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Abstract
We introduce bisimulation up to congruence as a technique for
proving language equivalence of non-deterministic finite automata.
Exploiting this technique, we devise an optimisation of the classical
algorithm by Hopcroft and Karp [16]. We compare our approach to
the recently introduced antichain algorithms, by analysing and re-
lating the two underlying coinductive proof methods. We give con-
crete examples where we exponentially improve over antichains;
experimental results moreover show non negligible improvements.

Keywords Language Equivalence, Automata, Bisimulation, Coin-
duction, Up-to techniques, Congruence, Antichains.

1. Introduction
Checking language equivalence of finite automata is a classical
problem in computer science, which finds applications in many
fields ranging from compiler construction to model checking.

Equivalence of deterministic finite automata (DFA) can be
checked either via minimisation [9, 15] or through Hopcroft and
Karp’s algorithm [2, 16], which exploits an instance of what is
nowadays called a coinduction proof principle [24, 27, 29]: two
states recognise the same language if and only if there exists a
bisimulation relating them. In order to check the equivalence of
two given states, Hopcroft and Karp’s algorithm creates a relation
containing them and tries to build a bisimulation by adding pairs of
states to this relation: if it succeeds then the two states are equiva-
lent, otherwise they are different.

On the one hand, minimisation algorithms have the advantage of
checking the equivalence of all the states at once (while Hopcroft
and Karp’s algorithm only check a given pair of states). On the
other hand, they have the disadvantage of needing the whole au-
tomata from the beginning1, while Hopcroft and Karp’s algorithm
can be executed “on-the-fly” [12], on a lazy DFA whose transitions
are computed on demand.

This difference is fundamental for our work and for other re-
cently introduced algorithms based on antichains [1, 33]. Indeed,
when starting from non-deterministic finite automata (NFA), the

1 There are few exceptions, like [19] which minimises labelled transition
systems w.r.t. bisimilarity rather than trace equivalence.

[Copyright notice will appear here once ’preprint’ option is removed.]

powerset construction used to get deterministic automata induces
an exponential factor. In contrast, the algorithm we introduce in this
work for checking equivalence of NFA (as well as those in [1, 33])
usually does not build the whole deterministic automaton, but just
a small part of it. We write “usually” because in few bad cases, the
algorithm still needs exponentially many states of the DFA.

Our algorithm is grounded on a simple observation on deter-
minised NFA: for all sets X and Y of states of the original NFA,
the union (written +) of the language recognised by X (written
[[X]]) and the language recognised by Y ([[Y ]]) is equal to the lan-
guage recognised by the union ofX and Y ([[X+Y ]]). In symbols:

[[X + Y ]] = [[X]] + [[Y ]] (1)

This fact leads us to introduce a sound and complete proof tech-
nique for language equivalence, namely bisimulation up to context,
that exploits both induction (on the operator +) and coinduction:
if a bisimulation R equates both the (sets of) states X1, Y1 and
X2, Y2, then [[X1]] = [[Y1]] and [[X2]] = [[Y2]] and, by (1), we can
immediately conclude that also X1 + X2 and Y1 + Y2 are lan-
guage equivalent. Intuitively, bisimulations up to context are bisim-
ulations which do not need to relate X1 +X2 and Y1 + Y2 when
X1 (resp. X2) and Y1 (resp. Y2) are already related.

To illustrate this idea, let us check the equivalence of states x
and u in the following NFA. (Final states are overlined, labelled
edges represent transitions.)

x

a
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a
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a ''
y

a
ff u
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a
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a
ff v

a
oo

The determinised automaton is depicted below.

{x} a //

1

{y} a //

2

{z} a //

3

{x, y} a //

4

{y, z} a //

5

{x, y, z}

a

GG

6

{u}
a
// {v, w}

a
// {u,w}

a
// {u, v, w} a

}}

Each state is a set of states of the NFA, final states are overlined:
they contain at least one final state of the NFA. The numbered
lines show a relation which is a bisimulation containing x and u.
Actually, this is the relation that is built by Hopcroft and Karp’s
algorithm (the numbers express the order in which pairs are added).

The dashed lines (numbered by 1, 2, 3) form a smaller relation
which is not a bisimulation, but a bisimulation up to context: the
equivalence of states {x, y} and {u, v, w} could be immediately
deduced from the fact that {x} is related to {u} and {y} to {v, w},
without the need of further exploring the determinised automaton.

Bisimulations up-to, and in particular bisimulations up to con-
text, have been introduced in the setting of concurrency theory [24,
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25, 28] as a proof technique for bisimilarity of CCS or π-calculus
processes. As far as we know, they have never been used for prov-
ing language equivalence of NFA.

Among these techniques one should also mention bisimulation
up to equivalence, which, as we show in this paper, is implicitly
used in the original Hopcroft and Karp’s algorithm. This technique
can be briefly explained by noting that not all bisimulations are
equivalence relations: it might be the case that a bisimulation re-
lates (for instance) X and Y , Y and Z but not X and Z. However,
since [[X]] = [[Y ]] and [[Y ]] = [[Z]], we can immediately conclude
that X and Z recognise the same language. Analogously to bisim-
ulations up to context, a bisimulation up to equivalence does not
need to relate X and Z when they are both related to some Y .

The techniques of up-to equivalence and up-to context can be
combined resulting in a powerful proof technique which we call
bisimulation up to congruence. Our algorithm is in fact just an ex-
tension of Hopcroft and Karp’s algorithm that attempts to build
a bisimulation up to congruence instead of a bisimulation up to
equivalence. An important consequence, when using up to congru-
ence, is that we do not need to build the whole deterministic au-
tomata, but just those states that are needed for the bisimulation
up-to. For instance, in the above NFA, the algorithm stops after
equating z and u+ v and does not build the remaining four states.
Despite their use of the up to equivalence technique, this is not the
case with Hopcroft and Karp’s algorithm, where all accessible sub-
sets of the deterministic automata have to be visited at least once.

The ability of visiting only a small portion of the determinised
automaton is also the key feature of the antichain algorithm [33]
and its optimisation exploiting similarity [1]. The two algorithms
are designed to check language inclusion rather than equivalence,
but we can relate these approaches by observing that the two prob-
lems are equivalent ([[X]] = [[Y ]] iff [[X]] ⊆ [[Y ]] and [[Y ]] ⊆ [[X]];
and [[X]] ⊆ [[Y ]] iff [[X]] + [[Y ]] = [[Y ]] iff [[X + Y ]] = [[Y ]]).

In order to compare with these algorithms, we make explicit
the coinductive up-to technique underlying the antichain algo-
rithm [33]. We prove that this technique can be seen as a restriction
of up to congruence, for which symmetry and transitivity are not al-
lowed. As a consequence, the antichain algorithm usually needs to
explore more states than our algorithm. Moreover, we show how to
integrate the optimisation proposed in [1] in our setting, resulting
in an even more efficient algorithm.

Summarising, the contributions of this work are

(1) the observation that Hopcroft and Karp implicitly use bisimula-
tions up to equivalence (Section 2),

(2) an efficient algorithm for checking language equivalence (and
inclusion), based on a powerful up to technique (Section 3),

(3) a comparison with antichain algorithms, by recasting them into
our coinductive framework (Sections 4 and 5).

Outline
Section 2 recalls Hopcroft and Karp’s algorithm for DFA, show-
ing that it implicitly exploits bisimulation up to equivalence. Sec-
tion 3 describes the novel algorithm, based on bisimulations up to
congruence. We compare this algorithm with the antichain one in
Section 4, and we show how to exploit similarity in Section 5. Sec-
tion 6 is devoted to benchmarks. Sections 7 and 8 discuss related
and future works. Omitted proofs can be found in the Appendix.

Notation
We denote sets by capital letters X,Y, S, T . . . and functions by
lower case letters f, g, . . . Given sets X and Y , X × Y is their
Cartesian product,X ]Y is the disjoint union and XY is the set of
functions f : Y → X . Finite iterations of a function f : X → X

are denoted by fn (formally, f0(x) = x, fn+1(x) = f(fn(x))).
The collection of subsets of X is denoted by P(X). The (omega)
iteration of a function f : P(X) → P(X) is denoted by fω

(formally, fω(Y ) =
⋃
n≥0 f

n(Y )). For a set of letters A, A?

denotes the set of all finite words over A; ε the empty word; and
w1w2 the concatenation of words w1, w2 ∈ A?. We use 2 for the
set {0, 1} and 2A

?

for the set of all languages over A.

2. Hopcroft and Karp’s algorithm for DFA
A deterministic finite automaton (DFA) over the alphabet A is a
triple (S, o, t), where S is a finite set of states, o : S → 2 is
the output function, which determines if a state x ∈ S is final
(o(x) = 1) or not (o(x) = 0), and t : S → SA is the transition
function which returns, for each state x and for each letter a ∈ A,
the next state ta(x). For a ∈ A, we write x a→ x′ to mean that
ta(x) = x′. For w ∈ A?, we write x w→ x′ for the least relation

such that (1) x ε→ x and (2) x aw′→ x′ iff x a→ x′′ and x′′ w
′
→ x′.

For any DFA, there exists a function [[−]] : S → 2A
?

mapping
states to languages, defined for all x ∈ S as follows:

[[x]](ε) = o(x) , [[x]](aw) = [[ta(x)]](w) .

The language [[x]] is called the language accepted by x. Given two
automata (S1, o1, t1) and (S2, o2, t2), the states x1 ∈ S1 and
x2 ∈ S2 are said to be language equivalent (written x1 ∼ x2)
iff they accept they same language.

Remark 1. In the following, we will always consider the prob-
lem of checking the equivalence of states of one single and fixed
automaton (S, o, t). We do not loose generality since for any two
automata (S1, o1, t1) and (S2, o2, t2) it is always possible to build
an automaton (S1 ] S2, o1 ] o2, t1 ] t2) such that the language
accepted by every state x ∈ S1 ] S2 is the same as the language
accepted by x in the original automaton (Si, oi, ti). For this rea-
son, we also work with automata without explicit initial states: we
focus on the equivalence of two arbitrary states of a fixed DFA.

2.1 Proving language equivalence via coinduction
We first define bisimulation. We make explicit the underlying no-
tion of progression which we need in the sequel.

Definition 1 (Progression, Bisimulation). Given two relations
R,R′ ⊆ S × S on states, R progresses to R′, denoted R� R′, if
whenever x R y then

1. o(x) = o(y) and
2. for all a ∈ A, ta(x) R′ ta(y).

A bisimulation is a relation R such that R� R.

As expected, bisimulation is a sound and complete proof tech-
nique for checking language equivalence of DFA:

Proposition 1 (Coinduction). Two states are language equivalent
iff there exists a bisimulation that relates them.

2.2 Naive algorithm
Figure 1 shows a naive version of Hopcroft and Karp’s algorithm
for checking language equivalence of the states x and y of a de-
terministic finite automaton (S, o, t). Starting from x and y, the
algorithm builds a relation R that, in case of success, is a bisimula-
tion. In order to do that, it employs the set (of pairs of states) todo
which, intuitively, at any step of the execution, contains the pairs
(x′, y′) that must be checked: if (x′, y′) already belongs to R, then
it has already been checked and nothing else should be done. Other-
wise, the algorithm checks if x′ and y′ have the same outputs (i.e.,
if both are final or not). If o(x′) 6= o(y′), then x and y are different.
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Naive(x, y)

(1) R is empty; todo is empty;
(2) insert (x, y) in todo;
(3) while todo is not empty , do {

(3.1) extract (x′, y′) from todo;
(3.2) if (x′, y′) ∈ R then skip;

(3.3) if o(x′) 6= o(y′) then return false;
(3.4) for all a ∈ A,

insert (ta(x
′), ta(y

′)) in todo;
(3.5) insert (x′, y′) in R;

(4) return true;

Figure 1. Naive algorithm for checking the equivalence of states
x and y of a DFA (S, o, t); R and todo are sets of pairs of states.
The code of HK(x, y) is obtained by replacing step 3.2 with if
(x′, y′) ∈ e(R) then skip.

x
a //

1

y

a
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2

z
a

hh

3

u
a
// v

a
((
w

a

hh

x
a,b //

1

y
a,b //

2 5

z a,bdd

3

4

v

a,b
((
w

a,b
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u
a

66

b

;;

Figure 2. Checking for DFA equivalence.

