., of at least one input such that the inf in (1.8) is attained)
will be recalled in Section 2. The main result in this work asserts that, if Ω is a rectangular
domain, then this solution is bang-bang and it is unique. More precisely, we have:

Theorem 1.1. Let m > 2. Suppose that Ω is a rectangular domain in Rm and that Γ is
a nonempty open set of ∂Ω. Then, for every z0 ∈ H−1(Ω) and z1 ∈ R(z0,Uad), there exits
a unique solution u∗ of the time optimal control problem (1.8). This solution u∗ has the
bang-bang property:

|u∗(x, t)| =M a. e. in Γ× [0, τ∗(z0, z1)]. (1.9)

Time optimal control problems for linear parabolic partial differential equations and the
bang-bang property of the corresponding controls have been intensively studied during
the last decades, beginning with Fattorini’s paper [5]. The progress made in this field has
been successively reported in the books of Lions [14] and of Fattorini [6]. The bang-bang
property of time optimal controls has been quite rapidly established for invertible input
operators (which means, roughly speaking, that the control is active in the entire spatial
domain where the parabolic equation is considered).

Several important extensions of the classical results of Fattorini have been obtained
during the last decades. We first recall those corresponding to the heat equation, in the
case of an input operator which is active only in a proper subset of the domain where the
heat equation holds. Firstly, in Wang [26], the set of admissible inputs is defined (unlike in
(1.6)) by bounding the L∞([0, τ ];L2(Ω)) norm of u. A strategy which has been introduced
by Lebeau and Robbiano in [12] is adapted in [26] to establish a bang-bang property of
the time optimal controls. This property is different from the one in Theorem 1.1, in the
sense that, instead of (1.9), it is shown that ∥u∗(·, t)∥L2(Ω) = 1 for almost every t ∈ [0, τ∗].
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The strategy in [26] does not seem directly applicable to the boundary control case. The
results in [26] have been recently extended by Phung and Wang [20] to a system governed
by a perturbed heat equation with internal controls. In the case in which the target is
an open ball in the state space instead of a point, the corresponding time optimal control
problem, with control distributed inside the domain and pointwise control constraints, has
been studied in Kunisch and Wang [11]. The main tools of their approach are Pontryagin’s
maximum principle and a special kind of property concerning the measure of the set where
a nontrivial solution of the linear heat equation vanishes.

In the case of boundary control, with the control constraint |u(x, t)| 6M , the first result
establishing the bang-bang property has been obtained by Schmidt [21], under a slackness
condition on the target state. More precisely, the assumption in [21] is that there exists
M ′ < M such that the target is actually reachable (in some time) subject to |u| 6 M ′.
In the case of the heat equation in one space dimension, this condition has been removed
by Mizel and Seidman in [18], by using in an essential manner previous results of Borwein
and Erdelyi [2].

The main novelty of Theorem 1.1 consists in showing that, in the case of rectangular
domains in several space dimensions, the bang-bang property holds for the time optimal
boundary control for the heat equation. The only requirement for the target points is to
be reachable in some time. Our methodology is partially inspired by the fact, remarked in
Tenenbaum and Tucsnak [23], that a well-known inequality of Turán can be successfully
used in control theory. More precisely, two of the most important ingredients of the
proof of Theorem 1.1 are Nazarov’s generalization of the Turán’s inequality and the above
mentioned results on Müntz spaces of Borwein and Erdelyi.

The outline of the paper is as follows. In Section 2 we present some background on
null controllability and time optimal controls for infinite dimensional systems. Most of
the included material is well-known, although not necessarily in the L∞ setting presented
here. Proposition 2.6 gives a general sufficient condition for the existence, uniqueness and
bang-bang property of time optimal controls. In Section 3 the Lebeau-Robbiano strategy
(see, for instance, [12, 13]) to study the null controllability of the heat equation is adapted
to prove the L∞ null controllability over a positive measure set property. The main novelty
we bring in into this section is that we replace the Lebeau-Robbiano assumption on the
observability of finite combinations of eigenvectors with an assumption on the observability
of the dynamical system’s truncation to a finite number of modes (see inequality (3.8) in
Theorem 3.2). The latter property involves the time variable and it is, in general, weaker
than the observability of finite combinations of eigenvectors. The last two sections of the
paper are devoted to prove that, in our case, this observability property holds. In Section
4, following an idea from Nazarov [19], we give an estimate for finite combinations of
eigenfunctions of the Dirichlet Laplacian in a rectangular domain. Finally, in Section 5,
by combining a result from [2, 3] for real exponential functions defined on a measurable
set with the one obtained in the previous section, we provide the proof of our main result
in Theorem 1.1.

3



2 Some background on null controllability and time optimal controls for
infinite dimensional systems

We first introduce some notation. If P ∈ L(X;Y ) then the null-space and the range of P
are the subspaces of X and Y respectively defined by

Ker P = {x ∈ X : Px = 0}, Ran P = {Px : x ∈ X}.

Given m ∈ N, the notation
∥f∥e = sup

x∈e
|f(x)|,

is used throughout this paper for continuous complex valued functions f defined on a
measurable set e ⊂ Rm.

Throughout this section, X and U are complex Hilbert spaces, identified with their
duals. The inner product and the norm in X are denoted by ⟨·, ·⟩ and ∥ · ∥, respectively.
We denote by T = (Tt)t>0 a strongly continuous semigroup on X generated by an operator
A : D(A) → X with resolvent set ϱ(A). The notation X1 stands for D(A) equipped with
the norm ∥z∥1 := ∥(βI −A)z∥, where β ∈ ϱ(A) is fixed, while X−1 is the completion of X
with respect to the norm ∥z∥−1 := ∥(βI −A)−1z∥. We use the notation A and T also for
the extensions of the original generator to X and of the original semigroup to X−1. It is
known that X−1 is the dual of D(A∗) with respect to the pivot space X. The semigroup
T can be extended to X−1, and then its generator is an extension of A, defined on X. We
use the same notation for all these extensions as for the original operators.

Let B ∈ L(U ;X−1) be a control operator, let z0 ∈ X and let u ∈ L2([0,∞), U). We
consider the infinite dimensional system described by the equation

ż(t) = Az(t) +Bu(t) (t > 0), z(0) = z0. (2.10)

With the above notation, the solution z of (2.10) is defined by

z(t) = Ttz0 +Φtu
(
t > 0

)
, (2.11)

where Φt ∈ L(L2([0, t], U);X−1) is given by

Φtu =

∫ t

0
Tt−σBu(σ)dσ. (2.12)

Recall the following classical definition (see, for instance, [24, Section 4.2]):

Definition 2.1. With the above notation, the operator B ∈ L(U ;X−1) is called an
admissible control operator for T if the operator Φτ defined by (2.12) satisfies Ran Φτ ⊂ X
for some τ > 0.

Remark 2.2. System (1.1)-(1.4) can be written in the form (2.10). Indeed, let X =
H−1(Ω), U = L2(Γ), D(A) = H1

0 (Ω) and A = ∆.

The control operator B ∈ L(L2(Γ), X−1) is defined by B = AD, where D : L2(∂Ω) →
L2(Ω) is the “Dirichlet map”. This map is defined by Dv = z, where z ∈ L2(Ω) is the
unique solution of the nonhomogeneous elliptic equation{

∆z = 0 in Ω
z = v on ∂Ω.

(2.13)
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With the above notation, (1.1)-(1.4) is equivalent to (2.10) and B is an admissible control
operator for the semigroup T generated by A.

