
Checking NFA equivalence
with bisimulations up to congruence

Filippo Bonchi
CNRS, ENS Lyon, Université de Lyon, LIP (UMR 5668)

Damien Pous
CNRS, Université de Grenoble, LIG (UMR 5217)

Abstract—We introduce bisimulation up to congruence as a
technique for proving language equivalence of non-deterministic
finite automata. Exploiting this technique, we devise an optimi-
sation of the classical algorithm by Hopcroft and Karp [13] that,
instead of computing the whole determinised automata, explores
only a small portion of it. Although the optimised algorithm
remains exponential in worst case (the problem is PSPACE-
complete), experimental results show improvements of several
orders of magnitude over the standard algorithm.

I. INTRODUCTION

Checking language equivalence of finite automata is a clas-
sical problem in computer science, which finds applications
in many fields ranging from compilers construction to model
checking.

Equivalence of deterministic finite automata (DFA) can be
checked either via minimisation [12], [7] or through Hopcroft
and Karp’s algorithm [13], [2], which exploits an instance of
what is nowadays called a coinduction proof principle [19],
[25], [23]: two states recognise the same language if and
only if there exists a bisimulation relating them. In order to
check the equivalence of two given states, Hopcroft and Karp’s
algorithm creates a relation containing them and tries to build
a bisimulation by adding pairs of states to this relation: if it
succeeds then the two states are equivalent, otherwise they are
different.

On the one hand, minimisation algorithms have the advan-
tage of checking the equivalence of all the states at once
(while Hopcroft and Karp’s algorithm only check a given
pair of states). On the other hand, they have the disadvantage
of needing the whole automata from the beginning1, while
Hopcroft and Karp’s algorithm can be executed “on-the-
fly” [10], on a lazy DFA whose transitions are computed on
demand.

This difference is fundamental for our work and for other
recently introduced algorithms based on antichains [30], [1].
Indeed, when starting from non-deterministic finite automata
(NFA), the powerset construction used to get deterministic
automata induces an exponential factor. In contrast, the al-
gorithm we introduce in this work for checking equivalence
of NFA (as well as those in [30], [1]) usually does not build
the whole deterministic automaton, but just a small part of it.
We write “usually” because in few bad cases, the algorithm
still needs exponentially many states of the DFA (otherwise we

1There are few exceptions, like [15] which minimises labelled transition
systems w.r.t. bisimilarity rather than trace equivalence.

would have solved in polynomial time the problem of language
equivalence, which is PSPACE-complete [18]).

Our algorithm is grounded on a simple observation on
determinised NFA: for all sets X and Y of states of the original
NFA, the union (written +) of the language recognised by X
(written [[X]]) and the language recognised by Y ([[Y]]) is equal
to the language recognised by the union of X and Y ([[X+Y]]).
In symbols:

[[X + Y]] = [[X]] + [[Y]] (1)

This fact leads us to introduce a sound and complete proof
technique for language equivalence, namely bisimulation up
to context, that exploits both induction (on the operator +)
and coinduction: if a bisimulation R equates both the (sets of)
states X1, Y1 and X2, Y2, then [[X1]] = [[Y1]] and [[X2]] = [[Y2]]
and, by (1), we can immediately conclude that also X1 +X2

and Y1+Y2 are language equivalent. Intuitively, bisimulations
up to context are bisimulations which do not need to relate
X1 +X2 and Y1 + Y2 when X1 (resp. X2) and Y1 (resp. Y2)
are already related.

To better illustrate this idea, consider the following example,
where we check the equivalence of the states x and u from
the NFA depicted below. (Final states are overlined, labelled
edges represent transitions.)

x

a

��
z

a
oo

a ''
y

a
ff u

a ((

a

��
w

a
gg v

a
oo

The determinised automaton is depicted below.

{x} a //

1

{y} a //

2

{z} a //

3

{x, y} a //

4

{y, z} a //

5

{x, y, z}

a

GG

6

{u}
a
// {v, w}

a
// {u,w}

a
// {u, v, w} a

}}

Each state is a set of states of the NFA, final states are
overlined: they contain at least one final state of the NFA.
The numbered lines show a relation which is a bisimulation
containing x and u. Actually, this is the relation that is built
by the standard Hopcroft and Karp’s algorithm (the numbers
express the order in which pairs are added).

The dashed lines (numbered by 1, 2 and 3) form a smaller
relation which is not a bisimulation, but a bisimulation up to
context: the equivalence of states {x, y} and {u, v, w} could

be immediately deduced from the fact that {x} is related to
{u} and {y} to {v, w}, without the need of further exploring
the determinised automaton.

Bisimulations up-to, and in particular bisimulations up to
context, have been introduced in the setting of concurrency
theory [19], [20], [24] as a proof technique for bisimilarity of
CCS or π-calculus processes. As far as we know, they have
never been used for proving language equivalence of NFA.

Among these techniques one should also mention bisimu-
lation up to equivalence, which, as we show in this paper, is
implicitly used in the original Hopcroft and Karp’s algorithm.
This technique can be briefly explained by noting that not all
bisimulations are equivalence relations: it might be the case
that a bisimulation relates (for instance) X and Y , Y and Z
but not X and Z. However, since [[X]] = [[Y]] and [[Y]] = [[Z]],
we can immediately conclude that X and Z recognise the
same language. Analogously to bisimulations up to context, a
bisimulation up to equivalence does not need to relate X and
Z when they are both related to some Y .

The techniques of up-to equivalence and up-to context can
be combined resulting in a powerful proof technique which
we call bisimulation up to congruence. Our algorithm is in
fact just an extension of Hopcroft and Karp’s algorithm that
attempts to build a bisimulation up to congruence instead of
a bisimulation up to equivalence.

An important consequence, when using the up to congru-
ence technique, is that we do not need to build the whole
deterministic automata, but just those states that are needed
for the bisimulation up-to. For instance, in the above NFA,
the algorithm stops after equating z and u + v and does not
build the remaining four states of the DFA. Despite their use
of the up to equivalence technique, this is not the case with
Hopcroft and Karp’s algorithm, where all accessible subsets
of the deterministic automata have to be visited at least once.

Summarising, the contributions of this work are
(1) the observation that Hopcroft and Karp implicitly use

bisimulations up to equivalence for DFA (Section II),
(2) a sound and complete proof technique for proving lan-

guage equivalence of NFA (Section III-B), and
(3) an efficient algorithm for checking language equivalence

of NFA (Sections III-C and III-D).

Outline
The rest of the paper is structured as follows. Section II

recalls Hopcroft and Karp’s algorithm for DFA, showing that it
implicitly exploits bisimulation up to equivalence. Section III
describes the novel algorithm, based on bisimulations up to
congruence. Section IV discusses its complexity as well as
experimental data showing that the algorithm usually performs
much better than the other known algorithms. Sections V
and VI provide related and future work. Omitted proofs can
be found in the appendix.

Notation
We denote sets by capital letters X,Y, S, T . . . and functions

by lower case letters f, g, . . . Given sets X and Y , X × Y is

the Cartesian product of X and Y , X]Y is the disjoint union
and XY is the set of functions f : Y → X . Finite iterations
of a function f : X → X are denoted by fn (formally,
f0(x) = x, fn+1(x) = f(fn(x))). The collection of subsets
of X is denoted by P(X). The (omega) iteration of a function
f : P(X)→ P(X) on a powerset is denoted by fω (formally,
fω(Y) =

⋃
n≥0 f

n(Y)). For a set of letters A, A? denotes the
set of all finite words over A; ε the empty word; and w1 ·w2

(and w1w2) the concatenation of words w1, w2 ∈ A?. We use
2 to denote the set {0, 1} and 2A

?

to denote the set of all
formal languages over A.

II. HOPCROFT AND KARP’S ALGORITHM FOR DFA
A deterministic finite automaton (DFA) over the input

alphabet A is a triple (S, o, t), where S is a finite set of states,
o : S → 2 is the output function, which determines if a state
x ∈ S is final (o(x) = 1) or not (o(x) = 0), and t : S → SA is
the transition function which returns, for each state x and for
each input letter a ∈ A, the next state ta(x). For a ∈ A, we
will write x a→ x′ to mean that ta(x) = x′. For w ∈ A?, we
will write x w→ x′ for the least relation such that (1) x ε→ x

and (2) x aw′→ x′ iff x a→ x′′ and x′′ w
′

→ x′.
For any DFA, there exists a function [[−]] : S → 2A

?

mapping states to languages, defined for all x ∈ S as follows:

[[x]](ε) = o(x) , [[x]](a · w) = [[ta(x)]](w) .