If o(x′) = o(y′), then the algorithm inserts (x′, y′) in R and, for
all a ∈ A, the pairs (ta(x′), ta(y′)) in todo.

Proposition 2. For all x, y ∈ S, x ∼ y iff Naive(x, y).

Proof. We first observe that if Naive(x, y) returns true then the
relation R that is built before arriving to step 4 is a bisimulation.
Indeed, the following proposition is an invariant for the loop corre-
sponding to step 3:

R� R ∪ todo
This invariant is preserved since at any iteration of the algorithm, a
pair (x′, y′) is removed from todo and inserted in R after checking
that o(x′) = o(y′) and adding (ta(x

′), ta(y
′)) for all a ∈ A in

todo. Since todo is empty at the end of the loop, we eventually
have R� R, i.e., R is a bisimulation. By Proposition 1, x ∼ y.

We now prove that if Naive(x, y) returns false, then x 6∼ y.
Note that for all (x′, y′) inserted in todo, there exists a word
w ∈ A? such that x w→ x′ and y w→ y′. Since o(x′) 6= o(y′),
then [[x′]](ε) 6= [[y′]](ε) and thus [[x]](w) = [[x′]](ε) 6= [[y′]](ε) =
[[y]](w), that is x 6∼ y.

Since both Hopcroft and Karp’s algorithm and the one we in-
troduce in Section 3 are simple variations of this naive one, it is
important to illustrate its execution with an example. Consider the
DFA with input alphabetA = {a} in the left-hand side of Figure 2,
and suppose we want to check that x and u are language equivalent.

During the initialisation, (x, u) is inserted in todo. At the first
iteration, since o(x) = 0 = o(u), (x, u) is inserted in R and (y, v)
in todo. At the second iteration, since o(y) = 1 = o(v), (y, v)
is inserted in R and (z, w) in todo. At the third iteration, since
o(z) = 0 = o(w), (z, w) is inserted in R and (y, v) in todo. At
the fourth iteration, since (y, v) is already in R, the algorithm does
nothing. Since there are no more pairs to check in todo, the relation
R is a bisimulation and the algorithm terminates returning true.

These iterations are concisely described by the numbered
dashed lines in Figure 2. The line i means that the connected pair
is inserted in R at iteration i. (In the sequel, when enumerating
iterations, we ignore those where a pair from todo is already in R
so that there is nothing to do.)

Remark 2. Unless it finds a counter-example, Naive constructs
the smallest bisimulation that relates the two starting states (see
Proposition 8 in Appendix A). On the contrary, minimisation al-
gorithms [9, 15] are designed to compute the largest bisimulation
relation for a given automaton. For instance, taking automaton on
the left of Figure 2, they would equate the states x and w which are
language equivalent, while Naive(x, u) does not relate them.

2.3 Hopcroft and Karp’s algorithm
The naive algorithm is quadratic: a new pair is added to R at
each non-trivial iteration, and there are only n2 such pairs, where
n = |S| is the number of states of the DFA. To make this algorithm
(almost) linear, Hopcroft and Karp actually record a set of equiva-
lence classes rather than a set of visited pairs. As a consequence,
their algorithm may stop earlier, when an encountered pair of states
is not already inR but in its reflexive, symmetric, and transitive clo-
sure. For instance in the right-hand side example from Figure 2, we
can stop when we encounter the dotted pair (y, w), since these two
states already belong to the same equivalence class according to the
four previous pairs.

With this optimisation, the produced relationR contains at most
n pairs (two equivalence classes are merged each time a pair is
added). Formally, and ignoring the concrete data structure to store
equivalence classes, Hopcroft and Karp’s algorithm consists in
simply replacing step 3.2 in Figure 1 with

(3.2) if (x′, y′) ∈ e(R) then skip;

where e : P(S × S) → P(S × S) is the function mapping each
relation R ⊆ S × S into its symmetric, reflexive, and transitive
closure. We hereafter refer to this algorithm as HK.

2.4 Bisimulations up-to
We now show that the optimisation used by Hopcroft and Karp
corresponds to exploiting an “up-to technique”.

Definition 2 (Bisimulation up-to). Let f : P(S×S)→ P(S×S)
be a function on relations on S. A relation R is a bisimulation up
to f if R� f(R), i.e., whenever x R y then

1. o(x) = o(y) and
2. for all a ∈ A, ta(x) f(R) ta(y).

With this definition, Hopcroft and Karp’s algorithm just consists
in trying to build a bisimulation up to e. To prove the correctness
of the algorithm it suffices to show that any bisimulation up to
e is contained in a bisimulation. We use for that the notion of
compatible function [26, 28]:

Definition 3 (Compatible function). A function f : P(S × S) →
P(S × S) is compatible if it is monotone and it preserves progres-
sions: for all R,R′ ⊆ S × S,

R� R′ entails f(R)� f(R′) .

Proposition 3. Let f be a compatible function. Any bisimulation
up to f is contained in a bisimulation.

Proof. Suppose that R is a bisimulation up to f , i.e., that R �
f(R). Using compatibility of f and by a simple induction on n, we
get ∀n, fn(R)� fn+1(R). Therefore, we have⋃

n

fn(R)�
⋃
n

fn(R) ,
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in other words, fω(R) =
⋃
n f

n(R) is a bisimulation. This latter
relation trivially contains R, by taking n = 0.

We could prove directly that e is a compatible function; we how-
ever take a detour to ease our correctness proof for the algorithm
we propose in Section 3.

Lemma 1. The following functions are compatible:

id: the identity function;
f ◦ g: the composition of compatible functions f and g;⋃
F : the pointwise union of an arbitrary family F of compatible

functions:
⋃
F (R) =

⋃
f∈F f(R);

fω: the (omega) iteration of a compatible function f .

Lemma 2. The following functions are compatible:

• the constant reflexive function: r(R) = {(x, x) | ∀x ∈ S};
• the converse function: s(R) = {(y, x) | x R y};
• the squaring function: t(R) = {(x, z) | ∃y, x R y R z}.

Intuitively, given a relation R, (s ∪ id)(R) is the symmetric
closure ofR, (r∪s∪ id)(R) is its reflexive and symmetric closure,
and (r ∪ s ∪ t ∪ id)ω(R) is its symmetric, reflexive and transitive
closure: e = (r ∪ s ∪ t ∪ id)ω . Another way to understand this
decomposition of e is to recall that for a given R, e(R) can be
defined inductively by the following rules:

x e(R) x
r

x e(R) y

y e(R) x
s

x e(R) y y e(R) z

x e(R) z
t

x R y

x e(R) y
id

Theorem 1. Any bisimulation up to e is contained in a bisimula-
tion.

Proof. By Proposition 3, it suffices to show that e is compatible,
which follows from Lemma 1 and Lemma 2.

Corollary 1. For all x, y ∈ S, x ∼ y iff HK(x, y).

Proof. Same proof as for Proposition 2, by using the invariant
R� e(R)∪ todo. We deduce thatR is a bisimulation up to e after
the loop. We conclude with Theorem 1 and Proposition 1.

Returning to the right-hand side example from Figure 2, Hopcroft
and Karp’s algorithm constructs the relation

RHK = {(x, u), (y, v), (z, w), (z, v)}
which is not a bisimulation, but a bisimulation up to e: it contains
the pair (x, u), whose b-transitions lead to (y, w), which is not in
RHK but in its equivalence closure, e(RHK).

3. Optimised algorithm for NFA
We now move from DFA to non-deterministic automata (NFA). We
start with standard definitions about semi-lattices, determinisation,
and language equivalence for NFA.

A semi-lattice (X,+, 0) consists of a set X and a binary op-
eration +: X × X → X which is associative, commutative,
idempotent (ACI), and has 0 ∈ X as identity. Given two semi-
lattices (X1,+1, 01) and (X2,+2, 02), an homomorphism of semi-
lattices is a function f : X1 → X2 such that for all x, y ∈ X1,
f(x +1 y) = f(x) +2 f(y) and f(01) = 02. The set 2 = {0, 1}
is a semi-lattice when taking + to be the ordinary Boolean or. Also
the set of all languages 2A

?

carries a semi-lattice where + is the
union of languages and 0 is the empty language. More generally,
for any set X , P(X) is a semi-lattice where + is the union of sets
and 0 is the empty set. In the sequel, we indiscriminately use 0
to denote the element 0 ∈ 2, the empty language in 2A

?

, and the

empty set in P(X). Similarly, we use + to denote the Boolean or
in 2, the union of languages in 2A

?

, and the union of sets in P(X).

A non-deterministic finite automaton (NFA) over the input al-
phabet A is a triple (S, o, t), where S is a finite set of states,
o : S → 2 is the output function (as for DFA), and t : S → P(S)A
is the transition relation, which assigns to each state x ∈ S and
input letter a ∈ A a set of possible successor states.

The powerset construction transforms any NFA (S, o, t) in
the DFA (P(S), o], t]) where o] : P(S) → 2 and t] : P(S) →
P(S)A are defined for all X ∈ P(S) and a ∈ A as follows:

o](X) =


o(x) if X = {x} with x ∈ S
0 if X = 0

o](X1) + o](X2) if X = X1 +X2

t]a(X) =


ta(x) if X = {x} with x ∈ S
0 if X = 0

t]a(X1) + t]a(X2) if X = X1 +X2

Observe that in (P(S), o], t]), the states form a semi-lattice
(P(S),+, 0), and o] and t] are, by definition, semi-lattices homo-
morphisms. These properties are fundamental for the up-to tech-
nique we are going to introduce; in order to highlight the difference
with generic DFA (which usually do not carry this structure), we
introduce the following definition.

Definition 4. A determinised NFA is a DFA (P(S), o], t]) ob-
tained via the powerset construction of some NFA (S, o, t).

Hereafter, we use a new notation for representing states of
determinised NFA: in place of the singleton {x} we just write x
and, in place of {x1, . . . , xn}, we write x1 + · · ·+ xn.

For an example, consider the NFA (S, o, t) depicted below (left)
and part of the determinised NFA (P(S), o], t]) (right).

x

a

BB

a ''
y

a
gg z

aoo x
a // y + z

a // x+ y
a // x+ y + z

a

FF

In the determinised NFA, x makes one single a-transition going
into y + z. This state is final: o](y + z) = o](y) + o](z) =
o(y)+o(z) = 1+0 = 1; it makes an a-transition into t]a(y+z) =
t]a(y) + t]a(z) = ta(y) + ta(z) = x+ y.

The language accepted by the states of a NFA (S, o, t) can be
conveniently defined via the powerset construction: the language
accepted by x ∈ S is the language accepted by the singleton {x}
in the DFA (P(S), o], t]), in symbols [[{x}]]. Therefore, in the fol-
lowing, instead of considering the problem of language equivalence
of states of the NFA, we focus on language equivalence of sets of
states of the NFA: given two sets of statesX and Y inP(S), we say
that X and Y are language equivalent (X ∼ Y ) iff [[X]] = [[Y ]].
This is exactly what happens in standard automata theory, where
NFA are equipped with sets of initial states.