Moreover, the operator B∗ ∈ L(X1, L
2(∂Ω)) is given by

B∗φ = −∂(−A)
−1φ

∂ν
|Γ (φ ∈ L2(Ω)). (2.14)

We refer the interested reader to [24, Sections 10.6-10.7] for a detailed description of the
above functional analytic setting.

The null controllability of the pair (A,B) in some time τ > 0 is usually defined by the
property Ran Φτ ⊃ Ran Tτ . In this work we will mainly use a different concept of null
controllability, which makes sense in the case U = L2(Γ), where Γ is a measurable set
endowed with a measure µ.

Definition 2.3. Given τ > 0, e ⊂ Γ × [0, τ ] a set of positive measure and an admissible
control operator B ∈ L(U ;X−1) for T, consider the operator

Φτ,e ∈ L(L∞(Γ× [0, τ ]);X−1),

defined by

Φτ,eu =

∫ τ

0
Tτ−σBχe(σ)u(σ)dσ (u ∈ L∞(Γ× [0, τ ]), (2.15)

where χe is the characteristic function of e. The pair (A,B) is said L∞ null controllable
in time τ over e if Ran Φτ,e ⊃ Ran Tτ . For e = Γ × [0, τ ], the above property is simply
called L∞ null controllability in time τ . Given z0 ∈ X−1, a function u ∈ L∞(Γ × [0, τ ])
such that Φτ,eu = Tτz0 is called L∞ null control for z0.

If the pair (A,B) is L∞ null controllable in time τ over e then, for every z0 ∈ X, the
set

Cτ,e,z0 :=
{
u ∈ L∞(Γ× [0, τ ]) | Φτ,eu+ Tτz0 = 0

}
is non empty. The quantity

Cτ,e := sup
∥z0∥=1

inf
u∈Cτ,e,z0

∥u∥L∞(e), (2.16)

is then called the control cost in time τ over e. If e = Γ × [0, τ ] the control cost will be
simply denoted by Cτ .

Let C ∈ L(X1, U) be an admissible observation operator for T. The admissibility
assumption means that for some τ > 0, the operator Ψτ defined by

(Ψτz0)(t) = CTtz0 (z0 ∈ X1) ,

has an extension to an operator Ψτ ∈ L(X,L2([0, τ ], U)). Equivalently, there is a positive
number k such that

∫ τ
0 ∥CTtz0∥2dt 6 k2∥z0∥2 for all z0 ∈ D(A). We refer to [24, 27, 28] for

more material on this concept. Here we only mention that it follows from the admissibility
assumption that Ψτ ∈ L(X,L2([0, τ ];U)) holds for all τ > 0. The operators Ψτ are
called output maps corresponding to the pair (A,C). Denote by Ψd

τ the output maps
corresponding to the pair (A∗, B∗). If e ⊂ Γ × [0, τ ] is a set of positive measure, we
consider the map

Ψd
τ,e ∈ L(X,L1(Γ× [0, τ ])), Ψd

τ,e = χeΨ
d
τ .

We have the following duality result
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Proposition 2.4. Suppose that B ∈ L(U,X−1). Then B is an admissible control operator
for T if and only if B∗ is an admissible observation operator for the adjoint semigroup
T∗. If B is admissible, then

Φτ,e = (Ψd
τ,e′)

∗ Rτ , (2.17)

where e′ = {(x, τ − t) | (x, t) ∈ e}, (Ψd
τ,e′)

∗ ∈ L(L∞([0, τ ];U), X) is the dual operator

of Ψd
τ,e′ and Rτ is the reflection operator on L2([0, τ ];U), defined by Rτu(t) = u(τ − t)

(Notice that Rτ is self-adjoint and also unitary.).

Proof. The first assertion in the statement of the proposition is well-known (see, for in-
stance, [24, Section 4.4]). To check the second one we first note that for every v ∈
L∞(Γ× [0, τ ]) and φ ∈ X1 we have∫ τ

0

∫
Γ
vΨd

τ,e′φdxdt =

∫ τ

0
⟨χe′(·, t)v(·, t), B∗T∗

tφ⟩U dt =

∫ τ

0
⟨TtBχe′(·, t)v(·, t), φ⟩X−1,X1 dt.

By making the change of variable t = τ − σ in the above integral and using the fact that
B is admissible for T, we obtain∫ τ

0

∫
Γ
vΨd

τ,e′φdxdt = ⟨Φτ,e Rτv, φ⟩X−1,X1 = ⟨Φτ,e Rτv, φ⟩ (v ∈ L∞(Γ× [0, τ ]), φ ∈ X1).

The above formula implies the conclusion by simply using the density of X1 in X.

The following result shows the equivalence between the concepts of controllability and
observability. Although this is a rather known property, since our framework escapes from
the usual hilbertian setting, we have chosen to include it here (we refer to [26] for the
proof of a quite close statement).

Proposition 2.5. Let e ⊂ Γ × [0, τ ] be a set of positive measure and Kτ,e > 0. The
following two properties are equivalent

1. The inequality

Kτ,e

∥∥∥Ψd
τ,e′φ

∥∥∥
L1(Γ×[0,τ ])

> ∥T∗
τφ∥, (2.18)

holds for any φ ∈ X, where e′ = {(x, τ − t) | (x, t) ∈ e}.

2. The pair (A,B) is L∞ null controllable in time τ over e at cost not larger than Kτ,e.

Proof. “1.⇒ 2.” Consider the subspace X of L1(Γ× [0, τ ]) defined by

X = {Ψd
τ,e′φ | φ ∈ X}.

Given z0 ∈ X, consider the linear functional F on X defined by

F(Ψd
τ,e′φ) = −⟨z0,T∗

τφ⟩ (φ ∈ X).

The fact that this functional is well defined follows from (2.18). Moreover, using again
(2.18), it follows that

|Fv| 6 Kτ,e∥z0∥ ∥v∥L1(Γ×[0,τ ]) (v ∈ X ).
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By the Hahn-Banach Theorem, F can be extended to a bounded linear functional F̃ on
L1(Γ× [0, τ ]) such that

|F̃v| 6 Kτ,e∥z0∥ ∥v∥L1(Γ×[0,τ ]) (v ∈ L1(Γ× [0, τ ])).

By the Riesz representation theorem it follows that there exists u ∈ L∞(Γ × [0, τ ]) such
that ∥u∥L∞(Γ×[0,τ ]) 6 Kτ,e∥z0∥ and∫ τ

0

∫
Γ
u(τ − σ, x)Ψd

τ,e′φ+ ⟨z0,T∗
τφ⟩ = 0 (φ ∈ X).

By using (2.17) in the above formula, it follows that

⟨Φτ,eu, φ⟩+ ⟨Tτz0, φ⟩ = 0 (φ ∈ X),

which is equivalent to
Φτ,eu+ Tτz0 = 0.

Since the above construction holds for every z0 ∈ X, we get the desired result.

“2. ⇐ 1.” Let φ ∈ X and z0 = T∗
τφ ∈ X. Our assumption implies that there exists

u ∈ L∞(Γ × [0, τ ]) such that ∥u∥L∞(Γ×[0,τ ]) 6 Kτ,e∥z0∥ and Φτ,eu + Tτz0 = 0. It follows
that

∥T∗
τφ∥2 = −⟨Φτ,eu, φ⟩ = −

∫ τ

0

∫
Γ

RτuΨd
τ,e′φ

6 ∥u∥L∞(Γ×[0,τ ])∥Ψd
τ,e′φ∥L1(Γ×[0,τ ]) 6 Kτ,e∥T∗

τφ∥ ∥Ψd
τ,e′φ∥L1(Γ×[0,τ ]),

which ends the proof.