The language [[x]] is called the language accepted by x. Given
two automata (S1, o1, t1) and (S2, o2, t2), the states x1 ∈ S1

and x2 ∈ S2 are said to be language equivalent (written x1 ∼
x2) iff they accept they same language.

Remark 1. In the following, we will always consider the
problem of checking the equivalence of states of one single
and fixed automaton (S, o, t). We do not loose generality since
for any two automata (S1, o1, t1) and (S2, o2, t2) it is always
possible to build an automaton (S1]S2, o1] o2, t1] t2) such
that the language accepted by every state x ∈ S1] S2 is the
same as the language accepted by x in the original automaton
(Si, oi, ti). For this reason, we also work with automata
without explicit initial states: we focus on the equivalence of
two arbitrary states of a fixed DFA.

A. Proving language equivalence via coinduction

We first define bisimulation. We make explicit the underly-
ing notion of progression which we need in the sequel.

Definition 1 (Progression, Bisimulation). Given two relations
R,R′ ⊆ S×S on states, R progresses to R′, denoted R� R′,
if whenever x R y then

1) o(x) = o(y) and
2) for all a ∈ A, ta(x) R′ ta(y).

A bisimulation is a relation R such that R� R.

As expected, bisimulation is a sound and complete proof
technique for checking language equivalence of DFA:

Proposition 1 (Coinduction). Two states are language equiv-
alent iff there exists a bisimulation that relates them.

2

Naive(x, y)

(1) R is empty; todo is empty;
(2) insert (x, y) in todo;
(3) while todo is not empty, do {
(3.1) extract (x′, y′) from todo;
(3.2) if (x′, y′) ∈ R then skip;
(3.3) if o(x′) 6= o(y′) then return false;
(3.4) for all a ∈ A,

insert (ta(x
′), ta(y

′)) in todo;
(3.5) insert (x′, y′) in R;

};
(4) return true;

Figure 1. Naive algorithm for checking the equivalence of states x and y of
a DFA (S, o, t); R and todo are sets of pairs of states. The code of HK(x, y)
is obtained by replacing step 3.2 with if (x′, y′) ∈ e(R) then skip.

B. Naive algorithm

Figure 1 shows a naive version of Hopcroft and Karp’s
algorithm for checking language equivalence of the states x
and y of a deterministic finite automaton (S, o, t). Starting
from x and y, the algorithm builds a relation R that, in case
of success, is a bisimulation. In order to do that, it employs the
set (of pairs of states) todo which, intuitively, at any step of the
execution, contains the pairs (x′, y′) that must be checked: if
(x′, y′) already belongs to R, then it has already been checked
and nothing else should be done. Otherwise, the algorithm
checks if x′ and y′ have the same outputs (i.e., if both are
final or not). If o(x′) 6= o(y′), then x and y are different. If
o(x′) = o(y′), then the algorithm inserts (x′, y′) in R and, for
all a ∈ A, the pairs (ta(x

′), ta(y
′)) in todo.

For the time being, we avoid discussing which data struc-
tures are convenient for implementing R and todo (as well as
any complexity issue), and we focus on correctness.

Proposition 2. For all x, y ∈ S, x ∼ y iff Naive(x, y).

Proof: We first observe that if Naive(x, y) returns true
then the relation R that is built before arriving to step 4 is a
bisimulation. Indeed, the following proposition is an invariant
for the loop corresponding to step 3:

R� R ∪ todo

This invariant is preserved since at any iteration of the algo-
rithm, a pair (x′, y′) is removed from todo and inserted in R
after checking that o(x′) = o(y′) and adding (ta(x

′), ta(y
′))

for all a ∈ A in todo. Since todo is empty at the end of the
loop, we eventually have R � R, i.e., R is a bisimulation.
By Proposition 1, we deduce x ∼ y.

We now prove that if Naive(x, y) returns false, then x 6∼ y.
Note that for all (x′, y′) inserted in todo, there exists a word
w ∈ A? such that x w→ x′ and y

w→ y′. Since o(x′) 6= o(y′),
then [[x′]](ε) 6= [[y′]](ε) and thus [[x]](w) = [[x′]](ε) 6= [[y′]](ε) =
[[y]](w), that is x 6∼ y.

Since both Hopcroft and Karp’s algorithm and the one we
introduce in Section III are simple variations of this naive

x
a //

1

y
a
((

2

z
a

hh

3

u
a
// v

a ((
w

a

hh

x
a,b //

1

y
a,b //

2 5

z a,bdd

3

4

v

a,b
((
w

a,b

hh

u
a

77

b

<<

Figure 2. Checking for DFA equivalence.

one, it is important to illustrate its execution with an example.
Consider the DFA with input alphabet A = {a} in the left-
hand side of Figure 2, and suppose we want to check that x
and u are language equivalent.

During the initialisation, (x, u) is inserted in todo. At the
first iteration, since o(x) = 0 = o(u), (x, u) is inserted in
R and (y, v) in todo. At the second iteration, since o(y) =
1 = o(v), (y, v) is inserted in R and (z, w) in todo. At the
third iteration, since o(z) = 0 = o(w), (z, w) is inserted in
R and (y, v) in todo. At the fourth iteration, since (y, v) is
already in R, the algorithm does nothing. Since there are no
more pairs to check in todo, the relation R is a bisimulation
and the algorithm terminates returning true.

These iterations are concisely described by the numbered
dashed lines in Figure 2. The line i means that the connected
pair is inserted in R at iteration i. (In the sequel, when
enumerating iterations, we ignore those where a pair from todo
is already in R so that there is nothing to do.)

Remark 2. Unless it finds a counter-example, Naive con-
structs the smallest bisimulation that relates the two starting
states (see Proposition 4 in Appendix A). On the contrary,
minimisation algorithms [12], [7] are designed to compute
the largest bisimulation relation for a given automaton. For
instance, taking the left-hand side automaton from Figure 2,
they would equate the states x and w which are language
equivalent, while Naive(x, u) does not relate them.

C. Hopcroft and Karp’s algorithm

The naive algorithm is quadratic: a new pair is added to
R at each non-trivial iteration, and there are only n2 such
pairs, where n = |S| is the number of states of the DFA.
To make this algorithm (almost) linear, Hopcroft and Karp
actually record a set of equivalence classes rather than a set
of visited pairs. As a consequence, their algorithm may stop
earlier, when an encountered pair of states is not already in
R but in its reflexive, symmetric, and transitive closure. For
instance in the right-hand side example from Figure 2, we can
stop when we encounter the dotted pair (y, w), since these two
states already belong to the same equivalence class according
to the four previous pairs.

With this optimisation, the produced relation R contains at
most n pairs (two equivalence classes are merged each time
a pair is added). Formally, and ignoring the concrete data
structure to store equivalence classes, Hopcroft and Karp’s

3

algorithm consists in simply replacing step 3.2 in Figure 1
with

(3.2) if (x′, y′) ∈ e(R) then skip;

where e : P(S×S)→ P(S×S) is the function mapping each
relation R ⊆ S×S into its symmetric, reflexive, and transitive
closure. We hereafter refer to this algorithm as HK.

D. Bisimulations up-to

We now show that the optimisation used by Hopcroft and
Karp corresponds to exploiting an “up-to technique”.

Definition 2 (Bisimulation up-to). Let f : P(S × S) →
P(S × S) be a function on relations on S. A relation R is a
bisimulation up to f if R� f(R), i.e., whenever x R y then

1) o(x) = o(y) and
2) for all a ∈ A, ta(x) f(R) ta(y).

With this definition, Hopcroft and Karp’s algorithm just
consists in trying to build a bisimulation up to e. To prove
the correctness of the algorithm it suffices to show that any
bisimulation up to e is contained in a bisimulation. We use
for that the notion of compatible function [24], [22]:

Definition 3 (Compatible function). A function f : P(S ×
S) → P(S × S) is compatible if it preserves progressions:
for all R,R′ ⊆ S × S,

R� R′ entails f(R)� f(R′) .

Proposition 3. Let f be a compatible function. Any bisimu-
lation up to f is contained in a bisimulation.

Proof: Suppose that R is a bisimulation up to f , i.e.,
that R � f(R). Using compatibility of f and by a simple
induction on n, we get ∀n, fn(R) � fn+1(R). Therefore,
we have ⋃

n

fn(R)�
⋃
n

fn(R) ,

in other words, fω(R) =
⋃
n f

n(R) is a bisimulation. This
latter relation trivially contains R, by taking n = 0.