3.1 Extending coinduction to NFA
In order to check if two sets of states X and Y of an NFA (S, o, t)
are language equivalent, we can simply employ the bisimulation
proof method on (P(S), o], t]). More explicitly, a bisimulation for
a NFA (S, o, t) is a relation R ⊆ P(S) × P(S) on sets of states,
such that whenever X R Y then (1) o](X) = o](Y ), and (2) for
all a ∈ A, t]a(X) R t]a(Y ). Since this is just the old definition
of bisimulation (Definition 1) applied to (P(S), o], t]), we get that
X ∼ Y iff there exists a bisimulation relating them.
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Remark 3 (Linear time v.s. branching time). It is important not
to confuse these bisimulation relations with the standard Milner-
and-Park bisimulations [24] (which strictly imply language equiv-
alence): in a standard bisimulation R, if the following states x and
y of an NFA are in R,

x1
...x

a 55

a ))
xn

y1
...y

a 55

a ))
ym

then each xi should be in R with some yj (and vice-versa). Here,
instead, we first transform the transition relation into

x
a // x1 + · · ·+ xn y

a // y1 + · · ·+ ym ,

using the powerset construction, and then we require that the sets
x1 + · · ·+ xn and y1 + · · ·+ ym are related by R.

3.2 Bisimulation up to congruence
The semi-lattice structure (P(S),+, 0) carried by determinised
NFA makes it possible to introduce a new up-to technique, which
is not available with plain DFA: up to congruence. This technique
relies on the following function.

Definition 5 (Congruence closure). Let u : P(P(S) × P(S)) →
P(P(S) × P(S)) be the function on relations on sets of states
defined for all R ⊆ P(S)× P(S) as:

u(R) = {(X1 +X2, Y1 + Y2) | X1 R Y1 and X2 R Y2} .

The function c = (r ∪ s ∪ t ∪ u ∪ id)ω is called the congruence
closure function.

Intuitively, c(R) is the smallest equivalence relation which is
closed with respect to + and which includes R. It could alterna-
tively be defined inductively using the rules r, s, t, and id from the
previous section, and the following one:

X1 c(R) Y1 X2 c(R) Y2

X1 +X2 c(R) Y1 + Y2
u

We call bisimulations up to congruence the bisimulations up to
c. We report the explicit definition for the sake of clarity:

Definition 6 (Bisimulation up to congruence). A bisimulation up
to congruence for a NFA (S, o, t) is a relation R ⊆ P(S)× P(S)
on sets of states, such that whenever X R Y then

1. o](X) = o](Y ) and
2. for all a ∈ A, t]a(X) c(R) t]a(Y ).

We then show that bisimulations up to congruence are sound,
using the notion of compatibility:

Lemma 3. The function u is compatible.

Proof. We assume that R � R′, and we prove that u(R) �
u(R′). If X u(R) Y , then X = X1 + X2 and Y = Y1 + Y2

for some X1, X2, Y1, Y2 such that X1 R Y1 and X2 R Y2. By
assumption, we have o](X1) = o](Y1), o](X2) = o](Y2), and for
all a ∈ A, t]a(X1) R

′ t]a(Y1) and t]a(X2) R
′ t]a(Y2). Since o] and

t] are homomorphisms, we deduce o](X1 +X2) = o](Y1 + Y2),
and for all a ∈ A, t]a(X1 +X2) u(R

′) t]a(Y1 + Y2).

Theorem 2. Any bisimulation up to congruence is contained in a
bisimulation.

Proof. By Proposition 3, it suffices to show that c is compatible,
which follows from Lemmas 1, 2 and 3.

x

a

EE

a &&
y

a
gg z

aoo

u

a

DD

x
a //

1

y + z
a //

2

x+ y
a //

3

x+ y + z

a

FF
4

u

a

DD

Figure 3. Bisimulations up to congruence, on a single letter NFA.

In the Introduction, we already gave an example of bisimulation
up to context, which is a particular case of bisimulation up to
congruence (up to context corresponds to use just the function
(r ∪ u ∪ id)ω , without closing under s and t).

A more involved example illustrating the use of all ingredients
of the congruence closure function (c) is given in Figure 3. The
relation R expressed by the dashed numbered lines (formally R =
{(x, u), (y + z, u)}) is neither a bisimulation, nor a bisimulation
up to equivalence, since y + z

a→ x + y and u
a→ u, but

(x+y, u) /∈ e(R). However,R is a bisimulation up to congruence.
Indeed, we have (x+ y, u) ∈ c(R):

x+ y c(R) u+ y ((x, u) ∈ R)
c(R) y + z + y ((y + z, u) ∈ R)
= y + z

c(R) u ((y + z, u) ∈ R)

In contrast, we need four pairs to get a bisimulation up to e contain-
ing (x, u): this is the relation depicted with both dashed and dotted
lines in Figure 3.

Note that we can deduce many other equations from R; in fact,
c(R) defines the following partition of sets of states:

{0}, {y}, {z}, {x, u, x+y, x+z, and the 9 remaining subsets}.

3.3 Optimised algorithm for NFA
Algorithms for NFA can be obtained by computing the deter-
minised NFA on-the-fly [12]: starting from the algorithms for DFA
(Figure 1), it suffices to work with sets of states, and to inline the
powerset construction. The corresponding code is given in Figure 4.
The naive algorithm (Naive) does not use any up to technique,
Hopcroft and Karp’s algorithm (HK) reasons up to equivalence in
step 3.2, and the optimised algorithm, referred as HKC in the se-
quel, relies on up to congruence: step 3.2 becomes

(3.2) if (X ′, Y ′) ∈ c(R ∪ todo) then skip;

Observe that we use c(R ∪ todo) rather than c(R): this allows
us to skip more pairs, and this is safe since all pairs in todo will
eventually be processed.

Corollary 2. For all X,Y ∈ P(S), X ∼ Y iff HKC(X,Y ).

Proof. Same proof as for Proposition 2, by using the invariant
R� c(R∪ todo) for the loop. We deduce that R is a bisimulation
up to congruence after the loop. We conclude with Theorem 2 and
Proposition 1.

The most important point about these three algorithms is that
they compute the states of the determinised NFA lazily. This means
that only accessible states need to be computed, which is of prac-
tical importance since the determinised NFA can be exponentially
large. In case of a negative answer, the three algorithms stop even
before all accessible states have been explored; otherwise, if a
bisimulation (possibly up-to) is found, it depends on the algorithm:
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Naive(X,Y )

(1) R is empty; todo is empty;
(2) insert (X,Y ) in todo;
(3) while todo is not empty , do {

(3.1) extract (X ′, Y ′) from todo;
(3.2) if (X ′, Y ′) ∈ R then skip;

(3.3) if o](X ′) 6= o](Y ′) then return false;
(3.4) for all a ∈ A,

insert (t]a(X
′), t]a(Y

′)) in todo;
(3.5) insert (X ′, Y ′) in R;

(4) return true;

Figure 4. On-the-fly naive algorithm, for checking the equivalence
of sets of states X and Y of a NFA (S, o, t). The code for on-
the-fly HK(X,Y ) is obtained by replacing the test in step 3.2 with
(X ′, Y ′) ∈ e(R); the code for HKC(X,Y ) is obtained by replacing
this test with (X ′, Y ′) ∈ c(R ∪ todo).

• with Naive, all accessible states need to be visited, by definition
of bisimulation;
• with HK, the only case where some accessible states can be

avoided is when a pair (X,X) is encountered: the algorithm
skips this pair so that the successors of X are not necessarily
computed (this situation rarely happens in practice—it actually
never happens when starting with disjoint automata). In the
other cases where a pair (X,Y ) is skipped, then X and Y are
necessarily already related to some other states in R, so that
their successors will eventually be explored;
• with HKC, only a small portion of the accessible states is built

(check the experiments in Section 6). To see a concrete exam-
ple, let us execute HKC on the NFA from Figure 3. After two
iterations, R = {(x, u), (y + z, u)}. Since x + y c(R) u, the
algorithm stops without building the states x+y and x+y+z.
Similarly, in the example from the Introduction, HKC does not
construct the four states corresponding to pairs 4, 5, and 6.

This ability of HKC to ignore parts of the determinised NFA comes
from the up to congruence technique, which allows one to infer
properties about states that were not necessarily encountered be-
fore. As we shall see in Section 4 the efficiency of antichains algo-
rithms [1, 33] also comes from their ability to skip large parts of
the determinised NFA.

3.4 Computing the congruence closure
For the optimised algorithm to be effective, we need a way to
check whether some pairs belong to the congruence closure of
some relation (step 3.2). We present here a simple solution based
on set rewriting; the key idea is to look at each pair (X,Y ) in a
relation R as a pair of rewriting rules:

X → X + Y Y → X + Y ,

which can be used to compute normal forms for sets of states.
Indeed, by idempotence, X R Y entails X c(R) X + Y .

Definition 7. LetR ⊆ P(S)×P(S) be a relation on sets of states.
We define R ⊆ P(S)×P(S) as the smallest irreflexive relation
that satisfies the following rules:

X R Y

X  R X + Y

X R Y

Y  R X + Y

Z  R Z
′

U + Z  R U + Z′

Lemma 4. For all relations R, the relation R is convergent.

In the sequel, we denote by X↓R the normal form of a set X
w.r.t.  R. Intuitively, the normal form of a set is the largest set

of its equivalence class. Recalling the example from Figure 3, the
common normal form of x + y and u can be computed as follows
(R is the relation {(x, u), (y + z, u)}):

x+ y
**

u
ww

x+ y + u
++

x+ u
ss

x+ y + z + u

Theorem 3. For all relations R, and for all X,Y ∈ P(S), we
have X↓R = Y ↓R iff (X,Y ) ∈ c(R).

Thus, in order to check if (X,Y ) ∈ c(R ∪ todo) we only have
to compute the normal form of X and Y with respect to R∪todo.
Note that each pair ofR∪todomay be used only once as a rewriting
rule, but we do not know in advance in which order to apply these
rules. Therefore, the time required to find one rule that applies is in
the worst case rn where r = |R ∪ todo| is the size of the relation
R∪todo, and n = |S| is the number of states of the NFA (assuming
linear time complexity for set-theoretic union and containment of
sets of states). Since we cannot apply more than r rules, the time
for checking whether (X,Y ) ∈ c(R ∪ todo) is bounded by r2n.

We tried other solutions, notably by using binary decision dia-
grams [8]. We have chosen to keep the presented rewriting algo-
rithm for its simplicity and because it behaves well in practice.

3.5 Complexity hints
The complexity of Naive, HK and HKC is closely related to the size
of the relation that they build. Hereafter, we use v = |A| to denote
the number of letters in A.

Lemma 5. The three algorithms require at most 1 + v·|R| itera-
tions, where |R| is the size of the produced relation; moreover, this
bound is reached whenever they return true.

Therefore, we can conveniently reason about |R|.
Lemma 6. LetRNaive,RHK, andRHKC denote the relations produced
by the three algorithms. We have

|RHKC|, |RHK| ≤ m |RNaive| ≤ m2 , (2)

where m ≤ 2n is the number of accessible states in the deter-
minised NFA and n is the number of states of the NFA. If the algo-
rithms returned true, we moreover have

|RHKC| ≤ |RHK| ≤ |RNaive| . (3)

As shown below in Section 4.2.4, RHKC can be exponentially
smaller than RHK. Notice however that the problem of deciding
NFA language equivalence is PSPACE-complete [23], and that
none of the algorithms presented here is in PSPACE: all of them
store a set of visited pairs, and in the worst case, this set can
become exponentially large with all of them. (This also holds for
the antichain algorithms [1, 33] which we describe in Section 4.)
Instead, the standard PSPACE algorithm does not store any set of
visited pairs: it checks all words of length smaller than 2n. While
this can be done in polynomial space, this systematically requires
exponential time.