We are now in a position to state the time optimal problem. Define the set of admissible
controls

Uad = {u ∈ L∞(Γ× [0,∞)) | |u(x, t)| 6M a. e. in Γ× [0,∞)}.

Given z0 ∈ X, we define the set of targets which are reachable from z0

R(z0,Uad) = ∪t>0{z1 = Ttz0 +Φtu ∈ X | u ∈ Uad}.

We consider the time optimal control problem which consists in determining, for every
z0 ∈ X and z1 ∈ R(z0,Uad), a control u∗ ∈ Uad such that

Tτ∗(z0,z1)z0 +Φτ∗(z0,z1)u
∗ = z1, (2.19)

where τ∗(z0, z1) is the minimal time needed to steer the initial data z0 towards target z1
with controls in Uad

τ∗(z0, z1) = inf
u∈Uad

{t > 0 | Ttz0 +Φtu = z1} . (2.20)

As shown in [6, 14], the above problem admits at least one solution for every z0 ∈ X
and z1 ∈ R(z0,Uad) (see also the proof of Proposition 2.6 below).

The function (z0, z1) 7→ τ∗(z0, z1) is called the minimal time function. A natural ques-
tion consists in investigating if the time optimal control u∗ is bang-bang, in the sense that
|u∗(x, t)| = M almost everywhere. A sufficient condition for this property is given in the
following known proposition, which is an abstract version of a result for the heat equation
from [20]. For the sake of convenience, we provide the detailed proof below.
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Proposition 2.6. With the notation in Proposition 2.5, assume that the pair (A,B) is
L∞ null controllable in time τ over e for every τ > 0 and for every set of positive measure
e ⊂ Γ × [0, τ ]. Then, for every z0 ∈ X and z1 ∈ R(z0,Uad), the time optimal problem
(2.19) has a unique solution u∗ which is bang-bang.

Proof. Let us first prove the existence of a solution u∗ of the time optimal problem
(2.19). Since z1 ∈ R(z0,Uad), there exists a minimizing sequence (τn, un)n>1 such that
limn→∞ τn = τ∗(z0, z1) and (un)n>1 ⊂ Uad has the property that Tτnz0 + Φτnun = z1 for
each n > 1.

Since (un)n>1 ⊂ Uad, it follows that (un)n>1 tends weakly-∗ to some u∗ ∈ Uad in L∞(Γ×
[0, τ∗(z0, z1)]). We define z̃1 = Tτ∗(z0,z1)z0 + Φτ∗(z0,z1)u

∗ and we note that u∗ is a time
optimal control if z̃1 = z1. The latter equality follows if we prove that ⟨z̃1, φ⟩ = ⟨z1, φ⟩ for
each φ ∈ X which, in view of the facts that limn→∞Tτnz0 = Tτ∗(z0,z1)z0, limn→∞⟨Φτnun−
Φτ∗(z0,z1)un, φ⟩ = 0 and Tτnz0 +Φτnun = z1 for each n > 1, is reduced to prove that

⟨Φτ∗(z0,z1)u, φ⟩ = lim
n→∞

⟨Φτ∗(z0,z1)un, φ⟩ (φ ∈ X). (2.21)

By noting that

⟨Φτ∗(z0,z1)un, φ⟩ =
∫ τ∗(z0,z1)

0
⟨ Rτ∗(z0,z1)un(t),Ψ

d
τ∗(z0,z1)

φ⟩U dt

and taking into account that Ψd
τ∗(z0,z1)

φ ∈ L1([0, τ∗(z0, z1)];U), we deduce from the weak-

∗ convergence of the sequence (un)n>1 that (2.21) holds and the existence of a solution u∗

for the time optimal problem is proved.

Now, let us show that u∗ ∈ L∞(Γ × [0, τ∗(z0, z1)]) is bang-bang. We denote by z∗

the corresponding state trajectory. Assume that there exist ε > 0 and a set of positive
measure E ⊂ Γ× [0, τ∗(z0, z1)] such that

|u∗(x, t)| < M − ε ((x, t) ∈ E). (2.22)

Let δ0 > 0 be small enough such that
τ0 = τ∗(z0, z1)− δ0 > 0,

the set e0 = {(x, t) ∈ Γ× [δ0, τ0] | (x, t) ∈ E} has positive measure.
(2.23)

Since limt→0 z
∗(t) = z0, there exists δ ∈ (0, δ0) such that

∥z0 − z∗(δ)∥ 6 ε

2Cτ0,e0

. (2.24)

Moreover, the L∞ null controllability of (A,B) in time τ0 over e0 implies that there exists
v ∈ L∞(Γ× [0, τ∗(z0, z1)]) with

supp v ⊂ e0,

Tτ0(Tδ0−δ(z0 − z∗(δ))) +

∫ τ∗(z0,z1)

δ0

Tτ∗(z0,z1)−sBv(s)ds

= Tτ∗(z0,z1)−δ(z0 − z∗(δ)) +

∫ τ∗(z0,z1)

δ
Tτ∗(z0,z1)−sBv(s)ds = 0,

∥v∥L∞(e0) 6 2Cτ0,e0∥z0 − z∗(δ)∥,

(2.25)
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where Cτ0,e0 is the cost constant defined in (2.16). From (2.24), together with the first
and the third conditions in (2.25), it follows that

∥v∥L∞(Γ×[0,τ∗(z0,z1)]) 6 ε. (2.26)

Now, let ũ ∈ L∞(Γ× [0, τ0]) be defined by

ũ(t) = u∗(t+ δ) + v(t+ δ) (t ∈ [0, τ0]).

By combining (2.22), (2.26) and the fact that supp v ⊂ e0, it follows that

∥ũ∥L∞(Γ×[0,τ0]) 6M. (2.27)

Finally, the semi-group property, the above definition of ũ and (2.25), imply that

Tτ∗(z0,z1)−δ z0 +Φτ∗(z0,z1)−δ ũ = Tτ∗(z0,z1)−δ(z0 − z∗(δ)) + Tτ∗(z0,z1)−δ z
∗(δ)

+Φτ∗(z0,z1)−δ v( · + δ) + Φτ∗(z0,z1)−δ u
∗( · + δ)

= Tτ∗(z0,z1)−δ(z0 − z∗(δ)) + Tτ∗(z0,z1) z0 + Tτ∗(z0,z1)−δ

∫ δ

0
Tδ−sBu(s)ds

+

∫ τ∗(z0,z1)

δ
Tτ∗(z0,z1)−sBv(s)ds+

∫ τ∗(z0,z1)

δ
Tτ∗(z0,z1)−sBu(s)ds

= Tτ∗(z0,z1)−δ(z0 − z∗(δ)) +

∫ τ0

δ
Tτ∗(z0,z1)−sBv(s)ds+ Tτ∗(z0,z1) z0 +Φτ∗(z0,z1) u

∗ = z1.

Hence, ũ ∈ Uad is a control which drives z0 to z1 in time τ∗(z0, z1) − δ. This contradicts
the definition of τ∗(z0, z1) and the bang-bang property is proved.