We could prove directly that e is a compatible function; we
however take a detour to ease our correctness proof for the
algorithm we propose in Section III.

Lemma 1. The following functions are compatible:
id: the identity function;

f ◦ g: the composition of compatible functions f and g;⋃
F : the pointwise union of an arbitrary family F of compat-

ible functions:
⋃
F (R) =

⋃
f∈F f(R);

fω: the (omega) iteration of a compatible function f .

Lemma 2. The following functions are compatible:
• the constant reflexive function: r(R) = {(x, x) | ∀x ∈ S}
• the converse function: s(R) = {(y, x) | x R y};
• the squaring function: t(R) = {(x, z) | ∃y, x R y R z}.

Intuitively, given a relation R, (s∪ id)(R) is the symmetric
closure of R, (r ∪ s ∪ id)(R) is its reflexive and symmetric

closure, and (r ∪ s ∪ t ∪ id)ω(R) is its symmetric, reflexive
and transitive closure: e = (r ∪ s ∪ t ∪ id)ω . Another way to
understand this decomposition of e is to recall that for a given
R, e(R) can be defined inductively by the following rules:

x e(R) x
r

x e(R) y

y e(R) x
s

x e(R) y y e(R) z

x e(R) z
t

x R y

x e(R) y
id

Theorem 1. Any bisimulation up to e is contained in a
bisimulation.

Proof: By Proposition 3, it suffices to show that e is
compatible, which follows from Lemma 1 and Lemma 2.

Corollary 1. For all x, y ∈ S, x ∼ y iff HK(x, y).

Proof: Same proof as for Proposition 2, by using the
invariant R � e(R) ∪ todo for the loop. We deduce that R
is a bisimulation up to e after the loop. We conclude with
Theorem 1 and Proposition 1.

Returning to the right-hand side example from Figure 2,
Hopcroft and Karp’s algorithm constructs the relation

RHK = {(x, u), (y, v), (z, w), (z, v)}

which is not a bisimulation, but a bisimulation up to e: it
contains the pair (x, u), whose b-transitions lead to (y, w),
which is not in RHK but in its equivalence closure, e(RHK).

III. OPTIMISED ALGORITHM FOR NFA

We now move from DFA to non-deterministic automata
(NFA). We start with standard definitions about semi-lattices,
determinisation, and language equivalence for NFA.

A semi-lattice (X,+, 0) consists of a set X and a binary
operation +: X×X → X which is associative, commutative,
idempotent (ACI), and has 0 ∈ X as identity. Given two semi-
lattices (X1,+1, 01) and (X2,+2, 02), an homomorphism of
semi-lattices is a function f : X1 → X2 such that for all x, y ∈
X1, f(x +1 y) = f(x) +2 f(y) and f(01) = 02. The set
2 = {0, 1} is a semi-lattice when taking + to be the ordinary
Boolean or. Also the set of all languages 2A

?

carries a semi-
lattice where + is the union of languages and 0 is the empty
language. More generally, for any set X , P(X) is a semi-
lattice where + is the union of sets and 0 is the empty set.
In the sequel, we indiscriminately use 0 to denote the element
0 ∈ 2, the empty language in 2A

?

, and the empty set in P(X).
Similarly, we use + to denote the Boolean or in 2, the union
of languages in 2A

?

, and the union of sets in P(X).

A non-deterministic finite automaton (NFA) over the input
alphabet A is a triple (S, o, t), where S is a finite set of states,
o : S → 2 is the output function (as for DFA), and t : S →
P(S)A is the transition relation, which assigns to each state
x ∈ S and input letter a ∈ A a set of possible successor states.

The powerset construction transforms any NFA (S, o, t) in
the DFA (P(S), o], t]) where o] : P(S)→ 2 and t] : P(S)→

4

P(S)A are defined for all X ∈ P(S) and a ∈ A as follows:

o](X) =

o(x) if X = {x} with x ∈ S
0 if X = 0

o](X1) + o](X2) if X = X1 +X2

t]a(X) =

ta(x) if X = {x} with x ∈ S
0 if X = 0

t]a(X1) + t]a(X2) if X = X1 +X2

Observe that in (P(S), o], t]), the states form a semi-lattice
(P(S),+, 0), and o] and t] are, by definition, semi-lattices
homomorphisms. These properties are fundamental for the up-
to technique we are going to introduce; in order to highlight
the difference with generic DFA (which usually do not carry
this structure), we introduce the following definition.

Definition 4. A determinised NFA is a DFA (P(S), o], t])
obtained via the powerset construction of some NFA (S, o, t).

Hereafter, we use a new notation for representing states of
determinised NFA: in place of the singleton {x} we just write
x and, in place of {x1, . . . , xn}, we write x1 + · · ·+ xn. As
usual, 0 is the empty set.

For an example, consider the NFA (S, o, t) depicted below
(left) and part of the determinised NFA (P(S), o], t]) (right).

x

a

BB

a ''
y

a
gg z

aoo x
a // y + z

a // x+ y
a // x+ y + z

a

FF

In the determinised NFA, x makes one single a-transition
going into y+z. This state is final: o](y+z) = o](y)+o](z) =
o(y) + o(z) = 1 + 0 = 1; it makes an a-transition into
t]a(y + z) = t]a(y) + t]a(z) = ta(y) + ta(z) = x+ y.

The language accepted by the states of a NFA (S, o, t)
can be conveniently defined via the powerset construction:
the language accepted by x ∈ S is the language accepted
by the singleton {x} in the DFA (P(S), o], t]), in symbols
[[{x}]]. Therefore, in the following, instead of considering the
problem of language equivalence of states of the NFA, we
focus on language equivalence of sets of states of the NFA:
given two sets of states X and Y in P(S), we say that X
and Y are language equivalent (X ∼ Y) iff [[X]] = [[Y]]. This
is exactly what happens in standard automata theory, where
NFA are equipped with sets of initial states.

A. Extending coinduction to NFA

In order to check if two sets of states X and Y of an NFA
(S, o, t) are language equivalent, we can simply employ the
bisimulation proof method on (P(S), o], t]). More explicitly, a
bisimulation for a NFA (S, o, t) is a relation R ⊆ P(S)×P(S)
on sets of states, such that whenever X R Y then

1) o](X) = o](Y) and
2) for all a ∈ A, t]a(X) R t]a(Y).

Since this is just the old definition of bisimulation (Defini-
tion 1) applied to (P(S), o], t]), it is immediate to see that
X ∼ Y iff there exists a bisimulation relating them.

Remark 3 (Linear time v.s. branching time). It is important
not to confuse these bisimulation relations with the stan-
dard Milner-and-Park bisimulations [19] (which strictly imply
language equivalence): in a standard bisimulation R, if the
following states x and y of an NFA are in R,

x1
...x

a 55

a))
xn

y1
...y

a 55

a))
ym

then each xi should be in R with some yj (and vice-versa).
Here, instead, we first transform the transition relation into

x
a // x1 + · · ·+ xn y

a // y1 + · · ·+ ym ,

using the powerset construction, and then we require that the
sets x1 + · · ·+ xn and y1 + · · ·+ ym are related by R.

B. Bisimulation up to congruence

The semi-lattice structure (P(S),+, 0) carried by deter-
minised NFA makes it possible to introduce a new up-to
technique, which is not available with plain DFA: up to
congruence. This technique relies on the following function.

Definition 5 (Congruence closure). Let u : P(P(S) ×
P(S)) → P(P(S) × P(S)) be the function on relations on
sets of states defined for all R ⊆ P(S)× P(S) as:

u(R) = {(X1 +X2, Y1 + Y2) | X1 R Y1 and X2 R Y2} .

The function c = (r∪ s∪ t∪u∪ id)ω is called the congruence
closure function.

Intuitively, c(R) is the smallest equivalence relation which
is closed with respect to + and which includes R. It could
alternatively be defined inductively using the rules r, s, t, and
id from the previous section, and the following one:

X1 c(R) Y1 X2 c(R) Y2

X1 +X2 c(R) Y1 + Y2
u

We call bisimulations up to congruence the bisimulations up
to c. We report the explicit definition for the sake of clarity:

Definition 6 (Bisimulation up to congruence). A bisimulation
up to congruence for a NFA (S, o, t) is a relation R ⊆ P(S)×
P(S) on sets of states, such that whenever X R Y then

1) o](X) = o](Y) and
2) for all a ∈ A, t]a(X) c(R) t]a(Y).

