
HAL Id: hal-00639716
https://hal.science/hal-00639716v1

Submitted on 9 Nov 2011 (v1), last revised 11 Jul 2012 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hopcroft and Karp’s algorithm for Non-deterministic
Finite Automata

Filippo Bonchi, Damien Pous

To cite this version:
Filippo Bonchi, Damien Pous. Hopcroft and Karp’s algorithm for Non-deterministic Finite Automata.
2011. �hal-00639716v1�

https://hal.science/hal-00639716v1
https://hal.archives-ouvertes.fr

Hopcroft and Karp’s algorithm for

Non-deterministic Finite Automata

Filippo Bonchi∗ and Damien Pous†

November 2011

Abstract

An algorithm is given for determining if two non-deterministic finite au-
tomata are language equivalent. We exploit up-to techniques to improve
the standard algorithm by Hopcroft and Karp for deterministic finite au-
tomata [5], so as to avoid computing the whole deterministic automata.
Although the proposed algorithm remains exponential in worst case (the
problem is PSPACE-complete), experimental results show that it can be
much faster than the standard algorithm: only a very small portion of the
determinized automata have to be explored in practice.

Keywords

Language Equivalence, Non-deterministic Finite Automata,
Bisimulation, Coinduction, Up-to techniques, Congruence.

1 Introduction

Checking language equivalence of finite automata is a classical problem in com-
puter science, that finds applications in many fields ranging from compilers
construction to model checking.

Equivalence of deterministic finite automata (DFA) can be checked either via
minimization [4, 2] or through Hopcroft and Karp’s algorithm [5], which exploits
an instance of what is nowadays called a coinduction proof principle [7, 12, 10, 1]:
two states recognise the same language if and only if there exists a bisimulation
relating them. In order to check the equivalence of two given states, Hopcroft
and Karp’s algorithm creates a relation containing them and tries to build a
bisimulation, by adding pairs of states to this relation: if it succeeds then the
two states are equivalent, otherwise they are different.

On the one hand, minimization has the advantage of checking the equiv-
alence of all the states at once (while Hopcroft and Karp only of a certain
pair of the states). On the other hand, minimization has the disadvantage of

∗ENS Lyon, Université de Lyon, LIP (UMR 5668)
†CNRS, Université de Grenoble, LIG (UMR 5217)

1

needing the whole automata from the beginning, while Hopcroft and Karp’s
algorithm can be executed “on the fly” on lazy DFA, which are constructed
on demand. This difference is fundamental for our work: when starting from
non-deterministic finite automata (NFA), the powerset construction used to get
deterministic automata induces an exponential factor.

Indeed, the algorithm we introduce in this work for checking equivalence of
NFA “usually” does not build the whole deterministic automaton, but just a
small part of it. We write “usually” because in few bad cases, the algorithm still
needs exponentially many states of the DFA (otherwise we would have solved
in polynomial time the problem of language equivalence, which is PSPACE-
complete [6]).

Our algorithm is grounded on a simple observation on determinized NFA:
for all sets X and Y of states of the original NFA, the union (written +) of
the language recognised by X (written [[X]]) with the language recognised by Y
([[Y]]) is equal to the language recognised by the union of X and Y ([[X + Y]]).
In symbols:

[[X + Y]] = [[X]] + [[Y]]

This fact allows us to introduce a sound and complete proof technique for lan-
guage equivalence, namely bisimulation up to context, that exploits both induc-
tion (on the operator +) and coinduction: if a bisimulation R equates both
the (sets of) states X1, Y1 and X2, Y2, then [[X1]] = [[Y1]] and [[X2]] = [[Y2]] and,
by the above observation, we can immediately conclude that also X1 +X2 and
Y1 + Y2 are language equivalent. Intuitively, bisimulations up to context are
bisimulations which do not need to relate X1 +X2 and Y1 + Y2 when X1 (resp.
X2) and Y1 (resp. Y2) are already related.

To better illustrate this idea, consider the following example, where we check
the equivalence of the states x and u from the NFA depicted below on the left-
hand side. (Final states are overlined, labelled edges represent transitions.)

x

a

��
z

a
oo

a ''
y

a
ff

u
a ((

a

CCw
a
gg v

a
oo

{x} a //

1

{y} a //

2

{z} a //

3

{x, y} a //

4

{y, z} a //

5

{x, y, z}

a

��

6

{u}
a
// {v, w}

a
// {u,w}

a
// {u, v, w}

a

GG

The determinized automaton is depicted on the right-hand side. Each state is a
set of states of the NFA, final states are overlined: they contain at least one final
state of the NFA. The numbered lines show a relation which is a bisimulation
containing x and u. Actually, this is the relation that is built by the standard
Hopcroft and Karp’s algorithm (the numbers express the order in which each
pair is added).

The dashed lines (numbered by 1, 2 and 3) form a smaller relation which is
not a bisimulation, but a bisimulation up to context: the equivalence of states

2

{x, y} and {u, v, w} could be immediately deduced from the fact that {x} is
related to {u} and {y} to {y, w}, without the need of further exploring the
determinized automaton.