To show the uniqueness, let u and v be two time optimal controls in Uad. Note that in
this case w = 1

2(u+ v) is also a time optimal control. From the proof above it follows that
|u(x, t)| = |v(x, t)| = |w(x, t)| = M a. e. in Γ × [0, τ∗(z0, z1)]. If u(x, t) ̸= v(x, t) in a set
of positive measure E ⊂ Γ× [0, τ∗(z0, z1)] then

0 = u(x, t) + v(x, t) = 2w(x, t) (x, t) ∈ E,

which contradicts the fact that |w(x, t)| =M a. e. in Γ× [0, τ∗(z0, z1)].

3 A modified Lebeau-Robbiano strategy

In this section we propose a version of a method introduced by Lebeau and Robbiano
[12] to study the null controllability of the heat equation. Roughly speaking, the Lebeau-
Robbiano strategy combines the observability of finite combinations of eigenvectors (which
is a property not involving the time variable) with the exponential decay of the heat
semigroup to obtain the null controllability. The fact that this method can be adapted to
null controllability with inputs in L∞([0, τ ];L2(Γ)) over a positive measure set e ⊂ [0, τ ]
has been remarked in Wang [26]. The main novelties we bring in into this section consist in
the facts that this strategy is adapted to null controllability with inputs in L∞([0, τ ]× Γ)
over a positive measure set e ⊂ [0, τ ] × Γ and that we replace the Lebeau-Robbiano
assumption on the observability of finite combinations of eigenvectors with an assumption
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of controllability of the truncation of the dynamical system to a finite number of modes.
This latter property involves the time variable and it is, in general, weaker than the
observability of finite combinations of eigenvectors.

We continue to use in this section the notation and assumptions in Section 2 on the
spaces X, U and on the operators A and B. Moreover, we add some new notation and
assumptions.

The operator A : D(A) → X is supposed to be a self-adjoint (possibly unbounded)
operator on X such that

⟨Aψ,ψ⟩ 6 0 (ψ ∈ D(A)).

Such an operator will be briefly called a negative operator. We also assume that A is
diagonalizable with an orthonormal basis of eigenvectors {φk}k>1 and corresponding family
of eigenvalues {−λk}k>1, where the sequence {λk} is positive, non decreasing and satisfies
λk → ∞ as k tends to infinity. According to classical results, this holds, in particular, if
A has compact resolvents. With the above assumptions on A, we have

Aψ = −
∑
k>1

λk⟨ψ,φk⟩φk (ψ ∈ D(A)), (3.1)

so that the semigroup T generated by A is a contraction semigroup on X satisfying

Ttz =
∑
k>1

e−λkt⟨z, φk⟩φk (t > 0, z ∈ X). (3.2)

Moreover, the sets

Xβ :=
{
z ∈ X :

∑
k>1

(
1 + λ2k

)β |⟨z, φk⟩|2 <∞
}

(β > 0), (3.3)

endowed with the inner product

⟨y, z⟩β =
∑
k>1

(
1 + λ2k

)β ⟨y, φk⟩ ⟨z, φk⟩ (z, y ∈ Xβ), (3.4)

are Hilbert spaces. The scale {Xβ}β>0 of Hilbert spaces can be extended to a scale
{Xβ}β∈R by defining, for every β < 0, Xβ as the completion of X with respect to the
norm associated to the inner product (3.4). Alternatively, X−β may be defined, for β > 0,
as the dual of Xβ with respect to the pivot space X. For every β > 0, formulas (3.1)
and (3.2), with ⟨·, ·⟩ standing this time for the duality between X−β and Xβ, provide
canonical extensions for the operator A and the semigroup T to a negative operator and
a contraction semigroup on X−β, respectively. These extensions will be still denoted by
A and T. Note that, for every β ∈ R, the family {(1 + λ2k)

β/2φk}k>1 is an orthonormal
basis in Xβ. Finally, in the sequel we need the following lemma which represents the
dual version of Proposition 5.1.3 from [24]. However, to make precise the admissibility
constant, we provide a short proof below.

Lemma 3.1. Assume that U is a Hilbert space and B ∈ L(U,X− 1
2
). Then B is an

admissible control operator for T with admissibility constant 1√
2
∥B∥L(U,X− 1

2
).
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Proof. Let u ∈ L2([0, τ ];U) and let z ∈ C([0, τ ];X−1) be the mild solution of the equation

ż(t) = Az(t) +Bu(t), z(0) = 0. (3.5)

If (Fn)n>1 ⊂W 1,1([0, τ ];X1) is a sequence convergent to Bu in L2([0, τ ];X− 1
2
), then let

zn ∈ C([0, τ ];X1) ∩ C1([0, τ ];X) be the solution of

żn(t) = Azn(t) + Fn(t), zn(0) = 0. (3.6)

It follows that zn verifies

1

2

d

dt
∥zn(t)∥2 = −∥zn(t)∥21

2
+⟨Fn(t), zn(t)⟩ = −∥zn(t)∥21

2
+⟨Fn(t), zn(t)⟩− 1

2
, 1
2
6 1

4
∥Fn(t)∥2− 1

2
.

By integrating the last inequality from 0 to τ , we obtain that

lim sup
n→∞

∥zn(τ)∥2 6
1

2

∫ τ

0
∥Bu(s)∥2− 1

2

ds 6 1

2
∥B∥2L(U,X− 1

2
) ∥u∥

2
L2([0,τ ];U).

We deduce that (zn(τ))n>1 converges weakly to some z̃ in X. Since (zn(τ))n>1 converges
to z(τ) in X−1, it follows that z(τ) = z̃ ∈ X and verifies

∥z(τ)∥ 6 1√
2
∥B∥L(U,X− 1

2
) ∥u∥L2([0,τ ];U). (3.7)

The proof of the Lemma is complete.

For γ, ς > 0 we denote by

Vς,γ = span {φk | λγk 6 ς},

and we denote by Pς,γ the orthogonal projection from X onto Vς,γ .

We recall that through this paper U = L2(Γ) where Γ is a measurable set with respect
to a measure µ. In the sequel, for every k ∈ N∗ we denote by µk the Lebesgue measure
in Rk and by µ̃ the product of measures µ and µ1. We now state the main result in this
section.

Theorem 3.2. Let τ > 0 and let e ⊂ Γ × [0, τ ] be a set of positive measure. Assume
B ∈ L(U,X− 1

2
). Moreover, assume that there exist positive constants γ ∈ (0, 1), a ∈

(0, τ), d0, d1 and κ such that for every ς > 0, s, t > 0, with a 6 s < t 6 τ , and
E = {(x, σ) ∈ e | s 6 σ 6 t} of positive measure, we have

∥T∗
τφ∥ 6 d0e

d1
[
1+ln

(
1

µ̃(E)

)]
ς+ κ

µ̃(E) ∥Ψd
τ,E ′φ∥L1(Γ×[0,τ ]) (φ ∈ Vς,γ), (3.8)

where E ′ = {(x, τ − σ) | (x, σ) ∈ E}. Then the pair (A,B) is L∞ null controllable in
time τ over e.

In order to prove Theorem 3.2 we need the following measure theoretic result whose
proof may be found, for instance, in Lions [14, p. 275].
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Lemma 3.3. Let F be a set of positive measure. Then there exist positive constants ρ
and c such that for almost every t ∈ F there exists an increasing sequence (tn)n>0 such
that limn→∞ tn = t and

µ1([tn, tn+1] ∩ F ) > ρ(tn+1 − tn),
tn+1 − tn
tn+2 − tn+1

6 c (n > 0). (3.9)

The following simple lemma will help us to separate the time and space variables in our
estimates.