We then show that bisimulations up to congruence are
sound, using the notion of compatibility:

Lemma 3. The function u is compatible.

Proof: We assume that R � R′, and we prove that
u(R) � u(R′). If X u(R) Y , then X = X1 + X2 and
Y = Y1 + Y2 for some X1, X2, Y1, Y2 such that X1 R Y1
and X2 R Y2. By assumption, we have o](X1) = o](Y1),
o](X2) = o](Y2), and for all a ∈ A, t]a(X1) R

′ t]a(Y1) and
t]a(X2) R

′ t]a(Y2). Since o] and t] are homomorphisms, we

5

x

a

FF

a &&
y

a
gg z

aoo

u

a

DD

x
a //

1

y + z
a //

2

x+ y
a //

3

x+ y + z

a

FF
4

u

a

DD

Figure 3. Bisimulations up to congruence, on a single letter NFA.

deduce o](X1 + X2) = o](Y1 + Y2), and for all a ∈ A,
t]a(X1 +X2) u(R

′) t]a(Y1 + Y2).

Theorem 2. Any bisimulation up to congruence is contained
in a bisimulation.

Proof: By Proposition 3, it suffices to show that c is
compatible, which follows from Lemmas 1, 2 and 3.

In the Introduction, we already gave an example of bisimu-
lation up to context, which is a particular case of bisimulation
up to congruence (up to context corresponds to use just the
function (u ∪ id)ω , without closing under r, s and t).

A more involved example illustrating the use of all ingre-
dients of the congruence closure function (c) is given in Fig-
ure 3. The relation R expressed by the dashed numbered lines
(formally R = {(x, u), (y + z, u)}) is neither a bisimulation,
nor a bisimulation up to equivalence, since y+z a→ x+y and
u

a→ u, but (x + y, u) /∈ e(R). However, R is a bisimulation
up to congruence. Indeed, we have (x+ y, u) ∈ c(R):

x+ y = x+ x+ y c(R) u+ x+ y ((x, u) ∈ R)
c(R) y + z + x+ y ((y + z, u) ∈ R)
= y + z + x

c(R) u+ x ((y + z, u) ∈ R)
c(R) u+ u = u ((x, u) ∈ R)

In contrast, we need four pairs to get a bisimulation up to e
containing (x, u): this is the relation depicted with both dashed
and dotted lines in Figure 3.

Note that we can deduce many other equations from R; in
fact, c(R) defines the following partition of sets of states:

{0}, {y}, {z}, {x, u, x+y, x+z, and the 9 remaining subsets}.

C. Optimised algorithm for NFA

Algorithms for NFA can be obtained by computing the
determinised NFA on-the-fly [10]: starting from the algorithms
for DFA (Figure 1), it suffices to work with sets of states,
and to inline the powerset construction. Their code is given in
Figure 4. The naive algorithm (Naive) does not use any up to
technique, while Hopcroft and Karp’s algorithm (HK) reasons
up to equivalence in step 3.2.

The optimised algorithm, referred as HKC in the sequel,
relies on up to congruence: step 3.2 becomes

(3.2) if (X ′, Y ′) ∈ c(R ∪ todo) then skip;

Naive(X,Y)

(1) R is empty; todo is empty;
(2) insert (X,Y) in todo;
(3) while todo is not empty, do {
(3.1) extract (X ′, Y ′) from todo;
(3.2) if (X ′, Y ′) ∈ R then skip;
(3.3) if o](X ′) 6= o](Y ′) then return false;
(3.4) for all a ∈ A,

insert (t]a(X
′), t]a(Y

′)) in todo;
(3.5) insert (X ′, Y ′) in R;

};
(4) return true;

Figure 4. On-the-fly naive algorithm, for checking the equivalence of sets
of states X and Y of a NFA (S, o, t). The code for on-the-fly HK(X,Y) is
obtained by replacing the test in step 3.2 with (X′, Y ′) ∈ e(R); the code for
HKC(X,Y) is obtained by replacing this test with (X′, Y ′) ∈ c(R ∪ todo).

Corollary 2. For all X,Y ∈ P(S), X ∼ Y iff HKC(X,Y).

Proof: Same proof as for Proposition 2, by using the
invariant R� c(R∪ todo) for the loop. We deduce that R is
a bisimulation up to congruence after the loop. We conclude
with Theorem 2 and Proposition 1.

The most important point about these three algorithms is
that they compute the states of the determinised NFA lazily.
This means that only accessible states need to be computed,
which is of practical importance since the determinised NFA
can be exponentially large. In case of a negative answer, the
three algorithms stop even before all accessible states have
been explored; otherwise, if a bisimulation (possibly up-to) is
found, the situation depends on the algorithm:
• with Naive, all accessible states need to be visited, by

definition of bisimulation;
• with HK, the only case where some accessible states can

be avoided is when a pair (X,X) is encountered: the
algorithm skips this pair so that the successors of X are
not necessarily computed (this situation rarely happens
in practice—it actually never happens when starting with
disjoint automata). In the other cases where a pair (X,Y)
is skipped, then X and Y are necessarily already related
to some other states in R, so that their successors will
eventually be explored;

• with HKC, only a small portion of the accessible states
is built (check the experiments in Section IV). To see a
concrete example, let us execute HKC on the NFA from
Figure 3. After two iterations, R = {(x, u), (y + z, u)}.
Since x+ y c(R) u, the algorithm stops without building
the states x+ y and x+ y+ z. Similarly, in the example
from the Introduction, HKC does not construct the four
states corresponding to pairs 4, 5, and 6.

This ability of HKC to ignore parts of the determinised NFA
comes from the up to congruence technique, which allows
one to infer properties about states that were not necessarily
encountered before.

6

D. Computing the congruence closure

For the optimised algorithm to be effective, we need a way
to check whether some pairs belong to the congruence closure
of some relation (step 3.2). We present here a simple solution
based on rewriting modulo ACI; the key idea is to look at each
pair (X,Y) in a relation R as a pair of rewriting rules:

X → X + Y Y → X + Y ,

which can be used to compute normal forms for sets of states.
Indeed, by idempotence, X R Y entails X c(R) X + Y .

Definition 7. Let R ⊆ P(S) × P(S) be a relation on sets
of states. We define R ⊆ P(S) × P(S) as the smallest
irreflexive relation that satisfies the following rules:

X R Y

X R X + Y

X R Y

Y R X + Y

Z R Z
′

U + Z R U + Z ′

Lemma 4. For all relation R, the relation R is convergent.

In the sequel, we denote by X↓R the normal form of a set X
w.r.t. R. Intuitively, the normal form of a set is the largest set
of its equivalence class. Recalling the example from Figure 3,
the common normal form of x+ y and u can be computed as
follows (R is the relation {(x, u), (y + z, u)}):

x+ y
**

u
ww

x+ y + u
++

x+ u
ss

x+ y + z + u

Theorem 3. For all relation R, and for all X,Y ∈ P(S), we
have X↓R = Y ↓R iff (X,Y) ∈ c(R).

Thus, in order to check if (X,Y) ∈ c(R ∪ todo) we only
have to compute the normal form of X and Y with respect to
 R∪todo. Note that each pair of R ∪ todo may be used only
once as a rewriting rule, but we do not know in advance in
which order to apply these rules. Therefore, the time required
to find one rule that applies is in the worst case rn where
r = |R ∪ todo| is the size of the relation R ∪ todo, and n =
|S| is the number of states of the NFA (assuming linear time
complexity for set-theoretic union and containment of sets of
states). Since we cannot apply more than r rules, the time for
checking whether (X,Y) ∈ c(R ∪ todo) is bounded by r2n.

We tried other solutions, notably by using binary decision
diagrams [6]. We have chosen to keep the presented rewriting
algorithm for its simplicity and because it behaves pretty
well in practice; we leave for future work the study of more
elaborated solutions.

E. Universality and language inclusion

As a special case, any algorithm for testing language
equality of NFA can be used to test NFA for universality
(i.e., whether the automaton accepts all words) or language
inclusion. Indeed, for universality, it suffices to compare the
automaton with the trivial NFA with one accepting state (see,
e.g., the example in Figure 3); for language inclusion, we can
use the fact that the function [[−]] : P(S) → 2A

?

is a semi-
lattice homomorphism (see Appendix A), so that given two

starting sets of states X and Y , we have [[X]] ⊆ [[Y]] iff
[[X]] + [[Y]] = [[Y]] iff [[X + Y]] = [[Y]].