3.6 Using HKC for checking language inclusion
For NFA, language inclusion can be reduced to language equiva-
lence in a rather simple way. Since the function [[−]] : P(S)→ 2A

?

is a semi-lattice homomorphism (see Theorem 7 in Appendix A),
for any given sets of states X and Y , [[X+Y ]] = [[Y ]] iff
[[X]] + [[Y ]] = [[Y ]] iff [[X]] ⊆ [[Y ]]. Therefore, it suffices to run
HKC(X+Y, Y ) to check the inclusion [[X]] ⊆ [[Y ]].

In such a situation, all pairs that are eventually manipulated
by HKC have the shape (X ′+Y ′, Y ′) for some sets X ′, Y ′. The
step 3.2 of HKC, where it checks whether the current pair belongs
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to the congruence closure of the relation, can thus be simplified.
First, the pairs in the current relation can only be used to rewrite
from right to left. Second, the following lemma allows one to avoid
unnecessary normal form computations:

Lemma 7. For all sets X,Y and for all relations R, we have
X+Y c(R) Y iff X ⊆ Y ↓R.

Proof. We first prove that for allX,Y, X↓R = Y ↓R iffX ⊆ Y ↓R
and Y ⊆ X↓R, using the fact that the normalisation function
↓R : X 7→ X↓R is monotone and idempotent. The announced
result follows by Theorem 3, since Y ⊆ (X+Y )↓R is always true
and X+Y ⊆ Y ↓R iff X ⊆ Y ↓R.

However, as shown below, checking an equivalence by decom-
posing it into two inclusions cannot be more efficient than checking
the equivalence directly.

Lemma 8. Let X,Y be two sets of states; let R⊆ and R⊇ be the
relations computed by HKC(X+Y, Y ) and HKC(X+Y,X), respec-
tively. If R⊆ and R⊇ are bisimulations up to congruence, then the
following relation is a bisimulation up to congruence:

R= = {(X ′, Y ′) | (X ′+Y ′, Y ′) ∈ R⊆ or (X ′+Y ′, X ′) ∈ R⊇}.

On the contrary, checking the equivalence directly actually al-
lows one to skip some pairs that cannot be skipped when reasoning
by double inclusion. As an example, consider the DFA on the right
of Figure 2. The relation computed by HKC(x, u) contains only four
pairs (because the fifth one follows from transitivity). Instead, the
relations built by HKC(x, x+u) and HKC(u+x, u) would both con-
tain five pairs: transitivity cannot be used since our relations are
now oriented (from y ≤ v, z ≤ v and z ≤ w, we cannot deduce
y ≤ w). Another example, where we get an exponential factor by
checking the equivalence directly rather than through the two in-
clusions, can be found in Section 4.2.4.

In a sense, the behaviour of the coinduction proof method here
is similar to that of standard proofs by induction, where one often
has to strengthen the induction predicate to get a (nicer) proof.

4. Antichain algorithm
In [33], De Wulf et al. have proposed the antichain approach for
checking language inclusion of NFA. We show that this approach
can be explained in terms of simulations up to upward-closure
that, in turn, can be seen as a special case of bisimulations up
to congruence. Before doing so, we recall the standard notion of
antichain and we describe the antichain algorithm (AC).

Given a partial order (X,v), an antichain is a subset Y ⊆ X
containing only incomparable elements (that is, for all y1, y2 ∈ Y ,
y1 6v y2 and y2 6v y1). AC exploits antichains over the set
S × P(S), where the ordering is given by (x1, Y1) v (x2, Y2)
iff x1 = x2 and Y1 ⊆ Y2.

In order to check [[X]] ⊆ [[Y ]] for two sets of states X,Y
of an NFA (S, o, t), AC maintains an antichain of pairs (x′, Y ′),
where x′ is a state of the NFA and Y ′ is a state of the deter-
minised automaton. More precisely, the automaton is explored non-
deterministically (via t) for obtaining the first component of the pair
and deterministically (via t]) for the second one. If a pair such that
x′ is accepting (o(x′) = 1) and Y ′ is not (o](Y ′) = 0) is en-
countered, then a counter-example has been found. Otherwise all
derivatives of the pair along the automata transitions have to be in-
serted into the antichain, so that they will be explored. If one these
pairs p is larger than a previously encountered pair p′ (p′ v p) then
the language inclusion corresponding to p is subsumed by p′ so
that p can be skipped; otherwise, if p v p1, . . . , pn for some pairs

p1, . . . , pn that are already in the antichain, then one can safely re-
move these pairs: they are subsumed by p and, by doing so, the set
of visited pairs remains an antichain.

Remark 4. An important difference between HKC and AC consists
in the fact that the former inserts pairs in todo without checking
whether they are redundant (this check is performed when the
pair is processed), while the latter removes all redundant pairs
whenever a new one is inserted. Therefore, the cost of an iteration
with HKC is merely the cost of the corresponding congruence check,
while the cost of an iteration with AC is merely that of inserting all
successors of the corresponding pair and simplifying the antichain.

Note that the above description corresponds to the “forward”
antichain algorithm, as described in [1]. Instead, the original an-
tichain algorithm, as first described in [33], is “backward” in the
sense that the automata are traversed in the reversed way, from ac-
cepting states to initial states. The two versions are dual [33] and
we could similarly define the backward counterpart of HKC and HK.
We however stick to the forward versions for the sake of clarity.

4.1 Coinductive presentation
Leaving apart the concrete data structures used to manipulate an-
tichains, we can rephrase this algorithm using a coinductive frame-
work, like we did for Hopcroft and Karp’s algorithm.

First define a notion of simulation, where the left-hand side
automaton is executed non-deterministically:

Definition 8 (Simulation). Given two relations T, T ′ ⊆ S×P(S),
T s-progresses to T ′, denoted T �s T

′, if whenever x T Y then

1. o(x) ≤ o](Y ) and
2. for all a ∈ A, x′ ∈ ta(x), x′ T ′ t]a(Y ).

A simulation is a relation T such that T �s T .

As expected, we obtain the following coinductive proof principle:

Proposition 4 (Coinduction). For all sets X,Y , we have [[X]] ⊆
[[Y ]] iff there exists a simulation T such that for all x ∈ X , x T Y .

(Note that like for our notion of bisimulation, the above notion
of simulation is weaker than the standard one from concurrency
theory [24], which strictly entails language inclusion—Remark 3.)

To account for the antichain algorithm, where we can discard
pairs using the preorder v, it suffices to define the upward closure
function � : P(S × P(S))→ P(S × P(S)) as

�T = {(x, Y ) | ∃(x′, Y ′) ∈ T s.t. (x′, Y ′) v (x, Y )} .

A pair belongs to the upward closure �T of a relation T ⊆ S ×
P(S), if and only if this pair is subsumed by some pair in T . In
fact, rather than trying to construct a simulation, AC attempts to
construct a simulation up to upward closure.

Like for HK and HKC, this method can be justified by defining the
appropriate notion of s-compatible function, showing that any sim-
ulation up to an s-compatible function is contained in a simulation,
and showing that the upward closure function (�) is s-compatible.

Theorem 4. Any simulation up to � is contained in a simulation.

Corollary 3. For all X,Y ∈ P(S), [[X]] ⊆ [[Y ]] iff AC(X,Y ).

4.2 Comparing HKC and AC

The efficiency of the two algorithms strongly depends on the num-
ber of pairs that they need to explore. In the following (Sections
4.2.3 and 4.2.4), we show that HKC can explore far fewer pairs than
AC, when checking language inclusion of automata that share some
states, or when checking language equivalence. We would also like
to formally prove that (a) HKC never explores more than AC, and
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(b) when checking inclusion of disjoint automata, AC never ex-
plores more than HKC. Unfortunately, the validity of these state-
ments highly depends on numerous assumptions about the two
algorithms (e.g., on the exploration strategy) and their potential
proofs seem complicated and not really informative. For these rea-
sons, we preferred to investigate the formal correspondence at the
level of the coinductive proof techniques, where it is much cleaner.

4.2.1 Language inclusion: HKC can mimic AC
As explained in Section 3.6, we can check the language inclusion
of two sets X,Y by executing HKC(X+Y, Y ). We now show that
for any simulation up to upward closure that proves the inclusion
[[X]] ⊆ [[Y ]], there exists a bisimulation up to congruence of the
same size which proves the same inclusion. For T ⊆ S × P(S),
let T̂ ⊆ P(S)× P(S) denote the relation {(x+ Y, Y ) | x T Y }.

Lemma 9. We have �̂T ⊆ c(T̂ ).

Proof. If (x + Y, Y ) ∈ �̂T , then there exists Y ′ ⊆ Y such that
(x, Y ′) ∈ T . By definition, (x+ Y ′, Y ′) ∈ T̂ and (Y, Y ) ∈ c(T̂ ).
By the rule (u), (x+ Y ′ + Y, Y ′ + Y ) ∈ c(T̂ ) and since Y ′ ⊆ Y ,
(x+ Y, Y ) ∈ c(T̂ ).

Proposition 5. If T is a simulation up to �, then T̂ is a bisimulation
up to c.

Proof. First observe that if T �s T
′, then T̂ � uω(T̂ ′). There-

fore, if T �s �T , then T̂ � uω(�̂T ). By Lemma 9, T̂ �
uω(c(T̂ )) = c(T̂ ).

(Note that transitivity and symmetry are not used in the above
proofs: the constructed bisimulation up to congruence is actually
a bisimulation up to context (r ∪ u ∪ id)ω .)

The relation T̂ is not the one computed by HKC, since the former
contains pairs of the shape (x+ Y, Y ), while the latter has pairs of
the shape (X + Y, Y ) with X possibly not a singleton. However,
note that manipulating pairs of the two kinds does not change
anything since by Lemma 7, (X +Y, Y ) ∈ c(R) iff for all x ∈ X ,
(x+ Y, Y ) ∈ c(R).

4.2.2 Inclusion: AC can mimic HKC on disjoint automata
As shown in Section 4.2.3 below, HKC can be faster than AC, thanks
to the up to transitivity technique. However, in the special case
where the two automata are disjoint, transitivity cannot help, and
the two algorithms actually match each other.

Suppose that the automaton (S, o, t) is built from two disjoint
automata (S1, o1, t1) and (S2, o2, t2) as described in Remark 1.
Let R be the relation obtained by running HKC(X0+Y0, Y0) with
X0 ⊆ S1 and Y0 ⊆ S2. All pairs in R are necessarily of the shape
(X+Y, Y ) withX ⊆ S1 and Y ⊆ S2. LetR ⊆ S×P(S) denote
the relation {(x, Y ) | ∃X, x ∈ X and X+Y R Y }.

Lemma 10. If S1 and S2 are disjoint, then c(R) ⊆ �(R).

Proof. Suppose that x c(R) Y , i.e., x ∈ X with X + Y c(R) Y .
By Lemma 7, we have X ⊆ Y ↓R, and hence, x ∈ Y ↓R. By def-
inition of R the pairs it contains can only be used to rewrite from
right to left; moreover, since S1 and S2 are disjoint, such rewriting
steps cannot enable new rewriting rules, so that all steps can be per-
formed in parallel: we have Y ↓R =

∑
X′+Y ′RY ′⊆Y X

′. There-
fore, there exists some X ′, Y ′ with x ∈ X ′, X ′+Y ′ R Y ′, and
Y ′ ⊆ Y . It follows that (x, Y ′) ∈ R, hence (x, Y ) ∈ �(R).

Proposition 6. If S1 and S2 are disjoint, and ifR is a bisimulation
up to congruence, then R is a simulation up to upward closure.

x
a //a,b :: x1

a,b // · · ·
a,b // xn

y
b //a,b :: y1

a,b // · · ·
a,b // yn

z
a,b //a,b :: z1

a,b // · · ·
a,b // zn

Figure 5. Family of examples where HKC exponentially improves
over AC and HK; we have x+ y ∼ z.