Lemma 3.4. Let e ⊂ Γ× [0, τ ] be a set of positive measure. For each t ∈ [0, τ ], we define

the t−section of e as et = {x ∈ Γ | (x, t) ∈ e}. If F =
{
t ∈ [0, τ ]

∣∣∣ µ(et) > µ̃(e)
4τ

}
, then

µ1 (F ) >
µ̃(e)

4µ(Γ)
. (3.10)

Proof. Let F =
{
t ∈ [0, τ ]

∣∣∣ µ(et) > µ̃(e)
4τ

}
and suppose that µ1(F ) 6 µ̃(e)

4µ(Γ) . It follows

that

µ̃(e) =

∫ τ

0
µ(et)dt =

∫
F
µ(et)dt+

∫
[0,τ ]\F

µ(et)dt 6
µ̃(e)

4µ(Γ)
µ(Γ) + τ

µ̃(e)

4τ
=
µ̃(e)

2
,

which is a contradiction.

We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2. Since e ⊂ Γ × [0, τ ] is a set of positive measure, we deduce from

Lemma 3.4 that there exists F ⊂ [0, τ ] of measure greater than µ̃(e)
4µ(Γ) such that, for any

t ∈ F , the sections et has measure greater than µ̃(e)
4τ . Let t′ ∈ F be one of the points for

which one can find a sequence (tk)k>0 as in Lemma 3.3. Without loss of generality we may
suppose that t0 := a > 0. In the remaining part of the proof, for each k > 0, we denote
rk+1 = tk+1 − tk. Define the sequence (ςk)k>0 by

ςk =
1

rp2k+2

(k > 0), (3.11)

where p = p(γ) will be conveniently chosen latter on.

For every k > 0 we define the functions zk ∈ C([t2k, t2k+2], X) and uk ∈ L∞(Γ ×
[t2k, t2k+2]) recursively by the formulae

z−1(t0) = Tt0z0, (3.12)

uk(x, t) =

{
ũk(x, t) for (x, t) ∈ Γ× [t2k, t2k+1],

0 for (x, t) ∈ Γ× [t2k+1, t2k+2],
(k > 0), (3.13)

zk(ξ) = Tξ−t2kzk−1(t2k) +

∫ ξ

t2k

Tξ−σBχeuk(σ) dσ (k > 0, ξ ∈ [t2k, t2k+2]), (3.14)
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where ũk ∈ L∞(Γ× [t2k, t2k+1]) is chosen such that, for each k > 0,

Pςk,γzk(t2k+1) = 0, supp ũk ⊂ e ∩ Γ× [t2k, t2k+1], (3.15)

∥ũk∥L∞(Γ×[t2k,t2k+1]) 6 d0e
d1

[
1+ln

(
4τ

ρµ̃(e) r2k+1

)]
ςk+

4τκ
ρµ̃(e) r2k+1 ∥zk−1(t2k)∥. (3.16)

The existence of ũk with the above properties follows from (3.8) with E = e∩Γ×[t2k, t2k+1]
by applying Proposition 2.5 and taking into account that

µ̃(E) =
∫ t2k+1

t2k

∫
eσ

dxdσ >
∫
F∩[t2k,t2k+1]

∫
eσ

dxdσ > µ̃(e)

4τ
ρr2k+1.

Denoting ρ̃ = µ̃(e)
4τ ρ and using (3.14) and (3.16) it follows that, for each k > 0,

∥zk(t2k+1)∥ 6
(
1 + d0∥B∥√r2k+1 e

d1

[
1+ln

(
1

ρ̃ r2k+1

)]
ςk+

κ
ρ̃ r2k+1

)
∥zk−1(t2k)∥. (3.17)

In the above formula and in the remaining part of the proof, ∥B∥ denotes the norm in
L(U,X− 1

2
). Note that formula (3.14) for zk(t2k+2) and (3.15) imply that

⟨zk(t2k+2), φn⟩ = 0 (k > 0, λγn 6 ςk) (3.18)

and yield that

∥zk(t2k+2)∥ 6 e−ς
1/γ
k r2k+2∥zk(t2k+1)∥ (k > 0). (3.19)

From the above relation and (3.17) it follows that there exists a positive constant κ̃ > κ
such that, for each k > 0, we have

∥zk(t2k+2)∥ 6 e
−ς

1/γ
k r2k+2+d1

[
1+ln

(
1

ρ̃ r2k+1

)]
ςk+

κ̃
ρ̃ r2k+1 ∥zk−1(t2k)∥. (3.20)

In order to show that the right-hand side of (3.16) forms a bounded sequence, we denote

ak = d0e
d1

[
1+ln

(
1

ρ̃ r2k+1

)]
ςk+

κ̃
ρ̃ r2k+1 ∥zk−1(t2k)∥ (k > 0).

From the above definition of ak and (3.20) we deduce that

ak+1

ak
6 e

−ς
1/γ
k r2k+2+d1ςk+1 ln

(
1

ρ̃ r2k+3

)
+ κ̃

ρ̃ r2k+3 (k > 0). (3.21)

Using Lemma 3.3, formula (3.11) and the fact that γ ∈ (0, 1) it follows that there exists
k1 > 0 and a constant C > 0 such that

− ς
1/γ
k r2k+2 + d1ςk+1 ln

(
1

ρ̃ r2k+3

)
+

κ̃

ρ̃ r2k+3

6 −
(

1

r2k+2

) p
γ
−1

+ d1c
2p

(
1

r2k+2

)p

ln

(
c

ρ̃ r2k+2

)
+

cκ̃

ρ̃ r2k+2

6 −C
(

1

r2k+2

) p
γ
−1

(k > k1),
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for any p which verifies p
γ − 1 > max{1, p}. Note that the last inequality is equivalent to

p > max
{
2γ, γ

1−γ

}
which has at least a solution for each γ ∈ (0, 1).

The above estimate, (3.21) and (3.16) show that the function

u(x, t) =

∞∑
k=0

uk(x, t)χ[t2k,t2k+2] ((x, t) ∈ Γ× [0, τ ]), (3.22)

belongs to L∞(Γ× [0, τ ]) and suppu ⊂ E . Moreover, the function

z(t) =

∞∑
k=0

zk(t)χ[t2k,t2k+2] (t ∈ [0, τ ]) (3.23)

belongs to C([0, τ ];X) and verifies

ż(t) = Az(t) +Bu(t), z(0) = z0

and z(τ) = Tτz0 +Φτ,Eu = 0. The proof of Theorem 3.2 is now complete.

4 A Turán type inequality

In this section we give an m−dimensional version of an inequality originally proved by
Turán [25] for intervals and extended by Nazarov [19] for sets of positive measure in R.
Let m > 1 be given and, for each 1 6 k 6 m, let Ik =

∏k
i=1[0, li] be a k−dimensional

rectangle of volume υk = l1...lk. For m > 2 and any α ∈ (N∗)m we write α = (α′, αm)
with α′ = (α1, ..., αm−1) ∈ (N∗)m−1, αm ∈ N and we denote

Φα(x) = Φα(x1, ..., xm) =

√
2m

υm

m∏
j=1

sin

(
αjxjπ

lj

)
, (4.24)

Φα′(x′) = Φα′(x1, ..., xm−1) =

√
2m−1

υm−1

m−1∏
j=1

sin

(
αjxjπ

lj

)
. (4.25)

Now, let E ⊂ Im be a set of positive Lebesgue measure. The aim of this section is to
estimate from below the L1(E)-norm of the finite linear combinations of functions Φα.
We begin with the following simple variant of Lemma 3.4 on sets of positive measure in
product spaces.