In the special case of universality, HKC actually coincides
with the antichain algorithm proposed in [30] (except for the
concrete data structures). This algorithm proceeds as follows.
It explores the determinised NFA to check that all reachable
sets contain at least one accepting state, and the key idea is to
stop whenever it encounters a set which contains one of the
previously visited sets: universality of the larger is subsumed
by universality of the smaller set, and like with HKC, this
allows one to skip rather large portions of the determinised
NFA. To see that it coincides with HKC, consider a run of
HKC(X0, u), where u is the unique state of the full and trivial
automaton, and X0 is the set of initial states of the NFA to
check for universality. At each iteration, R ∪ todo is of the
form {(Xi, u) | i ∈ I}, so that u↓ = u+

∑
i∈I Xi, and for a

given set X (disjoint from u),

X↓ =

{
u↓ if there is a set Xi ⊆ X
X otherwise

In other words, a pair (X,u) is skipped iff X contains one of
the previously encountered sets.

The authors of [30] also propose a variation of their univer-
sality algorithm to check language inclusion of NFA, without
exploring the whole determinised NFA. In contrast with the
case of universality, this algorithm does not coincide with the
one we propose here.

IV. COMPLEXITY HINTS

The complexity of Naive, HK and HKC is closely related
to the size of the relation that they build. Hereafter, we use
v = |A| to denote the number of letters in A.

Lemma 5. The three algorithms require at most 1+v · |R|
iterations, where |R| is the size of the produced relation;
moreover, this bound is reached whenever they return true.

Therefore, we can conveniently reason about |R|.

Lemma 6. Let RNaive, RHK , and RHKC denote the relations
produced by the three algorithms. We have

|RHKC |, |RHK | ≤ m |RNaive| ≤ m2 , (2)

where m ≤ 2n is the number of accessible states in the
determinised NFA and n is the number of states of the NFA.
If the algorithms returned true, we moreover have

|RHKC | ≤ |RHK | ≤ |RNaive| . (3)

As shown below, RHKC can actually be exponentially
smaller than RHK .

A. Exponential speed-up

Consider the family of NFA given in Figure 5, where n is
an arbitrary natural number. The states x and y are equivalent:
they both recognise the language (a+ b)? · b · (a+ b)n.

In the determinised NFA, x can reach all the states of the
shape x+

∑
i∈N xi where N ⊆ [1..n]. For instance, for n = 2,

7

x
b //a,b 99 x1

a,b // · · ·
a,b // xn

y
b //

a,b %%

a,b :: y1
a,b // · · ·

a,b // yn

z
b

88

Figure 5. Family of examples where HKC exponentially improves over HK.

x
aa→ x, x ab→ x + x1, x ba→ x + x2 and x

bb→ x + x1 + x2;
analogously y can reach all the states of the shape y + z +∑
i∈N yi. The smallest bisimulation relating x and y is

R = {(x, y)} ∪ {(x+
∑
i∈N

xi, y + z +
∑
i∈N

yi) | N ⊆ [1..n]},

which contains 2n + 1 pairs. This is the relation computed
by Naive(x, y) and HK(x, y) (here, the up to equivalence
technique does not help). Instead, HKC(x, y) builds the relation

R′ = {(x, y), (x, y+z)} ∪ {(x+ xi, y + z + yi) | i ∈ [1..n]},

which is a bisimulation up to congruence (check Lemma 10
in Appendix D for a formal proof) and which only contains
n+2 pairs. It is worth to note that R′ is like a “basis” of R: all
the pairs (x′, y′) ∈ R can be generated from R′ by iteratively
applying the function u (Definition 5).

Also notice that the language recognised by x and y
is known for having a minimal DFA with 2n states [14].
Therefore, checking their equivalence by using a minimisation
algorithm (e.g., [12], [7]) would also require exponential time.

The antichain algorithm from [30] also solves this example
in polynomial time and its improved version from [1] which
first computes similarity (in the branching-time sense) would
answer immediately: x simulates y and y simulates x. How-
ever, it suffices to modify the branching structure of the xi
and yi to disable this behaviour.

B. Case requiring exponential time

Even though the previous example shows that the opti-
mised algorithm can be polynomial where HK is exponential,
the problem of checking language equivalence of NFA is
PSPACE-complete and NP-complete when restricted to the
one-letter case [18]. We now show an example on the single-
letter alphabet A = {a} where HKC requires exponential time.

The example is shown in Figure 6; given a natural number
n, we compare u with x10+· · ·+xn0 (hereafter denoted by X0).
It is immediate to see that u accepts the universal language
a?, while each xi0 accepts (ai)?. Checking that X0 ∼ u
thus amounts to the following (trivial) equality of regular
expressions:

∑n
i=1(a

i)? = a?.
For any natural number k, let Xk be the set of states

Xk =

n∑
i=1

xik mod i .

For all k, we have Xk
a→ Xk+1, and this sequence is periodic,

of period p = lcm[1..n], the least common multiplier of the
first n natural numbers (that is greater than 2n for n > 7 [21]).

x10

a

WW

u

a

��

x20

a
��
x21

a

UU
x30

a

��
x31 a

// x32

a

VV
x40

a ��
x41
a ��

x43

aZZ

x42
a
DD

x50
a

{{
x51
a ��

x54

acc

. . .

x52 a
// x53

a
DD

Figure 6. Single letter example for which HKC requires exponential time.

By running HK between X0 and u, we get a bisimulation
up to equivalence in p steps (this relation is actually a bisim-
ulation, the up-to equivalence technique is not used). We can
show that the optimised algorithm behaves exactly the same:
the up-to congruence technique does not help. Intuitively, at
the j-th iteration, we have

R = {(Xk, u) | k < j} ;

therefore if j < p then (Xj , u) does not belong to R. This pair
does not belong to c(R) either: u↓R = u +

∑
k<j Xk while

Xj is in normal form (Xj↓R = Xj) and does not contain u.
Since this example actually corresponds to a universality

problem, the antichain algorithm from [30] coincides with HKC
(see Section III-E) and also requires exponential time.

On the contrary, if we check the equivalence of X0 and
x10 (rather than u), HK still requires p = lcm[1..n] steps, but
HKC now only requires n iterations: at step n − 1, we have
R = {(Xk, x

1
0) | k < n}, and the pair (Xn, x

1
0) belongs

to c(R): we have x10↓R ⊆ Xn↓R since x10 belongs to Xn,
and x10↓R is the full state (i.e., {xji | i < j}) since we went
through all states of each cycle. Therefore, Xn↓R = x10↓R,
and thus Xn c(R) x10 by Theorem 3. The antichain algo-
rithm from [30] requires o(n2) iterations in this case, and
its improved version [1] stops just after the computation of
the largest similation: all states are simulated by x10. This is
another case where HKC and antichain algorithms bring an
exponential speed-up over HK.

C. Experimental assessment

To get an intuition of the average behaviour of HKC on larger
NFA, we performed tests on random automata. The results are
given in Table I and Figure 7; we proceeded as follows.

For a given size n, we generate a thousand random NFA
with n states and two letters. According to what is done
in [27], we use a linear transition density of 1.25 (which means
that the expected out-degree of each state and with respect to
each letter is 1.25): Tabakov and Vardi empirically showed that
one statistically gets most challenging NFA with this particular
value. We generate NFA without accepting states: by doing
so, we make sure that HK and HKC never encounter a pair of
distinguishable sets, so that they always continue until they
find a bisimulation up to; this corresponds to the worst case
for all possible choices of accepting states.

We then run the algorithms on these NFA, starting each time
with two distinct singleton sets, and we measure the required
time. We report in Table I the median values, the last deciles,

8

 0

 50

 100

 150

 200

 250

 0.1 1 10 100 1000 10000 100000 1e+06

nu
m

be
r o

f c
he

ck
ed

 N
FA

number of processed pairs

HK
AC

ACS
HKC

Figure 7. Distribution of the number of pairs processed with HK, AC, and
HKC, for the 1000 NFA with 100 states and 2 letters used in Table I.

the last percentiles, and the maximal values. For instance, for
n = 70, 90% of the examples require less than 0.649s with HK;
equivalently, 10% of the examples require more than 0.649s.