Proof. First observe that for all relations R,R′, if R � R′, then
R�s R′. Therefore, if R� c(R), then R�s c(R). We deduce
R�s �(R) by Lemma 10.

4.2.3 Inclusion: AC cannot mimic HKC on merged automata
The containment of Lemma 10 does not hold when S1 and S2 are
not disjoint, since c can exploit transitivity, while � cannot. For a
concrete grasp, take R = {(x + y, y), (y + z, z)} and observe
that (x, z) ∈ c(R) but (x, z) /∈ �(R). This difference makes it
possible to find bisimulations up to c that are much smaller than
the corresponding simulations up to �, and for HKC to be more
efficient than AC. Such an example, where HKC is exponentially
better than AC for checking language inclusion of automata sharing
some states, is given in [6].

4.2.4 Language equivalence: AC cannot mimic HKC.
AC can be used to check language equivalence, by checking the two
underlying inclusions. However, checking equivalence directly can
be better, even in the disjoint case. To see this on a simple example,
consider the DFA on the right-hand side of Figure 2. If we use AC
twice to prove x ∼ u, we get the following antichains

T1 = {(x, u), (y, v), (y, w), (z, v), (z, w)} ,
T2 = {(u, x), (v, y), (w, y), (v, z), (w, z)} ,

containing five pairs each. Instead, four pairs are sufficient with HK
or HKC, thanks to up to symmetry and up to transitivity.

For a more interesting example, consider the family of NFA
given in Figure 5, where n is an arbitrary natural number. Taken
together, the states x and y are equivalent to the state z: they recog-
nise the language (a+b)?(a+b)n+1. Alone, the state x (resp. y)
recognises the language (a+b)?a(a+b)n (resp. (a+b)?b(a+b)n).

For i ≤ n, let Xi = x+x1+ . . .+xi, Yi = y+y1+ . . .+yi,
and Zi = z+z1+ . . .+zi; for N ⊆ [1..i], furthermore set

XN
i = x+

∑
j∈N

xj , Y
N
i = y +

∑
j∈[1..n]\N

yj .

In the determinised NFA, x + y can reach all the states of the
shape XN

i +Y
N
i , for i ≤ n and N ⊆ [1..i]. For instance, for

n=i=2, we have x+y aa→ x+y+x1+x2, x+y ab→ x+y+y1+x2,
x+y

ba→ x+y+x1+y2, and x+y
bb→ x+y+y1+y2. Instead, z

reaches only n+1 distinct states, those of the form Zi.

The smallest bisimulation relating x+ y and z is

R ={(XN
i + Y

N
i , Zi) | i ≤ n,N ⊆ [1..i]},

which contains 2n+1−1 pairs. This is the relation computed by
Naive(x, y) and HK(x, y)—the up to equivalence technique (alone)
does not help in HK. With AC, we obtain the antichains Tx+Ty (for
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[[x+ y]] ⊆ [[z]]) and Tz (for [[x+ y]] ⊇ [[z]]), where:

Tx = {(xi, Zi) | i ≤ n},
Ty = {(yi, Zi) | i ≤ n},

Tz = {(zi, XN
i + Y

N
i ) | i ≤ n,N ⊆ [1..i]}.

Note that Tx and Ty have size n+ 1, and Tz has size 2n+1−1.
The language recognised by x or y are known for having a

minimal DFA with 2n states [17]. So, checking x + y ∼ z via
minimisation (e.g., [9, 15]) would also require exponential time.

This is not the case with HKC, which requires only polynomial
time in this case. Indeed, HKC(x+y, z) builds the relation

R′ = {(x+ y, z)}
∪ {(x+ Yi + yi+1, Zi+1) | i < n}
∪ {(x+ Yi + xi+1, Zi+1) | i < n}

which is a bisimulation up to congruence and which only contains
2n + 1 pairs. To see that this is a bisimulation up to congruence,
consider the pair (x+y+x1+y2, Z2) obtained from (x+y, z)
after reading the word ba. This pair does not belong to R′ but to
its congruence closure. Indeed, we have

x+y+x1+y2 c(R
′) Z1+y2 (x+y+x1 R′ Z1)

c(R′) x+y+y1+y2 (x+y+y1 R′ Z1)

c(R′) Z2 (x+y+y1+y2 R′ Z2)

(Check Lemma 18 in Appendix D for a complete proof.)

5. Exploiting Similarity
Looking at the example in Figure 5, a natural idea would be to
first quotient the automaton by graph isomorphism. By doing so,
we would merge the states xi, yi, zi, and we would obtain the
following automaton, for which checking x+y ∼ z is much easier.

x
a

&&

a,b ::

y
b
//a,b :: m1

a,b // · · ·
a,b // mn

z
a,b

88

a,b ::

As shown by Abdulla et al. [1], one can actually do better
with the antichain algorithm, by exploiting any preorder contained
in language inclusion (e.g., similarity [24]). In this section, we
rephrase this technique for antichains in our coinductive frame-
work, and we show how this idea can be embedded in HKC, resulting
in an even stronger algorithm.

5.1 AC with similarity: AC’
For the sake of clarity, we fix the preorder to be similarity, which
can be computed in quadratic time [13]:

Definition 9 (Similarity). Similarity is the largest relation on states
� ⊆ S × S such that x � y entails:

1. o(x) ≤ o(y) and
2. for all a ∈ A, x′ ∈ S such that x a→ x′, there exists some y′

such that y a→ y′ and x′ � y′.

One extends similarity to a preorder �∀∃ ⊆ P(S) × P(S) on
sets of states, and to a preorder v� ⊆ (S ×P(S))× (S ×P(S))
on antichain pairs, as:

X �∀∃ Y if ∀x ∈ X, ∃y ∈ Y, x � y ,

(x′, Y ′) v� (x, Y ) if x � x′ and Y ′ �∀∃ Y .

The new antichain algorithm [1], which we call AC’, is similar
to AC, but the antichain is now taken w.r.t. the new preorder v�.
Formally, let & : P(S × P(S)) → P(S × P(S)) be the function
defined for all relations T ⊆ S × P(S), as

&T = {(x, Y ) | x �∀∃ Y , or

∃(x′, Y ′) ∈ T s.t. (x′, Y ′) v� (x, Y )}.

While AC consists in trying to build a simulation up to �, AC’ tries
to build a simulation up to &, i.e., it skips a pair (x, Y ) if either (a)
it is subsumed by another pair of the antichain or (b) x �∀∃ Y .

Theorem 5. Any simulation up to & is contained in a simulation.

Corollary 4. The antichain algorithm proposed in [1] is sound and
complete: for all sets X,Y , [[X]] ⊆ [[Y ]] iff AC’(X,Y ).

Optimisation 1(a) and optimisation 1(b) in [1] are simply (a) and
(b), as discussed above. Another optimisation, called Optimisation
2, is presented in [1]: if y1 � y2 and y1, y2 ∈ Y for some pair
(x, Y ), then y1 can be safely removed from Y . Note that while
this is useful to store smaller sets, it does not allow one to explore
less, since the pairs encountered with or without optimisation 2 are
always equivalent w.r.t. the ordering v�: Y �∀∃ Y \ y1 and, for
all a ∈ A, t]a(Y ) �∀∃ t]a(Y \ y1).

5.2 HKC with similarity: HKC’
Although HKC is primarily designed to check language equivalence,
we can also extend it to exploit the similarity preorder. It suffices to
notice that for any similarity pair x � y, we have x+y ∼ y.

Let� denote the relation {(x+y, y) | x � y}, let r′ denote the
constant to � function, and let c′ = (r′∪s∪t∪u∪id)ω . Accord-
ingly, we call HKC’ the algorithm obtained from HKC (Figure 4) by
replacing (X,Y ) ∈ c(R ∪ todo) with (X,Y ) ∈ c′(R ∪ todo)
in step 3.2. Notice that the latter test can be reduced to rewriting
thanks to Theorem 3 and the following lemma.

Lemma 11. For all relations R, c′(R) = c(R ∪ �).

In other words to check whether (X,Y ) ∈ c′(R ∪ todo), it
suffices to compute the normal forms of X and Y w.r.t. the rules
from R ∪ todo plus the rules x+ y ← y for all x � y.

Theorem 6. Any bisimulation up to c′ is contained in a bisimula-
tion.

Proof. Consider the constant function r′′ : P(P(S) × P(S)) →
P(P(S)×P(S)) mapping all relations to∼. Since language equiv-
alence (∼) is a bisimulation, we immediately obtain that this func-
tion is compatible. Thus so is the function c′′ = (r′′∪s∪t∪u∪id)ω .
We have that � is contained in ∼, so that any bisimulation up to c′

is a bisimulation up to c′′. Since c′′ is compatible, such a relation
is contained in a bisimulation, by Proposition 3.

Note that in the above proof, we can replace� by any other relation
contained in ∼. Intuitively, bisimulations up to c′′ correspond to
classical bisimulations up to bisimilarity [24] from concurrency.

Corollary 5. For all sets X,Y , we have X ∼ Y iff HKC’(X,Y ).

5.3 Relationship between HKC’ and AC’

Like in Section 4.2.1, we can show that for any simulation up to &
there exists a corresponding bisimulation up to c′, of the same size.

Lemma 12. For all relations T ⊆ S × P(S), &̂T ⊆ c′(T̂ ).

Proposition 7. If T is a simulation up to &, then T̂ is a bisimula-
tion up to c′.
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x
a //a,b :: x1

a,b // · · ·
a,b // xn

a

kk

y
b //a,b :: y1

a,b // · · ·
a,b // yn

c

kk

z
a,b //a,b :: z1

a,b // · · ·
a,b // zn

a,b

kk

x � z
x1 � z1

...
xn � zn

Figure 6. Family of examples where HKC’ exponentially improves
over AC’, for inclusion of disjoint automata: we have [[z]] ⊆ [[x+y]].

However, even for checking inclusion of disjoint automata, AC’
cannot mimic HKC’, because now the similarity relation allows one
to exploit transitivity. To see this, consider the example given in
Figure 6, where we want to check that [[z]] ⊆ [[x + y]], and for
which the similarity relation is shown on the right-hand side.

Since this is an inclusion of disjoint automata, HKC and AC,
which do not exploit similarity, behave the same (cf. Sections 4.2.1
and 4.2.2). Actually, they also behave like HK and they require
2n+1−1 pairs. On the contrary, the use of similarity allows HKC’
to prove the inclusion with only 2n + 1 pairs, by computing the
following bisimulation up to c′ (Lemma 19 in Appendix E):

R′′ = {(z+x+y, x+y)}
∪ {(Zi+1+Xi+y+yi+1, Xi+y+yi+1) | i < n}
∪ {(Zi+1+Xi+1+y, Xi+1+y) | i < n} ,

where Xi = x+x1+ . . .+xi and Zi = z+z1+ . . .+zi.
Like in Section 4.2.4, to see that this is a bisimulation up to

c′ (where we do exploit similarity), consider the pair obtained
after reading the word ab: (Z2+x+y+x2+y1, x+y+x2+y1).
This pair does not belong to R′′ or c(R′′), but it does belong to
c′(R′′). Indeed, by Lemmas 7 and 11, this pair belong to c′(R′′) iff
Z2 ⊆ (x+y+x2+y1)↓R′′∪� , and we have

x+y+x2+y1

 R′′∪� Z1+x+y+y1+x2 (Z1+x+y+y1 R
′′ x+y+y1)

 R′′∪� Z1+X1+y+y1+x2 = Z1+X2+y+y1 (x1 � z1)

 R′′∪� Z2+X2+y+y1+x2 (Z2+X2+y R
′′ X2+y)

On the contrary, AC’ is not able to exploit similarity in this case,
and it behaves like AC: both of them compute the same antichain Tz
as in the example from Section 4.2.4, which has 2n+1−1 elements.