Lemma 4.1. Let E ⊂ Im be a set of positive measure. For each k < m and (ξ1, ξ2, ..., ξk) ∈
Ik, we define the (ξ1, ξ2, ..., ξk)−section of E as the set

E(ξ1,ξ2,...,ξk) =

{
(ξk+1, ..., ξm) ∈

m∏
i=k+1

[0, li]

∣∣∣∣∣ (ξ1, ξ2, ..., ξk, ξk+1, ..., ξm) ∈ E

}
.

If, for each k < m, Fk denotes the set

Fk =

{
(ξ1, ξ2, ..., ξk) ∈

k∏
i=1

[0, li]

∣∣∣∣ µm−k(E(ξ1,...,ξk)) >
µm(E)

4l1...lk

}
,

then

µk (Fk) >
µm(E)

4 lk+1...lm
. (4.26)
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Proof. It is similar to the proof of Lemma 3.4 and we omit it.

The following theorem, proved in [19, Theorem I], will play an essential role in our
study.

Theorem 4.2. Let N ∈ N be a nonnegative integer and p(x) =
∑

|k|6N ake
iνkx (ak ∈ C,

νk ∈ R) be an exponential polynomial. Let I ⊂ R be an interval and E a measurable subset
of I of positive measure. Then

sup
x∈I

|p(x)| 6
(
Cµ1(I)

µ1(E)

)2N

sup
x∈E

|p(x)|, (4.27)

where C > 0 is an absolute constant.

The following result is a consequence of Theorem 4.2.

Corollary 4.3. With the notations from Theorem 4.2 we have that the following inequality
holds for any sequence (ak)|k|6N ⊂ C∑

|k|6N

|ak|2
 1

2

6 1

Cµ1(I)

(
2C µ1(I)

µ1(E)

)2N+1 ∫
E

∣∣∣∣∣∣
∑
|k|6N

ake
iνkx

∣∣∣∣∣∣ dx, (4.28)

where C > 0 is the constant from (4.27).

Proof. By denoting p(x) =
∑

|k|6N ake
iνkx and by using the orthogonality of

(
eiνkx

)
|k|6N

in L2(I), we have that

µ1(I)
∑
|k|6N

|ak|2 =
∫
I
|p(x)|2 dx 6 µ1(I) sup

x∈I
|p(x)|2 . (4.29)

In order to bound supx∈I |p(x)| with an integral over E we use (4.27) and an idea from

[2, Theorem 5.6]. If we denote E =
{
x ∈ E | |p(x)| > 2

µ1(E)∥p∥L1(E)

}
, we remark that

µ1(E) 6 µ1(E)
2 . Thus µ1(E \ E) > µ1(E)

2 and, by applying (4.27) in E \ E , we deduce that

sup
x∈I

|p(x)| 6
(

Cµ1(I)

µ1(E \ E)

)2N

sup
x∈E\E

|p(x)| 6 2

µ1(E)

(
2Cµ1(I)

µ1(E)

)2N

∥p∥L1(E)

and the proof is complete.

The following result generalizes Corollary 4.3 to multi-dimensional domains. For other
similar results and extensions the interested reader is referred to [4, 8].

Corollary 4.4. Let m,N > 1 and D ⊂ [1, N ]m ∩ Nm. Let E ⊂ Im =
∏m

k=1[0, li] be a set
of positive measure. If C > 0 is the constant from (4.27), then the following inequality
holds for any sequence (bα)α∈D ⊂ C(∑

α∈D
|bα|2

) 1
2

6
(

Nm−1

2mC2m υm

) 1
2
(
2pmC υm
µm(E)

)m (2N+1) ∫
E

∣∣∣∣∣∑
α∈D

bαΦα

∣∣∣∣∣ dx, (4.30)

where the sequence (pm)m>1 is defined by p1 = 1 and pm = 2m+1+(m−1)pm−1

m for m > 2.
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Proof. We prove (4.30) by induction over m. For m = 1, (4.30) follows from Proposition
4.3. Indeed, it is sufficient to take in (4.28) a0 = 0, ak = bk

2 i and a−k = −ak for each k > 1
to obtain (4.30) in the case m = 1.

Now, let us suppose that (4.30) holds in any dimension less or equal than m − 1 and
prove it for dimension m > 2. Let p(x) =

∑
α∈D bαΦα(x), where D ⊂ [1, N ]m ∩Nm. With

the notations from Lemma 4.1 note that∫
E
|p(x)|dx =

∫
Im−1

∫ lm

0
χE |p(x′, xm)|dxmdx′ >

∫
Fm−1

∫
Ex′

|p(x′, xm)|dxmdx′.

We have that p(x) =
∑N

k=1

(∑
α′∈Dk

a(α′,k)Φα′(x′)
)√

2
lm

sin
(
kπxm
lm

)
, where Dk = {α′ ∈

[1, N ]m−1 |(α′, k) ∈ D} for each 1 6 k 6 N . Our recurrence assumption implies that

∫
Ex′

|p(x′, xm)|dxm >
√

2lmC

(
2Clm
µ1(Ex′)

)−(2N+1)
 N∑
k=1

∣∣∣∣∣∣
∑

α′∈Dk

a(α′,k)Φα′(x′)

∣∣∣∣∣∣
2

1
2

,

for each x′ ∈ Im−1. Integrating the above formula over Fm and taking into account that

µ1(Ex′) > µm(E)
4υm−1

for every x′ ∈ Fm, we deduce that

∫
E
|p(x)|dx >

√
2lmC

(
8C υm−1lm
µm(E)

)−(2N+1) ∫
Fm

 N∑
k=1

∣∣∣∣∣∣
∑

α′∈Dk

a(α′,k)Φα′(x′)

∣∣∣∣∣∣
2

1
2

dx′

>
√

2lmC

(
8C υm
µm(E)

)−(2N+1) 1√
N

N∑
k=1

∫
Fm

∣∣∣∣∣∣
∑

α′∈Dk

a(α′,k)Φα′(x′)

∣∣∣∣∣∣ dx′.
Using again the recurrence assumption and the fact that µm−1 (Fm) > µm(E)

4 lm
, we deduce

that∫
E
|p(x)|dx

>
(
2mC2m υm

N
m−1

2

) 1
2
(
8C υm
µm(E)

)−(2N+1)(22+pm−1C υm
µm(E)

)−(m−1)(2N+1)
(∑

α∈D
|aα|2

) 1
2

=

(
2mC2m υm

N
m−1

2

) 1
2

2
2m+1+(m−1)pm−1

m C υm
µm(E)

−m (2N+1)(∑
α∈D

|aα|2
) 1

2

,

so that the proof is complete.

To end this section we give a simple consequence of the above estimates to an interior
controllability problem for a (possibly fractional) diffusion equation. Let m be a positive
integer, let Ω ⊂ Rm be an open and bounded set and let Γ be a non-empty open subset
of Ω. For θ ∈

(
1
2 ,∞

)
, we consider the diffusion equation

∂z

∂t
(x, t) = −(−∆)θz(x, t) + u(x, t)χΓ(x) for (x, t) ∈ Ω× (0,∞), (4.31)
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with the boundary and initial conditions

z(x, t) = 0 on ∂Ω× (0,∞), (4.32)

z(x, 0) = z0(x) for x ∈ Ω. (4.33)

Equation (4.31) involves a fractional power of the Dirichlet Laplacian, (−∆)θ, and it
is used as mathematical model for physical processes exhibiting anomalously slow or fast
diffusion (see, for instance, [10, 15]). We refer to [16, 17, 23] for some of the controllability
properties of this equation. The input u acts only on the subset Γ of Ω. We have the
following result for the time optimal control problem associated to (4.31)-(4.33).