The algorithms we tested are HK and HKC, the (forward)
antichain algorithm from [30], which we call AC, and ACS,
an optimisation of AC proposed in [1], which relies on a
preliminary computation of the largest simulation. All algo-
rithms were implemented in OCaml, with the same degree
of optimisation. We do not use BDDs; while this is fair to
compare HK, HKC, and AC, the timings for ACS are biased: our
implementation of the relation �∀∃, which is heavily used in
ACS, is certainly not as efficient as with BDDs. (Note however
that we do not include the time needed to compute the largest
simulations in Table I.)

In order to have a measure of the effectiveness of these
approaches that is independent from the actual implemen-
tation, we also report the number of processed pairs. For
HK and HKC, this number is just the size of the produced
relation, or equivalently, the number of non trivial iterations
(cf. Lemma 5). For AC and ACS, this is the number of outer
iterations, i.e., the loop at line 4 in [1, Algorithm 2].

One can notice that our algorithm is several orders of
magnitude better than HK, and two to ten times better than
the antichain ones. More importantly, it is more predictable
(the last percentile is of the same order as the median value,
which is not the case with the other algorithms). The second
point can better be seen on Figure 7, where we plotted the
distribution of the number of processed pairs in the special
case where n = 100: these numbers are much more dispersed
with HK and AC than with HKC.

Also notice that the size of the relations generated by HK
is a lower bound for the number of accessible states of the
determinised NFA (Lemma 6 (2)); one can thus see in Table I
that HKC usually explores an extremely small portion of these
DFA (e.g., less than one per thousand for n = 100). The last
column reports the median size of the minimal DFA for the
corresponding parameters, as given in [27]. One can see that
HK usually explores much more states than what would be
necessary with a minimal DFA, while HKC needs much less.

We performed experiments with NFA for which the algo-
rithms most always return a counter-example (i.e., by ran-
domly adding a few accepting states). We basically observed
the same behaviour: the up to congruence technique allows to
cut very large branches in the state-space exploration.

V. RELATED WORK

A similar notion of bisimulation up to congruence has
already been used to obtain decidability and complexity re-
sults about context-free processes, under the name of self-
bisimulations. Caucal [8] introduced this concept to give a
shorter and nicer proof of the result by Baeten, Bergstra, and
Klop [3]: bisimilarity is decidable for normed context-free
processes. Christensen, Hüttel, and Stirling [9] then gener-
alised the result to all context-free processes, also by using
self-bisimulations. Hirshfeld, Jerrum, and Moller [11] used a
refinement of this notion to get a polynomial algorithm for
bisimilarity in the normed case.

There are two main differences with the ideas we presented
here. First, the above papers focus on bisimilarity rather than
language equivalence (recall that although we use bisimulation
relations, we check language equivalence since we work on the
determinised NFA—Remark 3). Second, we consider a notion
of bisimulation up to congruence where the congruence is
taken with respect to non-determinism (union of sets of states).
Self-bisimulations are also bisimulations up to congruence, but
the congruence is taken with respect to word concatenation.
We cannot consider this operation in our setting since we do
not have the corresponding monoid structure in plain NFA.

Other approaches, that are independent from the algebraic
structure (e.g., monoids or semi-lattices) and the behavioural
equivalence (e.g., bisimilarity or language equivalence) are
shown in [16], [4], [22], [17]. These propose very general
frameworks into which “our” up to congruence technique fits
as a very special case. To best of our knowledge, bisimulation
up to congruence has never been proposed as a technique for
proving language equivalence of NFA.

VI. CONCLUSIONS AND FUTURE WORK

We showed that the standard algorithm by Hopcroft and
Karp for checking language equivalence of DFA relies on a
bisimulation up to equivalence proof technique; this allowed
us to design a new algorithm (HKC) for the non-deterministic
case, where we exploit a novel technique called up to con-
gruence. Thanks to this optimisation, HKC is several orders of
magnitude faster than HK, and usually much faster than more
recent antichain based algorithms [1], [30].

Our algorithm cannot be used for minimising automata (see
Remark 2: it does not build the largest bisimulation). However,
in case one only wants to check the equivalence of two states,
HKC is more efficient than standard minimisation algorithms
(independently from the minimisation procedure, the average
size of the minimal DFA is much larger than the average
number of states explored with HKC, as shown in Table I.)

We put an implementation of the presented algorithms on-
line [5], together with Coq certified proofs and with an applet
allowing to test the algorithms on user-provided examples.

9

required time (seconds) number of processed pairs mDFA size
n = |S| algo. 50% 90% 99% 100% 50% 90% 99% 100% 50%

50

HK 0.018 0.048 0.092 0.200 2511 6299 12506 25272

∼1000AC 0.000 0.001 0.004 0.034 58 115 331 1396
ACS 0.001 0.002 0.011 0.125 44 89 250 1117
HKC 0.000 0.000 0.000 0.001 21 26 32 63

70

HK 0.215 0.649 1.377 2.803 10479 28186 58782 87055

∼6000AC 0.001 0.002 0.013 0.081 84 171 546 1935
ACS 0.002 0.006 0.051 0.411 64 135 409 1447
HKC 0.001 0.001 0.001 0.002 27 33 40 49

100

HK 1.528 4.493 10.957 18.248 58454 164857 361227 471727

∼30000AC 0.002 0.005 0.026 0.112 117 245 785 1901
ACS 0.003 0.014 0.147 0.734 89 188 620 1451
HKC 0.001 0.002 0.003 0.006 35 44 54 70

200
AC 0.006 0.016 0.040 0.126 227 441 846 1861

–ACS 0.009 0.042 0.155 0.458 175 341 651 1030
HKC 0.003 0.005 0.007 0.010 61 74 87 104

300
AC 0.012 0.034 0.104 0.552 336 645 1365 3947

–ACS 0.018 0.092 0.416 3.426 256 500 1064 2879
HKC 0.007 0.011 0.015 0.035 86 103 118 129

500
AC 0.032 0.109 0.353 1.384 556 1153 2586 5960

–ACS 0.051 0.325 1.649 12.030 428 915 1927 4990
HKC 0.018 0.029 0.043 0.064 129 154 175 192

1000
AC 0.133 0.388 1.910 34.327 1088 2010 5735 26760

–ACS 0.211 1.096 9.538 193.245 835 1558 4390 19466
HKC 0.068 0.110 0.177 0.278 228 269 303 337

3000 AC 1.556 4.587 15.125 142.319 3217 5612 11740 41800 –
HKC 0.735 1.150 1.885 3.917 566 666 745 811

5000 AC 4.888 16.971 80.361 561.909 5249 9957 25535 72893 –
HKC 2.309 3.682 7.775 11.190 869 1009 1103 1214

Table I
RUNNING HK, HKC, AND THE ALGORITHMS FROM [30] AND [1] TO CHECK LANGUAGE EQUIVALENCE ON RANDOM NFA WITH TWO LETTERS.

As future work, we would like to understand the average
complexity of HKC. An inherent problem comes from the
difficulty to characterise the average shape of determinised
NFA [29], [27]. To avoid this problem, with HKC, we could
try to focus on the properties of congruence relations. For
instance, given a number of states, how long can be a sequence
of (incrementally independent) pairs of sets of states whose
congruence closure collapses into the full relation? (This num-
ber is an upper-bound for the size of the relations produced
by HKC.) We found ad-hoc examples where this number is
exponential, but we suspect it to be really small in average.

REFERENCES

[1] P. A. Abdulla, Y.-F. Chen, L. Holı́k, R. Mayr, and T. Vojnar. When
simulation meets antichains. In Proc. TACAS, volume 6015 of LNCS,
pages 158–174. Springer, 2010.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[3] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Decidability of bisim-
ulation equivalence for processes generating context-free languages. In
Proc. PARLE (II), volume 259 of LNCS, pages 94–111. Springer, 1987.

[4] F. Bartels. On generalized coinduction and probabilistic specification
formats. PhD thesis, Vrije Universiteit Amsterdam, 2004.

[5] F. Bonchi and D. Pous. Web appendix for this paper.
http://sardes.inrialpes.fr/∼pous/hknt, 2012.

[6] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Trans. Computers, 35(8):677–691, 1986.

[7] J. A. Brzozowski. Canonical regular expressions and minimal state
graphs for definite events. In Mathematical Theory of Automata, volume
12(6), pages 529–561. Polytechnic Press, NY, 1962.

[8] D. Caucal. Graphes canoniques de graphes algébriques. ITA, 24:339–
352, 1990.

[9] S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is
decidable for all context-free processes. Information and Computation,
121(2):143–148, 1995.

[10] J.-C. Fernandez, L. Mounier, C. Jard, and T. Jron. On-the-fly verifi-
cation of finite transition systems. Formal Methods in System Design,
1(2/3):251–273, 1992.