In fact, even when considering inclusion of disjoint automata,
the use of similarity tends to virtually merge states, so that HKC’
can use the up to transitivity technique which AC and AC’ lack.

5.4 A short recap
Figure 7 summarises the relationship amongst the presented algo-
rithms, in the general case and in the special case of language in-
clusion of disjoint automata. In this diagram, an arrow X→Y (from
an algorithm X to Y) means that (a) Y can explore less states than X,
and (b) Y can mimic X, i.e., the proof technique of Y is at least as
powerful as the one of X. (The labels on the arrows point to the sec-
tions showing these relations; unlabelled arrows are not illustrated
in this paper, they are easily inferred from what we have shown.)

6. Experimental assessment
To get an intuition of the average behaviour of HKC on various NFA,
and to compare it with HK and AC, we provide some benchmarks on
random automata and on automata obtained from model-checking
problems. In both cases, we conduct the experiments on a MacBook
pro 2.4GHz Intel Core i7, with 4GB of memory, running OS X

General case Disjoint inclusion case

HKC’

HKC

(5) 88

AC’

(5.3)ee

HK

(3) 99

AC

(4.2)ff (5) 99

Naive

(2.4)ee 88

HKC’

AC’

(5.3)
OO

HKC↔ AC (4.2.2)

OO

HK↔ Naive

OO

Figure 7. Relationship between the various algorithms.

Lion (10.7.4). We use our OCaml implementation for HK, HKC, and
HKC’ [6], and the libvataC++ library for AC and AC’ [20]. (To our
knowledge, libvata is the most efficient implementation currently
available for the antichain algorithms.)

6.1 Random automata
For a given size n, we generate a thousand random NFA with n
states and two letters. According to [31], we use a linear transi-
tion density of 1.25 (which means that the expected out-degree of
each state and with respect to each letter is 1.25): Tabakov and
Vardi empirically showed that one statistically gets more challeng-
ing NFA with this particular value. We generate NFA without ac-
cepting states: by doing so, we make sure that the algorithms never
encounter a counter-example, so that they always continue until
they find a (bi)simulation up to: these runs correspond to their worst
cases for all possible choices of accepting states for the given NFA.2

We run all algorithms on these NFA, starting from two distinct
singleton sets, to measure the required time and the number of
processed pairs: for HK, HKC, and HKC’, this is the number of pairs
put into the bisimulation up to (R); for AC and AC’, this is the
number of pairs inserted into the antichain. The timings for HKC’
and AC’ do not include the time required to compute similarity.

We report the median values (50%), the last deciles (90%), the
last percentiles (99%), and the maximum values (100%) in Table 1.
For instance, for n = 70, 90% of the examples require less than
155ms with HK; equivalently, 10% of the examples require more
than 155ms. (For a few tests, libvata ran out of memory, whence
the ∞ symbols in the table.) We also plotted on Figure 8 the
distribution of the number of processed pairs when n = 100.

HKC and AC are several orders of magnitude better than HK, and
HKC is usually two to ten times faster than AC. Moreover, for the
first four lines, HKC is much more predictable than AC, i.e., the last
percentiles and maximal values are of the same order as the median
value. (AC seems to become more predictable for larger values of
n.) The same relative behaviour can be observed between HKC’ and
AC’; moreover, HKC alone is apparently faster than AC’.

Also recall that the size of the relations generated by HK is a
lower bound for the number of accessible states of the determinised
NFA (Lemma 6 (2)); one can thus see in Table 1 that HKC usually
explores an extremely small portion of these DFA (e.g., less than
one per thousand for n = 100). The last column reports the median
size of the minimal DFA for the corresponding parameters, as given
in [31]. HK usually explores much many states than what would be
necessary with a minimal DFA, while HKC and AC need much less.

6.2 Automata from model-checking
Checking language inclusion of NFA can be useful for model-
checking, where one sometimes has to compute a sequence of NFA

2 To get this behaviour for AC and AC’, we actually had to trick libvata,
which otherwise starts by removing non-coaccessible states, and thus re-
duces any of these NFA to the empty one.
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required time (seconds) number of processed pairs mDFA size
n = |S| algo. 50% 90% 99% 100% 50% 90% 99% 100% 50%

50

HK 0.007 0.022 0.050 0.119 2511 6299 12506 25272

∼1000
AC 0.002 0.003 0.142 1.083 112 245 2130 5208
HKC 0.000 0.000 0.000 0.000 21 26 32 63
AC’ 0.002 0.002 0.038 0.211 79 131 1098 1926
HKC’ 0.000 0.000 0.000 0.000 18 23 28 58

70

HK 0.047 0.155 0.413 0.740 10479 28186 58782 87055

∼6000
AC 0.002 0.003 1.492 4.163 150 285 8383 15575
HKC 0.000 0.000 0.000 0.000 27 34 40 49
AC’ 0.002 0.003 0.320 0.884 110 172 3017 6096
HKC’ 0.000 0.000 0.000 0.000 23 29 36 44

100

HK 0.373 1.207 3.435 5.660 58454 164857 361227 471727

∼30000
AC 0.003 0.004 3.214 36.990 204 298 13801 48059
HKC 0.000 0.000 0.000 0.001 36 44 54 70
AC’ 0.003 0.004 0.738 6.966 152 211 4087 18455
HKC’ 0.000 0.000 0.000 0.001 31 39 46 64

300

AC 0.009 0.010 0.028 0.750 562 622 2232 14655

–HKC 0.001 0.002 0.003 0.009 86 104 118 132
AC’ 0.012 0.013 0.022 0.970 433 484 920 14160
HKC’ 0.001 0.001 0.002 0.006 76 91 104 116

500

AC 0.014 0.015 0.039 ∞ 918 986 2571 ∞
–HKC 0.002 0.005 0.008 0.018 130 154 176 193

AC’ 0.025 0.028 0.042 ∞ 710 772 1182 ∞
HKC’ 0.002 0.004 0.007 0.013 115 136 154 169

1000

AC 0.029 0.031 0.038 ∞ 1808 1878 2282 ∞
–HKC 0.007 0.022 0.055 0.093 228 271 304 337

AC’ 0.074 0.080 0.092 ∞ 1409 1488 1647 ∞
HKC’ 0.008 0.019 0.041 0.077 202 238 265 299

Table 1. Running the five presented algorithms to check language equivalence on random NFA with two letters.
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Figure 8. Distributions of the number of processed pairs, for the
1000 NFA with 100 states and 2 letters from Table 1.

by iteratively applying a transducer, until a fixpoint is reached [7].
To know that the fixpoint is reached, one typically has to check
whether an NFA is contained in another one.

Abdulla et al. [1] use such benchmarks to test their algorithm
(AC’) against the plain antichain algorithm (AC [33]). We reuse
them to test HKC’ against AC’ in a concrete scenario. We take
the sequences of automata kindly provided by L. Holik, which
roughly corresponds to those used in [1] and which come from the
model checking of various programs (the bakery algorithm, bubble
sort, and a producer-consumer system). For all these sequences,
we check the inclusions of consecutive pairs, in both directions.
We separate the results into those for which a counter-example is
found, and those for which the inclusion holds. We skip the trivial
inclusions which hold by similarity (�∀∃), and for which both HKC’
and AC’ stop immediately.

The results are given in Table 2. Even though these are inclu-
sions of disjoint automata, HKC’ is faster than AC’ on these ex-
amples: up to transitivity can be exploited thanks to the similarity
pairs, and larger parts of the determinised NFA can be skipped.

7. Related work
A similar notion of bisimulation up to congruence has already been
used to obtain decidability and complexity results about context-
free processes, under the name of self-bisimulations. Caucal [10]
introduced this concept to give a shorter and nicer proof of the
result by Baeten et al. [4]: bisimilarity is decidable for normed
context-free processes. Christensen et al [11] then generalised the
result to all context-free processes, also by using self-bisimulations.
Hirshfeld et al. [14] used a refinement of this notion to get a
polynomial algorithm for bisimilarity in the normed case.

There are two main differences with the ideas we presented
here. First, the above papers focus on bisimilarity rather than lan-
guage equivalence (recall that although we use bisimulation re-
lations, we check language equivalence since we work on the
determinised NFA—Remark 3). Second, we consider a notion
of bisimulation up to congruence where the congruence is taken
with respect to non-determinism (union of sets of states). Self-
bisimulations are also bisimulations up to congruence, but the con-
gruence is taken with respect to word concatenation. We cannot
consider this operation in our setting since we do not have the
corresponding monoid structure in plain NFA.

Other approaches, that are independent from the algebraic struc-
ture (e.g., monoids or semi-lattices) and the behavioural equiv-
alence (e.g., bisimilarity or language equivalence) are shown in
[5, 21, 22, 26]. These propose very general frameworks into which
our up to congruence technique fits as a very special case. To our
knowledge, bisimulation up to congruence has never been proposed
as a technique for proving language equivalence of NFA.
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required time (seconds) number of processed pairs number of tests
result algo. 50% 90% 99% 100% 50% 90% 99% 100%

counter-example AC’ 0.012 0.107 1.047 1.134 23 247 598 1352 518
HKC’ 0.001 0.005 0.025 0.383 11 24 112 290

inclusion holds AC’ 0.079 0.795 1.457 1.480 149 733 1854 3087 178
HKC’ 0.015 0.165 0.340 0.345 61 695 1076 1076

Table 2. Running HKC’ and AC’ to test language inclusion of disjoint NFA generated from model-checking.

8. Conclusions and future work
We showed that the standard algorithm by Hopcroft and Karp for
checking language equivalence of DFA relies on a bisimulation up
to equivalence proof technique; this allowed us to design a new
algorithm (HKC) for the non-deterministic case, where we exploit a
novel technique called up to congruence.

We then compared HKC to the recently introduced antichain al-
gorithms [33] (AC): when checking the inclusion of disjoint au-
tomata, the two algorithms are equivalent, in all the other cases
HKC is more efficient since it can use transitivity to prune a larger
portion of the state-space.

The difference between these two approaches becomes even
more striking when considering some optimisation exploiting sim-
ilarity. Indeed, as nicely shown with AC’ [1], the antichains ap-
proach can widely benefit from the knowledge one gets by first
computing similarity. Inspired by this work, we showed that both
our proof technique (bisimulation up to congruence) and our al-
gorithm (HKC) can be easily modified to exploit similarity. The re-
sulting algorithm (HKC’) is now more efficient than AC’ even for
checking language inclusion of disjoint automata.

We provided concrete examples where HKC and HKC’ are ex-
ponentially faster than AC and AC’ (Sections 4.2.4 and 5.3) and
we proved that the coinductive techniques underlying the formers
are at least as powerful as those exploited by the latters (Proposi-
tions 5 and 7). We finally compared the algorithms experimentally,
by running them on both randomly generated automata, and au-
tomata resulting from model checking problems. It appears that for
these examples, HKC and HKC’ perform better than AC and AC’.

Finally note that our implementation of the presented algo-
rithms is available online [6], together with an applet making it
possible to test them on user-provided examples.

As future work, we plan to extend our approach to tree au-
tomata. In particular, it seems promising to investigate if further
up-to techniques can be defined for regular tree expressions. For
instance, the algorithms proposed in [3, 18] exploit some optimisa-
tion which suggest us coinductive up-to techniques.
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A. Smallest bisimulation and compositionality
In this appendix, we show some (unrelated) properties that have
been discussed through the paper, but never formally stated.

The first property concerns the relation computed by Naive(x, y).
The following proposition shows that it is the smallest bisimulation
relating x and y.