Proposition 4.5. Suppose that Ω is a rectangular domain in Rm and that Γ is a nonempty
open subset of Ω. Then, for every z0 ∈ L2(Ω) and z1 ∈ R(z0,Uad), there exits a unique
solution u∗ of the time optimal control problem (2.19)-(2.20), associated to (4.31)-(4.33).
This solution u∗ has the bang-bang property:

|u∗(x, t)| =M a. e. in Γ× [0, τ∗(z0, z1)]. (4.34)

Proof. System (4.31)-(4.33) can be written in the form (2.10). Indeed, let X = L2(Ω),
U = L2(Γ) and A = −(−∆)θ. Let the control operator B ∈ L(L2(Γ), X) be defined by

Bu = uχΓ. (4.35)

With the above notation, (4.31)-(4.33) is equivalent to (2.10) and B ∈ L(U,X) is an
admissible control operator for the semigroup T generated by A. In this case the measure
µ on Γ is the Lebesgue measure µm.

For any γ ∈ (0, 1) and ς > 0, let Vς,γ = {φ ∈ X | φ =
∑

λγ
α6ς aαΦα}, where (Φα)α∈(N∗)m

are the eigenvectors of the operator −A which are given by (4.24). The eigenvalue λα of
−A corresponding to the eigenvector Φα is given by λα = (α2

1 + ...+ α2
m)θ.

For any 0 < a 6 s < t 6 τ let E = {(x, σ) ∈ e | s 6 σ 6 t} be a set of positive measure
and let E ′ = {(x, τ − σ) | (x, σ) ∈ E}. By using Lemma 3.4 we have that there exists a

set F ⊂ {t ∈ [0, τ ] | (t, x) ∈ E ′} such that µ1(F ) >
µm+1(E)
4µm(Γ) and the σ−section Eσ has the

property that µm(Eσ) >
µm+1(E)

4τ for every σ ∈ F .

According to Proposition 2.6 and Theorem 3.2, the conclusion of our proposition follows
if we show that the pair (A,B) verifies (3.8). In this particular case, (3.8) is a direct
consequence of Corollary 4.4. Indeed, we have that

∥Ψd
τ,E ′φ∥L1(Γ×[0,τ ]) =

∫ τ

0

∫
Γ
χE ′ |B∗T∗

σφ|dxdσ

>
∫
F

∫
Eσ

|B∗T∗
σφ|dx dσ =

∫
F

∫
Eσ

∣∣∣∣∣∣
∑
λγ
α6ς

aαΦα(x)e
−λασ

∣∣∣∣∣∣ dxdσ.
By using Corollary 4.4 with N = ς

1
2θγ , we deduce that there exists a constat C =

C(Γ, θ,m) such that

∥Ψd
τ,E ′φ∥L1(Γ×[0,τ ]) >

∫
F

Cς−m−1
4θγ

(
C

µm(Eσ)

)−m

(
2ς

1
2θγ +1

)∑
λγ
α6ς

|aα|2e−2λασ

 1
2

 dσ
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> Cς
−m−1

4θγ

(
4C

µm+1(E)

)−m

(
2ς

1
2θγ +1

)
µ1(F )

∑
λγ
α6ς

|aα|2e−2λατ

 1
2

.

Now, by taking into account that there exists κ > 0 such that

µ1(F ) >
µm+1(E)
4µm(Γ)

> e
− κ

µm+1(E) ,

and by choosing γ = 1
2θ ∈ (0, 1), it follows that (3.8) holds, which ends the proof.

Remark 4.6. The generalization of the results in Theorem 1.1 and Proposition 4.5 to a
domain Ω of arbitrary shape is an interesting open question. A result which may allow to
tackle this issue has been recently obtained in Apraiz and Escauriaza [1]. In this work, the
authors prove the null controllability of the heat equation by means of controls supported
in a subset of positive measure of the domain Ω or of its boundary. The main new tool
introduced in [1] is an inequality of the same nature as (4.30), in which the eigenfunctions

Φα of the Dirichlet Laplace operator in Ω are replaced by the solutions e±
√
λαyΦα(x) of the

elliptic equation
∆xz(x, y) + ∂2yz(x, y) = 0 (x, y) ∈ Ω× R.

5 Proof of the main result

The aim of this section is to prove our main result, Theorem 1.1. In order to achieve our
objective we need to show that (3.8) holds. One of the key ingredients in the proof of
(3.8) is the following Remez-type inequality, which has been proved in Theorem 2.1 from
Borwein and Erdélyi [3] (see, also, [2]). Recall from the previous section that, for every
k > 1, µk stands for the Lebesgue measure in Rk.

Theorem 5.1. Let νk := kη, k ∈ {1, 2, . . . }, η > 1. Let ρ ∈ (0, 1), ε ∈ (0, 1 − ρ) and
ε 6 1/2. Then there exists a constant cη > 0, depending only on η, such that

∥p∥[0,ρ] 6 exp
(
cηε

1/(1−η)
)
∥p∥E ,

for every p ∈ span {xν1 , xν2 , . . . } and for every set E ⊂ [ρ, 1] of Lebesgue measure at least
ε > 0.

The above result has the following consequence:

Corollary 5.2. For every τ > 0 there exist two constants C, κ > 0 such that for every
F ⊂ [0, τ ] of positive Lebesgue measure the following inequality holds

Ceκ/µ1(F )

∫
F

∣∣∣∣∣∣
∑
k>1

ake
−k2t

∣∣∣∣∣∣ dt >
∑
k>1

|ak|2e−k2τ

 1
2

((ak) ∈ ℓ2(C)). (5.36)

Proof. If (ak)k>1 ∈ ℓ2(C), let us denote f(t) =
∑

k>1 ake
−k2t. Let ρ = e−τ and let

E = {x = e−t | t ∈ F} ⊂ [ρ, 1].
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Then

µ1(E) =

∫
F
e−t dt > e−τµ1(F ).

We can thus apply Theorem 5.1 (with η = 2) to obtain that there exists an absolute
constant c > 0 such that

∥f∥[0,τ ] 6 exp (ceτ/µ1(F )) ∥f∥F . (5.37)

Let S =
{
t ∈ F | |f(t)| > 2

µ1(F )∥f∥L1(F )

}
. It is easily seen that µ1(S) 6 µ1(F )

2 . Thus

µ1(F \ S) > µ1(F )
2 so that, by applying (5.37) in F \ S, we deduce that

∥f∥[0,τ ] 6 exp (2ceτ/µ1(F )) ∥f∥F\S 6 2

µ1(F )
exp (2ceτ/µ1(F )) ∥f∥L1(F ). (5.38)

On the other hand, by using a classical result (see, for instance, [7, 9, 22, Corollary
3.6]), we deduce that there exists a constant C > 0, depending only of τ , such that

∥f∥2[0,τ ] >
1

τ

∫ τ

0

∣∣∣∣∣∣
∑
k>1

ake
−k2t

∣∣∣∣∣∣
2

dt > C
∑
k>1

|ak|2e−τk2 . (5.39)

From (5.38) and (5.39) it follows that (5.36) holds with positive constants C and κ
depending only of τ and the proof ends.

Now we have all the ingredients needed to prove our main result.