[11] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for
deciding bisimilarity of normed context-free processes. Theoretical
Computer Science, 158(1&2):143–159, 1996.

[12] J. E. Hopcroft. An n log n algorithm for minimizing in a finite
automaton. In Proc. International Symposium of Theory of Machines
and Computations, pages 189–196. Academic Press, 1971.

[13] J. E. Hopcroft and R. M. Karp. A linear algorithm for testing equivalence
of finite automata. Technical Report 114, Cornell Univ., December 1971.

[14] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[15] D. Lee and M. Yannakakis. Online minimization of transition systems
(extended abstract). In Proc. STOC, pages 264–274. ACM, 1992.

[16] M. Lenisa. From set-theoretic coinduction to coalgebraic coinduction:
some results, some problems. ENTCS, 19:2–22, 1999.

[17] D. Lucanu and G. Rosu. Circular coinduction with special contexts. In
Proc. ICFEM, volume 5885 of LNCS, pages 639–659. Springer, 2009.

[18] A.R. Meyer and L. J. Stockmeyer. Word problems requiring exponential
time. In Proc. STOC, pages 1–9. ACM, 1973.

[19] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[20] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,

I/II. Information and Computation, 100(1):1–77, 1992.
[21] M. Nair. On Chebyshev-type inequalities for primes. Amer. Math.

Monthly, 89:126–129, 1982.
[22] D. Pous. Complete lattices and up-to techniques. In Proc. APLAS,

volume 4807 of LNCS, pages 351–366. Springer, 2007.

10

http://sardes.inrialpes.fr/~pous/hknt

[23] J. Rutten. Automata and coinduction (an exercise in coalgebra). In Proc.
CONCUR, volume 1466 of LNCS, pages 194–218. Springer, 1998.

[24] D. Sangiorgi. On the bisimulation proof method. Mathematical
Structures in Computer Science, 8:447–479, 1998.

[25] D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge
University Press, 2011.

[26] A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Generalizing the
powerset construction, coalgebraically. In Proc. FSTTCS, volume 8 of
LIPIcs, pages 272–283. Leibniz-Zentrum fuer Informatik, 2010.

[27] D. Tabakov and M. Vardi. Experimental evaluation of classical automata
constructions. In Proc. LPAR, volume 3835 of LNCS, pages 396–411.
Springer, 2005.

[28] D. Turi and G. D. Plotkin. Towards a mathematical operational
semantics. In LICS, pages 280–291, 1997.

[29] B. Watson. Taxonomies and Toolkits of Regular Language Algorithms.
PhD thesis, Eindhoven University of Technology, 1995.

[30] M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains:
A new algorithm for checking universality of finite automata. In Proc.
CAV: Computer-Aided Verification, volume 4144 of LNCS, pages 17–30.
Springer, 2006.

11

APPENDIX

A. Smallest bisimulation and compositionality

In this appendix, we show some (unrelated) properties that
have been discussed through the paper. They are interesting
but not strictly necessary for the formal development of our
theory.

The first property concerns the relation computed by
Naive(x, y). The following proposition shows that it is the
smallest bisimulation relating x and y.

Proposition 4. Let x and y be two states of a DFA. Let RNaive
be the relation built by Naive(x, y). If Naive(x, y) = true,
then RNaive is the smallest bisimulation relating x and y, i.e.,
RNaive ⊆ R, for all bisimulations R such that (x, y) ∈ R.

Proof: We have already shown in Proposition 2 that
RNaive is a bisimulation. We need to prove that it is the
smallest. Let R be a bisimulation such that (x, y) ∈ R. For
all words w ∈ A∗ and pair of states (x′, y′) such that x w→ x′

and y
w→ y′, it must hold that (x′, y′) ∈ R (by definition of

bisimulation).
By construction, for all (x′, y′) ∈ RNaive there exists a

word w ∈ A∗, such that x w→ x′ and y w→ y′. Therefore all the
pairs in RNaive must be also in R, that is RNaive ⊆ R.

The second property is

[[X + Y]] = [[X]] + [[Y]] ,

which we have used in the Introduction to give an intuition of
bisimulation up to context. Since Theorem 2 does not directly
rely on this property, we have avoided to prove it in the main
text. Even if it is not needed, we believe that this property is
interesting, since it follows from the categorical observation
made in [26] that determinized NFA are bialgebras [28]. For
this reason, we prove here that [[−]] : P(S)→ 2A

∗
is a semi-

lattice homomorphism.

Theorem 4. Let (S, o, δ) be a non-deterministic automaton
and (P(S), o], δ]) be the corresponding deterministic automa-
ton obtained through the powerset construction. The function
[[−]] : P(S) → 2A

∗
is a semi-lattice homomorphism, that is,

for all X1, X2 ∈ P(S),

[[X1 +X2]] = [[X1]] + [[X2]] and [[0]] = 0 .

Proof: We prove that for all words w ∈ A∗, [[X1 +
X2]](w) = [[X1]](w) + [[X2]](w), by induction on w.

• for ε, we have:

[[X1 +X2]](ε) = o](X1 +X2)

= o](X1) + o](X2) = [[X1]](ε) + [[X2]](ε) .

• for a · w, we have:

[[X1 +X2]](a · w)
= [[δ](X1 +X2)(a)]](w) (by definition)

= [[δ](X1)(a) + δ](X2)(a)]](w) (by definition)

= [[δ](X1)(a)]](w) + [[δ](X2)(a)]](w)
(by induction hypothesis)

= [[X1]](a · w) + [[X2]](a · w) . (by definition)

For the second part, we prove that for all words w ∈ A∗,
[[0]](w) = 0, again by induction on w. Base case: [[0]](ε) =
o](0) = 0. Inductive case: [[0]](a · w) = [[δ](0)(a)]](w) =
[[0]](w) that by induction hypothesis is 0.

B. Proofs of Section II

Proposition 1. Two states are language equivalent iff there
exists a bisimulation that relates them.

Proof: Let R[[−]] be the relation {(x, y) | [[x]] = [[y]]}. We
prove that R[[−]] is a bisimulation. If x R[[−]] y, then o(x) =
[[x]](ε) = [[y]](ε) = o(y). Moreover, for all a ∈ A and w ∈ A∗,
[[t(x)(a)]](w) = [[x]](a · w) = [[y]](a · w) = [[t(y)(a)]](w) that
means [[t(x)(a)]] = [[t(y)(a)]], that is t(x)(a) R[[−]] t(y)(a).

We now prove the other direction. Let R be a bisimulation.
We want to prove that x R y entails [[x]] = [[y]], i.e., for all
w ∈ A∗, [[x]](w) = [[y]](w). We proceed by induction on w.
For w = ε, we have [[x]](ε) = o(x) = o(y) = [[y]](ε). For
w = a · w′, since R is a bisimulation, we have t(x)(a) R
t(y)(a) and thus [[t(x)(a)]](w′) = [[t(y)(a)]](w′) by induction.
This allows us to conclude since [[x]](a · w′) = [[t(x)(a)]](w′)
and [[y]](a · w′) = [[t(y)(a)]](w′).

Lemma 1. The following functions are compatible:
id: the identity function;

f ◦ g: the composition of compatible functions f and g;⋃
F : the pointwise union of an arbitrary family F of compat-

ible functions:
⋃
F (R) =

⋃
f∈F f(R);

fω: the (omega) iteration of a compatible function f .

Proof: The first two points are straightforward;
For the third one, assume that F is a family of compatible

functions. Suppose that R � R′; for all f ∈ F , we have
f(R)� f(R′) so that

⋃
f∈F f(R)�

⋃
f∈F f(R

′).
For the last one, assume that f is compatible; for all n, fn

is compatible because (a) f0 = id is compatible (by the first
point) and (b) fn+1 = f ◦ fn is compatible (by the second
point and induction hypothesis). By definition fω =

⋃
n f

n

and thus, by the third point, fω is compatible.

Lemma 2. The following functions are compatible:
• the constant reflexive function: r(R) = {(x, x) | ∀x ∈ S}
• the converse function: s(R) = {(y, x) | x R y};
• the squaring function: t(R) = {(x, z) | ∃y, x R y R z}.