Proposition 8. Let x and y be two states of a DFA. Let RNaive

be the relation built by Naive(x, y). If Naive(x, y) = true,
then RNaive is the smallest bisimulation relating x and y, i.e.,
RNaive ⊆ R, for all bisimulations R such that (x, y) ∈ R.

Proof. We have already shown in Proposition 2 that RNaive is a
bisimulation. We need to prove that it is the smallest. Let R be a
bisimulation such that (x, y) ∈ R. For all words w ∈ A∗ and pair
of states (x′, y′) such that x w→ x′ and y w→ y′, it must hold that
(x′, y′) ∈ R (by definition of bisimulation).

By construction, for all (x′, y′) ∈ RNaive there exists a word
w ∈ A∗, such that x w→ x′ and y w→ y′. Therefore all the pairs in
RNaive must be also in R, that is RNaive ⊆ R.

The second property is

[[X + Y ]] = [[X]] + [[Y ]] ,

which we have used in the Introduction to give an intuition of
bisimulation up to context and to show that the problem of lan-
guage inclusion can be reduced to language equivalence. We be-
lieve that this property is interesting, since it follows from the cate-
gorical observation made in [30] that determinised NFA are bialge-
bras [32], like CCS processes. For this reason, we prove here that
[[−]] : P(S)→ 2A

∗
is a semi-lattice homomorphism.

Theorem 7. Let (S, o, t) be a non-deterministic automaton and
(P(S), o], t]) be the corresponding deterministic automaton ob-
tained through the powerset construction. The function [[−]] : P(S)→
2A
∗

is a semi-lattice homomorphism, that is, for all X1, X2 ∈
P(S),

[[X1 +X2]] = [[X1]] + [[X2]] and [[0]] = 0 .

Proof. We prove that for all words w ∈ A∗, [[X1 + X2]](w) =
[[X1]](w) + [[X2]](w), by induction on w.

• for ε, we have:

[[X1 +X2]](ε) = o](X1 +X2)

= o](X1) + o](X2) = [[X1]](ε) + [[X2]](ε) .

• for a · w, we have:

[[X1 +X2]](a · w)
= [[t]a(X1 +X2)]](w) (by definition)

= [[t]a(X1) + t]a(X2)]](w) (by definition)

= [[t]a(X1)]](w) + [[t]a(X2)]](w) (by induction hypothesis)
= [[X1]](a · w) + [[X2]](a · w) . (by definition)

For the second part, we prove that for all words w ∈ A∗, [[0]](w) =
0, again by induction on w. Base case: [[0]](ε) = o](0) = 0.
Inductive case: [[0]](a · w) = [[t]a(0)]](w) = [[0]](w) that by
induction hypothesis is 0.

B. Proofs of Section 2

Proposition 1. Two states are language equivalent iff there exists a
bisimulation that relates them.

Proof. Let R[[−]] be the relation {(x, y) | [[x]] = [[y]]}. We
prove that R[[−]] is a bisimulation. If x R[[−]] y, then o(x) =
[[x]](ε) = [[y]](ε) = o(y). Moreover, for all a ∈ A and w ∈ A∗,
[[ta(x)]](w) = [[x]](a · w) = [[y]](a · w) = [[ta(y)]](w) that means
[[ta(x)]] = [[ta(y)]], that is ta(x) R[[−]] ta(y).

We now prove the other direction. Let R be a bisimulation.
We want to prove that x R y entails [[x]] = [[y]], i.e., for all
w ∈ A∗, [[x]](w) = [[y]](w). We proceed by induction on w.
For w = ε, we have [[x]](ε) = o(x) = o(y) = [[y]](ε). For
w = a · w′, since R is a bisimulation, we have ta(x) R ta(y)
and thus [[ta(x)]](w′) = [[ta(y)]](w

′) by induction. This allows us
to conclude since [[x]](a · w′) = [[ta(x)]](w

′) and [[y]](a · w′) =
[[ta(y)]](w

′).

Lemma 1. The following functions are compatible:

id: the identity function;

f ◦ g: the composition of compatible functions f and g;⋃
F : the pointwise union of an arbitrary family F of compatible

functions:
⋃
F (R) =

⋃
f∈F f(R);

fω: the (omega) iteration of a compatible function f .

Proof. The first two points are straightforward;
For the third one, assume that F is a family of compatible

functions. Suppose that R� R′; for all f ∈ F , we have f(R)�
f(R′) so that

⋃
f∈F f(R)�

⋃
f∈F f(R

′).
For the last one, assume that f is compatible; for all n, fn is

compatible because (a) f0 = id is compatible (by the first point)
and (b) fn+1 = f ◦ fn is compatible (by the second point and
induction hypothesis). By definition fω =

⋃
n f

n and thus, by the
third point, fω is compatible.

Lemma 2. The following functions are compatible:

• the constant reflexive function: r(R) = {(x, x) | ∀x ∈ S};
• the converse function: s(R) = {(y, x) | x R y};
• the squaring function: t(R) = {(x, z) | ∃y, x R y R z}.

Proof. r: observe that the identity relation Id = {(x, x) | ∀x ∈
S} is always a bisimulation, i.e., Id � Id. Thus for all R,R′

r(R) = Id� Id = r(R′).
s: observe that the definition of progression is completely sym-

metric. Therefore, if R� R′, then s(R)� s(R′).
t: assume that R � R′. For each (x, z) ∈ t(R), there ex-

ists y such that (x, y) ∈ R and (y, z) ∈ R. By assump-
tion, (1) o′(x) = o′(y) = o′(z) and (2) for all a ∈ A,
t′a(x)R

′ t′a(y)R
′ t′a(z), that is t′a(x) t(R′) t′a(z).
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C. Proofs of Section 3

Lemma 4. For all relations R, the relation R is convergent.

Proof. We have that Z  R Z′ implies |Z′| > |Z|, where |X|
denotes the cardinality of the set X (note that  R is irreflexive).
Since |Z′| is bounded by |S|, the number of states of the NFA,
the relation  R is strongly normalising. We can also check that
whenever Z  R Z1 and Z  R Z2, either Z1 = Z2 or there is
some Z′ such that Z1  R Z′ and Z2  R Z′. Therefore, R is
convergent.

Lemma 13. The relation R is contained in c(R).

Proof. If Z  R Z′ then there exists (X,Y ) ∈ (s ∪ id)(R) such
that Z = Z+X and Z′ = Z+Y . Therefore Z c(R) Z′ and, thus,
 R is contained in c(R).

Lemma 14. Let X,Y ∈ P(S), we have (X + Y )↓R = (X↓R +
Y ↓R)↓R.

Proof. Follows from confluence (Lemma 4) and from the fact that
for all Z,Z′, U , Z  R Z

′ entails U + Z  =
R U + Z′.

Theorem 3. For all relations R, and for all X,Y ∈ P(S), we have
X↓R = Y ↓R iff (X,Y ) ∈ c(R).

Proof. From right to left. We proceed by induction on the deriva-
tion of (X,Y ) ∈ c(R). The cases for rules r, s, and t are straight-
forward. For rule id, suppose that X R Y , we have to show
X↓R = Y ↓R:

• if X = Y , we are done;
• if X ( Y , then X  R X + Y = Y ;
• if Y ( X , then Y  R X + Y = X;
• if neither Y ⊆ X nor X ⊆ Y , then X,Y  R X + Y .

(In the last three cases, we conclude by confluence—Lemma 4.)
For rule u, suppose by induction that Xi↓R = Yi↓R for i ∈ 1, 2;
we have to show that (X1 + Y1)↓R = (X2 + Y2)↓R. This follows
by Lemma 14.
From left to right. By Lemma 13, we have X c(R) X↓R for any
set X , so that X c(R) X↓R = Y ↓R c(R) Y .

Lemma 5. The three algorithms require at most 1+v·|R| iterations,
where |R| is the size of the produced relation; moreover, this bound
is reached whenever they return true.

Proof. At each iteration, one pair is extracted from todo. The latter
contains one pair before entering the loop and v pairs are added to
it every time that a pair is added to R.

Lemma 15. Let x and y be two states of a DFA. LetRNaive andRHK

be relations computed by Naive(x, y) and HK(x, y), respectively.
If Naive(x, y) = HK(x, y) = true, then e(RNaive) = e(RHK).

Proof. By the proof of Proposition 3, eω(RHK) is a bisimulation.
Since e is idempotent, we have eω = e and thus e(RHK) is a
bisimulation; we can thus deduce by Proposition 8 that RNaive ⊆
e(RHK). Moreover, by definition of the algorithms, we have RHK ⊆
RNaive. Summarising,

RHK ⊆ RNaive ⊆ e(RHK)

It follows that e(RHK) = e(RNaive), e being monotonic and idem-
potent.

Lemma 6. LetRNaive,RHK, andRHKC denote the relations produced
by the three algorithms. We have

|RHKC|, |RHK| ≤ m |RNaive| ≤ m2 , (2)

where m ≤ 2n is the number of accessible states in the deter-
minised NFA and n is the number of states of the NFA. If the algo-
rithms returned true, we moreover have

|RHKC| ≤ |RHK| ≤ |RNaive| . (3)

Proof. For the first point, let PS denote the set of (determinised
NFA) states accessible from the two starting states, so that m =
|PS| ≤ 2n. Since RNaive ⊆ PS×PS, we deduce |RNaive| ≤ m2.
Since each pair added to RHK merges two distinct equivalence
classes in e(RHK), we necessarily have |RHK| ≤ m (the largest
partition of PS has exactly m singletons). Similarly, each pair
added to RHKC merges at least two distinct equivalence classes in
c(RHK), so that we also have |RHKC| ≤ m.

For the second point, |RHK| ≤ |RNaive| follows from the fact that
RHK ⊆ RNaive, by definition of the algorithms. The other inequality
is less obvious.

By construction, RHKC ⊆ RNaive and, since e is monotonic,
e(RHKC) ⊆ e(RNaive) = e(RHK) (the latter equality is given by
Proposition 15). In particular, there are more equivalence classes
in e(RHKC) than in e(RHK); using the same argument as above, we
deduce that |RHKC| ≤ |RHK|.

Lemma 8. Let X,Y be two sets of states; let R⊆ and R⊇ be the
relations computed by HKC(X+Y, Y ) and HKC(X+Y,X), respec-
tively. If R⊆ and R⊇ are bisimulations up to congruence, then the
following relation is a bisimulation up to congruence:

R= = {(X ′, Y ′) | (X ′+Y ′, Y ′) ∈ R⊆ or (X ′+Y ′, X ′) ∈ R⊇}.

Proof. Let (X ′, Y ′) ∈ R= and suppose that (X ′+Y ′, Y ′) ∈ R⊆
(the other case is symmetric).

First notice that all pairs in R⊇ necessarily have the shape
(t]w(X+Y ), t]w(X)), for some word w. Since R⊇ is a bisimula-
tion up to congruence, c(R⊇) is a bisimulation. Since (X+Y,X) ∈
c(R⊇) then, for all words w, (t]w(X+Y ), t]w(X)) ∈ c(R⊇)
and thus (X ′+Y ′, X ′) ∈ c(R⊇) (we have X ′ = t]w(X) and
Y ′ = t]w(Y ) for some word w).

Since c(R⊆) and c(R⊇) are bisimulations containing (X ′+Y ′, Y ′)
and (X ′+Y ′, X ′), it holds that:

1. o](X ′) = o](X ′ + Y ′) = o](Y ′);
2. for all a, t]a(X ′ + Y ′) c(R⊇) t

]
a(X

′) and t]a(X ′ + Y ′) c(R⊆)
t]a(Y

′).

By Lemma 7, t]a(Y ′) ⊆ t]a(X
′)↓R⊇ and X ′ ⊆ t]a(Y

′)↓R⊆ and
since all the rewriting rules for R⊆ and R⊇ are also rewriting rules
for R=, then t]a(Y ′) ⊆ t]a(X

′)↓R= and t]a(X ′) ⊆ t]a(Y
′)↓R= .