Proof of Theorem 1.1. Recall from Section 2 that (1.1)-(1.4) may be written in the form
(2.10), with (A,B) defined in Remark 2.2. In this case the spaces X 1

2
and X− 1

2
defined

at the beginning of Section 3 are given by X 1
2
= L2(Ω), X− 1

2
= (H2(Ω) ∩ H1

0 (Ω))
′ (the

dual space of H2(Ω) ∩ H1
0 (Ω) with respect to the pivot space L2(Ω)). Moreover, B ∈

L(L2(Γ), X− 1
2
) is an admissible control operator for the semigroup T generated by A.

Therefore, according to Proposition 2.6, it suffices to show the L∞ null controllability of the
pair (A,B). This will be done by using Theorem 3.2. We recall that B∗ ∈ L(L2(Ω), L2(Γ))
is given by

B∗φ = −∂(−A)
−1φ

∂ν
∣∣
Γ

(φ ∈ L2(Ω)). (5.40)

Without loss of generality we may suppose that Γ is an open subset of {x = (x′, lm) ∈
∂Ω}. In this case, µ is the m− 1 dimensional Lebesgue measure.

Note that (Φα)α∈(N∗)m defined by (4.24) is the complete family of orthonormal eigen-
vectors of the operator −A and λα = α2

1 + ... + α2
m are the corresponding eigenval-

ues. Now, for any ς > 0 and γ ∈ (0, 1), let Vς,γ = {φ =
∑

λγ
α6ς aαΦα}. For any

0 < a 6 s < t 6 τ , let E = {(x, σ) ∈ e | s 6 σ 6 t} be a set of positive measure
and let E ′ = {(x, τ − σ) | (x, σ) ∈ E}.

By using Lemma 3.4 we have that there exists a set F ⊂ {t ∈ [0, τ ] | (t, x) ∈ E} such
that

µ1(F ) >
µm(E)

4µm−1(Γ)
, (5.41)
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and, if σ ∈ F then the σ−section Eσ has the property that

µm−1(Eσ) >
µm(E)
4τ

. (5.42)

By using (5.40), it follows that for every φ ∈ Vς,γ we have

∥Ψd
τ,E ′φ∥L1(Γ×[0,τ ]) =

∫ τ

0

∫
Γ
χE ′ |B∗T∗

σφ|dx′ dσ >
∫
F

∫
Eσ

|B∗T∗
σφ|dx′ dσ

=

∫
F

∫
Eσ

∣∣∣∣∣∣
∑
λγ
α6ς

aα
(−1)αmαmπ

lmλα
Φα′(x′)e−λασ

∣∣∣∣∣∣ dx′dσ =

∫
F

∫
Eσ

∣∣∣∣∣∣
∑

α′∈Dm

bα′(σ)Φα′(x′)

∣∣∣∣∣∣ dx′ dσ,
where Dm =

{
α′ ∈ (N∗)m−1 | |α′|2 6 ς

1
γ − 1

}
and

bα′(σ) =

√
ς
1
γ −|α′|2∑
αm=1

aα
(−1)αmαmπ

lmλα
e−λασ (α′ ∈ Dm). (5.43)

From Corollary 4.4, by taking N = ς
1
2γ and using (5.42), we deduce that there exists a

constant C = C(Γ,m) such that

∥Ψd
τ,E ′φ∥L1(Γ×[0,τ ]) >

∫
F

Cς−m−2
4γ

(
C

µm−1(Eσ)

)−(m−1)

(
2ς

1
2γ +1

) ∑
α′∈Dm

|bα′ |2
 1

2

 dσ

> Cς
−m−2

4γ

(
4C

µm(E)

)−(m−1)

(
2ς

1
2γ +1

) ∫
F

 ∑
α′∈Dm

|bα′ |2
 1

2

dσ.

We deduce that

∥Ψd
τ,E ′φ∥L1(Γ×[0,τ ]) > Cς

− 2m−3
4γ

(
4C

µm(E)

)−(m−1)

(
2ς

1
2γ +1

) ∑
α′∈Dm

∫
F
|bα′ | dσ. (5.44)

In order to find a lower bound for the integral over the measurable set F ⊂ [0, τ ], we
use Corollary 5.2. We have that

∫
F
|bα′ | dσ > e−|α′|2τ

∫
F

∣∣∣∣∣∣∣∣
√

ς
1
γ −|α′|2∑
αm=1

aα
(−1)αmαmπ

lmλα
e−α2

mσ

∣∣∣∣∣∣∣∣ dσ

> 1

C
exp

(
− κ

µ1(F )

)
e−|α′|2τ


√

ς
1
γ −|α′|2∑
αm=1

|aα|2α2
mπ

2

l2mλ
2
α

e−α2
mτ


1
2

.
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By taking into account (5.41), we deduce that

∫
F
|bα′ |dσ > 1

C
exp

(
−4κµm−1(Γ)

µm(E)

)
√

ς
1
γ −|α′|2∑
αm=1

∣∣∣∣aαλα
∣∣∣∣2 e−2λατ


1
2

. (5.45)

Finally, from (5.44) and (5.45) it follows that

∥Ψd
τ,E ′φ∥L1(Γ×[0,τ ])

> Cς
−m−2

4γ

(
4C

µm(E)

)−(m−1)

(
2ς

1
2γ +1

)
e
− 4κµm−1(Γ)

µm(E) ς
− 1

γ

∑
α′∈Dm


√

ς
1
γ −|α′|2∑
αm=1

∣∣∣∣∣ aα
λ

1
2
α

∣∣∣∣∣
2

e−2λατ


1
2

> 1

d0
e
−d1

(
1+ln

(
1

µm(E)

))
ς

1
2γ + κ

µm(E)

∑
λγ
α6ς

∣∣∣∣∣ aα
λ

1
2
α

∣∣∣∣∣
2

e−2λατ

 1
2

. (5.46)

Choosing γ = 1
2 , we conclude that (A,B) satisfies condition (3.8) in Theorem 3.2, which

concludes the proof of Theorem 1.1.
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partielles, Avant propos de P. Lelong, Dunod, Paris, 1968.

[15] R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent
developments in the description of anomalous transport by fractional dynamics, J.
Phys. A, 37 (2004), pp. R161–R208.

[16] S. Micu and E. Zuazua, On the controllability of a fractional order parabolic equa-
tion, SIAM J. Control Optim., 44 (2006), pp. 1950–1972 (electronic).

[17] L. Miller, On the controllability of anomalous diffusions generated by the fractional
Laplacian, Math. Control Signals Systems, 18 (2006), pp. 260–271.

[18] V. J. Mizel and T. I. Seidman, An abstract bang-bang principle and time-optimal
boundary control of the heat equation, SIAM J. Control Optim., 35 (1997), pp. 1204–
1216.

[19] F. L. Nazarov, Local estimates for exponential polynomials and their applications
to inequalities of the uncertainty principle type, Algebra i Analiz, 5 (1993), pp. 3–66.

[20] K. D. Phung and G. Wang, An observability for parabolic equations from a mea-
surable set in time, preprint.

22



[21] E. J. P. G. Schmidt, The “bang-bang” principle for the time-optimal problem in
boundary control of the heat equation, SIAM J. Control Optim., 18 (1980), pp. 101–
107.

[22] G. Tenenbaum and M. Tucsnak, New blow-up rates for fast controls of
Schrödinger and heat equations, J. Differential Equations, 243 (2007), pp. 70–100.

[23] G. Tenenbaum and M. Tucsnak, On the null-controllability of diffusion equations,
ESAIM: COCV, (2011).

[24] M. Tucsnak and G. Weiss, Observation and control for operator semigroups,
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