Proof:

12

r: observe that the identity relation Id = {(x, x) | ∀x ∈ S}
is always a bisimulation, i.e., Id � Id. Thus for all
R,R′ r(R) = Id� Id = r(R′).

s: observe that the definition of progression is completely
symmetric. Therefore, if R� R′, then s(R)� s(R′).

t: assume that R � R′. For each (x, z) ∈ t(R),
there exists y such that (x, y) ∈ R and (y, z) ∈ R.
By assumption, (1) o′(x) = o′(y) = o′(z) and (2)
for all a ∈ A, t′(x)(a)R′ t′(y)(a)R′ t′(z)(a), that is
t′(x)(a) t(R′) t′(z)(a).

C. Proofs of Section III

Lemma 4. For all relation R, the relation R is convergent.

Proof: We have that Z R Z
′ implies |Z ′| > |Z|, where

|X| denotes the cardinality of the set X (note that R is
irreflexive). Since |Z ′| is bounded by |S|, the number of states
of the NFA, the relation R is strongly normalising. We can
also check that whenever Z R Z1 and Z R Z2, either
Z1 = Z2 or there is some Z ′ such that Z1 R Z

′ and Z2 R

Z ′. Therefore, R is convergent.

Lemma 7. The relation R is contained in c(R).

Proof: If Z R Z
′ then there exists (X,Y) ∈ (s∪id)(R)

such that Z = Z +X and Z ′ = Z + Y . Therefore Z c(R) Z ′

and, thus, R is contained in c(R).

Lemma 8. Let X,Y ∈ P(S), we have (X+Y)↓R = (X↓R+
Y ↓R)↓R.

Proof: Follows from confluence (Lemma 4) and from the
fact that for all Z,Z ′, U , Z R Z

′ entails U+Z R U+Z ′.

Theorem 3. For all relation R, and for all X,Y ∈ P(S), we
have X↓R = Y ↓R iff (X,Y) ∈ c(R).

Proof: From right to left. We proceed by induction on
the derivation of (X,Y) ∈ c(R). The cases for rules r, s, and
t are straightforward. For rule id, suppose that X R Y , we
have to show X↓R = Y ↓R:

• if X = Y , we are done;
• if X (Y , then X R X + Y = Y ;
• if Y (X , then Y R X + Y = X;
• if neither Y ⊆ X nor X ⊆ Y , then X,Y R X + Y .

(In the last three cases, we conclude by confluence—
Lemma 4.)
For rule u, suppose by induction that Xi↓R = Yi↓R for
i ∈ 1, 2; we have to show that (X1 + Y1)↓R = (X2 + Y2)↓R.
This follows by Lemma 8.

From left to right. By Lemma 7, we have X c(R) X↓R for
any set X , so that X c(R) X↓R = Y ↓R c(R) Y .

D. Proofs of Section IV

Lemma 5. The three algorithms require at most 1+v · |R|
iterations, where |R| is the size of the produced relation;
moreover, this bound is reached whenever they return true.

Proof: At each iteration, one pair is extracted from todo.
The latter contains one pair before entering the loop and v
pairs are added to it every time that a pair is added to R.

Lemma 9. Let x and y be two states of a DFA. Let
RNaive and RHK be relations computed by Naive(x, y) and
HK(x, y), respectively. If Naive(x, y) = HK(x, y) = true,
then e(RNaive) = e(RHK).

Proof: By the proof of Proposition 3, eω(RHK) is a
bisimulation. Since e is idempotent, we have eω = e and
thus e(RHK) is a bisimulation; we can thus deduce by
Proposition 4 that RNaive ⊆ e(RHK). Moreover, by definition
of the algorithms, we have RHK ⊆ RNaive. Summarising,

RHK ⊆ RNaive ⊆ e(RHK)

It follows that e(RHK) = e(RNaive), e being monotonic and
idempotent.

Lemma 6. Let RNaive, RHK , and RHKC denote the relations
produced by the three algorithms. We have

|RHKC |, |RHK | ≤ m |RNaive| ≤ m2 , (2)

where m ≤ 2n is the number of accessible states in the
determinised NFA and n is the number of states of the NFA.
If the algorithms returned true, we moreover have

|RHKC | ≤ |RHK | ≤ |RNaive| . (3)

Proof: For the first point, let PS denote the set of
(determinised NFA) states accessible from the two starting
states, so that m = |PS| ≤ 2n. Since RNaive ⊆ PS×PS, we
deduce |RNaive| ≤ m2. Since each pair added to RHK merges
two distinct equivalence classes in e(RHK), we necessarily
have |RHK | ≤ m (the largest partition of PS has exactly m
singletons). Similarly, each pair added to RHKC merges at
least two distinct equivalence classes in c(RHK), so that we
also have |RHKC | ≤ m.

For the second point, |RHK | ≤ |RNaive| follows from the
fact that RHK ⊆ RNaive, by definition of the algorithms.
However, the other inequality is less obvious, since RHKC ⊆
RHK does not hold in general (see Remark 4 below).

By construction, RHKC ⊆ RNaive and, since e is mono-
tonic, e(RHKC) ⊆ e(RNaive) = e(RHK) (the latter equality
is given by Proposition 9). In particular, there are more
equivalence classes in e(RHKC) than in e(RHK); using the
same argument as above, we deduce that |RHKC | ≤ |RHK |.

Remark 4. Even though Lemma 6 ensures that |RHKC | ≤
|RHK |, it is possible that RHKC 6⊆ RHK . For an example,

13

x1

a,b,c

��

x
c //

a >>

b

x2
a
55

b��

x3

a

XX

auu c // x4

a
mm

x′

a,b,c

ZZ

y′

a,b,c

��

y
c //

a
??

b

y2

b

OO

a
55 y3

a

��auu c // y4

aqqy1

a,b,c

XX

Figure 8. The relation built by HKC(x, y) is not included in HK(x, y).

consider Figure 8 and execute HK(x, y) and HKC(x, y) with
a depth-first strategy. For the first five iterations, the two
algorithms behave the same: they build the relation

R = {(x, y), (x1, y′), (x′, y1), (x2, y2), (x3, y3)}.

Then, they encounter (x2 +x3, y2 + y3) which is not in e(R),
but in c(R). Therefore HK inserts it into the relation and then
visits (x′, y′) (which is reached by (x2 + x3, y2 + y3) with a
b-transition). Thus, the relation eventually produced by HK is

RHK = R ∪ {(x2 + x3, y2 + y3), (x
′, y′), (x4, y4)}.

Instead HKC skips (x2 + x3, y2 + y3) and visits (x4, y4)
(which is reached by (x3, y3) with a c-transition) and then
(x1, y1). Therefore, the relation produced by HKC is

RHKC = R ∪ {(x4, y4), (x1, y1)}.

Note that |RHKC | is strictly smaller than |RHK |, but
RHKC 6⊆ RHK , since (x1, y1) /∈ RHK .

Lemma 10. The relation

R′ = {(x, y), (x, y+z)}∪{(x+xi, y+yi+zi) | i ∈ [1 . . . n]}

is a bisimulation up to congruence for the NFA in Fig. 5.

Proof: We consider each kind of pair of R′ separately:

• (x, y): we have o](x) = 0 = o](y) and t]a(x) = x R′ y+
z = t]a(y) and, similarly, t]b(x) = x+x1 R

′ y+ z+y1 =

t]b(y).
• (x, y + z): as the previous point.
• (x+ xi, y + z + yi) for i < n:

we have o](x+ xi) = 0 = o](y + z + yi) and

t]a(x+ xi) = x+ xi+1

R′ y + z + yi+1

= t]a(y + z + yi) , and

t]b(x+ xi) = x+ x1 + xi+1

c(R′) y + z + y1 + yi+1

= t]b(y + z + yi) ;

• (x+ xn, y + z + yn):
we have o](x+ xn) = 1 = o](y + z + yn) and

t]a(x+ xn) = x

R′ y + z = t]a(y + z + yn) , and

t]b(x+ xn) = x+ x1

R′ y + z + y1

= t]b(y + z + yn) .

14

	Introduction
	Hopcroft and Karp's algorithm for DFA
	Proving language equivalence via coinduction
	Naive algorithm
	Hopcroft and Karp's algorithm
	Bisimulations up-to

	Optimised algorithm for NFA
	Extending coinduction to NFA
	Bisimulation up to congruence
	Optimised algorithm for NFA
	Computing the congruence closure
	Universality and language inclusion

	Complexity hints
	Exponential speed-up
	Case requiring exponential time
	Experimental assessment

	Related work
	Conclusions and future work
	References
	Appendix
	Smallest bisimulation and compositionality
	Proofs of Section II
	Proofs of Section III
	Proofs of Section IV