By the first observation in the proof of Lemma 7, this means that
t]a(X

′) c(R=) t
]
a(Y

′).

D. Proofs of Section 4

Proposition 4. For all sets X,Y , we have [[X]] ⊆ [[Y ]] iff there
exists a simulation T such that for all x ∈ X , x T Y .
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Proof. Let T[[−]] be the relation {(x, Y ) | [[x]] ⊆ [[Y ]]}. We prove
that T[[−]] is a simulation. If x T[[−]] Y , then o(x) = [[x]](ε) ≤
[[Y ]](ε) = o](Y ). Moreover, for all a ∈ A x′ ∈ ta(x) andw ∈ A∗,
[[x′]](w) ⊆ [[x]](a · w) ⊆ [[Y ]](a · w) = [[t]a(Y )]](w) that means
[[x′]] ⊆ [[t]a(Y )]], that is ta(x) T[[−]] t

]
a(Y ).

We now prove the other direction. Let T be a simulation. We
want to prove that x T Y entails [[x]] ⊆ [[Y ]], i.e., for all w ∈ A∗,
[[x]](w) ≤ [[Y ]](w). We proceed by induction on w. For w = ε, we
have [[x]](ε) = o(x) ≤ o](Y ) = [[Y ]](ε). For w = a · w′, since T
is a simulation, we have ta(x) T t]a(Y ) and thus [[ta(x)]](w

′) ≤
[[t]a(Y )]](w′) by induction. This allows us to conclude since [[x]](a ·
w′) = [[ta(x)]](w

′) and [[y]](a · w′) = [[t]a(y)]](w
′).

Definition 10. A function f : P(S×P(S))→ P(S×P(S)) is s-
compatible if is monotone and for all relations T, T ′ ⊆ S×P(S),
T �s T

′ entails f(T )�s f(T
′).

Lemma 16. Any simulation T up to an s-compatible function f
(T �s f(T )) is contained in a simulation, namely fω(T ).

Proof. Same proof as for Proposition 3.

Lemma 17. The upward closure function � is s-compatible.

Proof. We assume that T �s T
′ and we prove that �T �s �T ′.

If x �T Y , then ∃Y ′ ⊆ Y such that x T Y ′. Since Y ′ ⊆ Y ,
o](Y ′) ≤ o](Y ) and t]a(Y

′) ⊆ t]a(Y ) for all a ∈ A. Since
T �s T ′ and x T Y ′, then o(x) ≤ o](Y ′) ≤ o](Y ) and
ta(x) �T ′ t]a(Y ) for all a ∈ A.

Theorem 4. Any simulation up to � is contained in a simulation.

Proof. By Lemmas 16 and 17.

Lemma 18. The relation

R′ = {(x+ y, z)}
+ {(x+ Yi + yi+1, Zi+1) | i < n}
+ {(x+ Yi + xi+1, Zi+1) | i < n}

is a bisimulation up to congruence for the NFA in Fig. 5.

Proof. First notice that

X1 + y c(R′) x+ Y1 c(R′) Z1

We then consider each kind of pair of R′ separately:

• (x, y): we have o](x + y) = 0 = o](z) and t]a(x + y) =
X1 + y R′ Z1 = t]a(z) and, similarly, t]b(x+ y) = x+ Y1 R

′

Z1 = t]b(z).
• (x+Yi+yi+1, Zi+1): both members are accepting iff i+1 =
n; setting j = min(i+ 2, n), we have

t]a(x+ Yi + yi+1) =X1 + y + y2 + · · ·+ yj

c(R′) x+ Y1 + y2 + · · ·+ yj

= x+ Yj R
′ Zj = t]a(Zi+1)

and

t]b(x+ Yi + yi+1) = x+ Yj R
′ Zj = t]b(Zi+1)

• (x+Yi+xi+1, Zi+1): both members are accepting iff i+1 =
n; if i+ 1 < n then we have:

t]a(x+ Yi + xi+1) =X1 + y + y2 + · · ·+ yi+1 + xi+2

c(R′) x+ Y1 + y2 + · · ·+ yi+1 + xi+2

= x+ Yi+1 + xi+2

R′ Zi+2 = t]a(Zi+1)

and

t]b(x+ Yi + xi+1) = x+ Yi+1 + xi+2 R
′ Zi+2 = t]b(Zi+1)

otherwise, i.e., i+ 1 = n, notice that:

x+ Yn + xn c(R
′) Zn + yn

c(R′) x+ Yn + yn = x+ Yn

c(R′) Zn = t]a(Zn) ,

from which we deduce:

t]a(x+ Yi + xn) =X1 + y + y2 + · · ·+ yn + xn

c(R′) x+ Y1 + y2 + · · ·+ yn + xn

= x+ Yn + xn c(R
′) t]a(Zn)

and

t]b(x+ Yi + xn) = x+ Yn + xn c(R
′) t]a(Zn)

E. Proofs of Section 5

Theorem 5. Any simulation up to & is contained in a simulation.

Proof. By Lemma 16, it suffices to show that & is s-compatible.
Suppose that T �s T ′, we have to show that &T �s &T ′.
Assume that x &T Y .

• if x �∀∃ Y then x � y for some y ∈ Y . Therefore, we have
o(x) ≤ o(y) ≤ o](Y ) and for all a ∈ A, x′ ∈ ta(x), we
have some y′ ∈ ta(y) with x′ � y′. Since ta(y) ⊆ t]a(Y ), we
deduce x′ �∀∃ t]a(Y ), and hence x′ &T ′ t]a(Y ), as required.
• otherwise, we have some (x′, Y ′) ∈ T such that (x′, Y ′) v�
(x, Y ), i.e., x � x′ and Y ′ �∀∃ Y . Since T �s T ′, we
have o(x) ≤ o(x′) ≤ o](Y ′) ≤ o](Y ). Now take some
x′′ ∈ ta(x), we have some x′′′ ∈ ta(x′) with x′′ � x′′′, and
since T �s T

′, we know x′′′ T ′ t]a(Y
′). It suffices to show

that t]a(Y ′) �∀∃ t]a(Y ) to conclude; this follows easily from
Y ′ �∀∃ Y and from the definition of similarity.

Lemma 11. For all relations R, c′(R) = c(R ∪ �).

Proof. The inclusion c(R ∪ �) ⊆ c′(R) is trivial. For the other
inclusion we take d = r′∪s∪t∪u∪id and we prove by induction
that for all natural numbers n, dn(R) ⊆ c(R ∪ �). For n = 0,
d0(R) = R ⊆ c(R ∪ �). For n + 1, dn+1(R) = d(dn(R)). By
induction hypothesis, dn(R) ⊆ c(R ∪�) and, by monotonicity of
d, d(dn(R)) ⊆ d(c(R ∪�)). By definition of d, the latter is equal
to c(R ∪ �).

Lemma 12. For all relations T ⊆ S × P(S), &̂T ⊆ c′(T̂ ).
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Proof. If (x + Y, Y ) ∈ &̂T , then either (a) x �∀∃ Y or (b)
there exists x � x′ and Y ′ �∀∃ Y such that (x′, Y ′) ∈ T . We
have to show (x+Y, Y ) ∈ c′(T̂ ), i.e., (x+Y, Y ) ∈ c(T̂ + �) by
Lemma 11, that is x ∈ Y ↓T̂+� by Lemma 7. For (b), we have:

Y  ?
T̂+� Y + Y ′ (Y ′ �∀∃ Y )

 T̂+� Y + Y ′ + x′ ((x′+Y ′, Y ′) ∈ T̂ )

 T̂+� Y + Y ′ + x′ + x (x � x′)

x ∈ Y ↓T̂+� follows by confluence (Lemma 4). For (a), we
immediately have that Y  T̂+� Y + x.

Proposition 7. If T is a simulation up to &, then T̂ is a bisimulation
up to c′.

Proof. First observe that if T �s T
′, then T̂ � uω(T̂ ′). There-

fore, if T �s �T , then T̂ � uω(�̂T ). By Lemma 12, T̂ �
uω(c′(T̂ )) = c′(T̂ ).

Lemma 19. The relation

R′′ = {(z+x+y, x+y)}
∪ {(Zi+1+Xi+y+yi+1, Xi+y+yi+1) | i < n}
∪ {(Zi+1+Xi+1+y, Xi+1+y) | i < n} ,

is a bisimulation up to c′ for the NFA in Figure 6.

Proof. Let X ′i be the set Xi without x1 and note that Xi
a→ Xi+1

and Xi
b→ X ′i+1. First we observe that for all i,

X ′i + Y1  R′′∪� X
′
i + Y1 + Z1  R′′∪� X

′
i + Y1 + Z1 + x1

where the first reduction is given by (Z1 +X0 + y+ y1, X0 + y+
y1) ∈ R′′ and the second by x1 � z1. Since X ′i + x1 = Xi, then
one can apply the third kind of pairs in R′′, so that

X ′i + Y1  
∗
R′′∪� Xi + Y1 + Zi

that is Zi ⊆ (X ′i + Y1)↓R′′∪�. By Lemmas 7 and 11, this means
that

Zi +X ′i + Y1 c
′(R′′) X ′i + Y1 (2)

If we moreover have yi+1, we can apply the second kind of pair
in R′′ and obtain

X ′i + Y1 + yi+1  
∗
R′′∪� Xi + Y1 + Zi+1 + yi+1

that is

Zi+1 +X ′i + Y1 + yi+1 c
′(R′′) X ′i + Y1 + yi+1 (3)

With (2) and (3), it is easy to prove that R′′ is a bisimulation up
to c′, by simply proceeding by cases:

• (z+x+y, x+y): we have o](x+y+z) = 0 = o](x+y) and
t]a(x+y+z) = Z1+X1+y R′′ X1 + y = t]a(x+y) and,
similarly, t]b(x+y+z) = Z1+x+Y1 R

′′ x+Y1 = t]b(z).
• (Zi+1+Xi+y+yi+1, Xi+y+yi+1) and i < n − 1: both

members are not accepting;

t]a(Zi+1+Xi+y+yi+1) = Zi+2+Xi+1+y+yi+2

R′′ Xi+1+y+yi+2

= t]a(Xi+y+yi+1)

and

t]b(Zi+1+Xi+y+yi+1) = Zi+2+X
′
i+1+Y1+yi+2

c′(R′′)X ′i+1+Y1+yi+2

= t]b(Xi+y+yi+1)

• (Zn+Xn−1+y+yn, Xn−1+y+yn) and i = n − 1: both
members are accepting;

t]a(Zn+Xn−1+y+yn) = Zn+Xn+y

R′′ Xn+y

= t]a(Xn−1+y+yn)

and

t]b(Zn+Xn−1+y+yn) = Zn+X
′
n+Y1

c′(R′′)X ′n+Y1

= t]b(Xn−1+y+yn)

• (Zi+1+Xi+1+y, Xi+1+y) and i < n− 1: both members are
not accepting;

t]a(Zi+1+Xi+1+y) = Zi+2+Xi+2+y

R′′ Xi+2+y

= t]a(Xi+1+y)

and

t]b(Zi+1+Xi+1+y) = Zi+2+X
′
i+2+Y1

c(R′′)X ′i+2+Y1

= t]b(Xi+1+y)

• (Zn+Xn+y, Xn+y): both members are accepting; Moreover,

t]a(Zn+Xn+y) = Zn+Xn+y

R′′ Xn+y = t]a(Xn+y)

and

t]b(Zn+Xn+y) = Zn+X
′
n+Y1

c(R′′)X ′n+Y1

= t]b(Xn+y)

The cases for the letter c are always trivial since Zi
c→ 0.
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