Bisimulations up-to, and in particular bisimulations up to context, have been
introduced in the context of concurrency theory [7, 8, 11] as a proof technique for
bisimilarity of CCS or π-calculus processes. As far as we know, they have never
been employed for proving language equivalence of non deterministic automata.

Among these techniques one should also mention bisimulation up to equiva-
lence, which, as we show in this paper, is implicitly used in the original Hopcroft
and Karp’s algorithm. This technique can be briefly explained by noting that
not all bisimulations are equivalence relations, and thus, it might be the case
that a bisimulation relates (for instance) X and Y , Y and Z but not X and
Z. However, since [[X]] = [[Y]] and [[Y]] = [[Z]], we can immediately conclude
that X and Z recognise the same language. Analogously to bisimulations up to
context, a bisimulation up to equivalence does not need to relate X and Z when
X and Z are already related to some Y (more generally, when X and Z belong
to the equivalence closure of the relation).

The techniques of up-to equivalence and up-to context can be combined
resulting in a powerful proof technique which we call bisimulation up to con-
gruence. Our algorithm is in fact just an extension of Hopcroft and Karp’s
algorithm that attempts to build a bisimulation up to congruence instead of a
bisimulation up to equivalence.

An important consequence, when using the up to congruence technique, is
that we do not need to build the whole deterministic automata, but just those
states that are needed for the bisimulation up-to. For instance, in the above
NFA, the algorithm stops after equating z and u + v and does not build the
remaining four states of the DFA. Despite their use of the up to equivalence
technique, this is not the case with Hopcroft and Karp’s algorithm, where all
accessible subsets of the deterministic automata have to be visited at least once.

Summarising, the contributions of this work are

(1) the observation that Hopcroft and Karp implicitly use bisimulations up
to equivalence for DFA (Section 2),

(2) a new sound and complete proof technique for proving language equiva-
lence of NFA (Section 3.1), and

(3) an efficient algorithm for checking language equivalence of NFA (Sec-
tions 3.2, 3.3, and 3.4).

Outline. The remaining of the paper is structured as follows. We recall
Hopcroft and Karp’s algorithm for DFA in Section 2, showing how it can be
interpreted in terms of bisimulation up to equivalence. We then describe our
algorithm in Section 3, based on bisimulations up to congruence. We discuss
the complexity of this algorithm in Section 4; in particular, we provide good

3

and bad cases, as well as some experimental data showing that the introduced
optimisation can be very useful in practice.

Notation. We denote sets by capital letters X,Y, S, T . . . and functions by
lower case letters f, g, . . . Given sets X and Y , X × Y is the Cartesian product
of X and Y , X] Y is the disjoint union and XY is the set of functions f : Y →
X. Finite iterations of a function f : X → X are denoted by fn (formally,
f0(x) = x, fn+1(x) = f(fn+1(x))). The collection of subsets of X is denoted
by P(X). The (omega) iteration of a function f : P(X)→ P(X) on a powerset
is denoted by fω (formally, fω(Y) =

⋃
n≥0 f

n(Y)). For a set of letters A, A∗

denotes the set of all finite words over A; ε the empty word; and w1 · w2 (and
w1w2) the concatenation of words w1, w2 ∈ A∗. We use 2 to denote the set
{0, 1} and 2A

∗
to denote the set of all formal languages over A.

2 Hopcroft and Karp’s algorithm for DFA

In this section, we introduce (1) a notion of bisimulation for proving language
equivalence of deterministic finite automata, (2) a naive algorithm that automat-
ically checks language equivalence of DFA by mean of bisimulations (Section 2.2)
and (3) the standard Hopcroft and and Karp’s algorithm (Section 2.3). More-
over, we observe that this algorithm exploits the proof technique of bisimulation
up to equivalence (Section 2.4).

A deterministic finite automaton (DFA) over the input alphabet A is a triple
(S, o, t), where S is a finite set of states, o : S → 2 is the output function, which
determines if a state x ∈ S is final (o(x) = 1) or not (o(x) = 0), and t : S → SA

is the transition function which returns for each state x and input letter a ∈ A
the next state. For a ∈ A, we will write x

a→ x′ to mean that t(x)(a) = x′. For

w ∈ A∗, we will write x
w→ x′ for the least relation such that (1) x

ε→ x and (2)

x
aw′→ x′ iff x

a→ x′′ and x′′
w′→ x′.

From any DFA, there exists a unique function [[−]] : S → 2A
∗

mapping states
to formal languages, defined as follows for all x ∈ S:

[[x]](ε) = o(x)

[[x]](a · w) = [[t(x)(a)]](w)

The language [[x]] is called the language accepted by x. Given two automata
(S1, o1, t1) and (S2, o2, t2), the states x1 ∈ S1 and x2 ∈ S2 are said to be language
equivalent (written x1 ∼ x2) iff they accept they same language.

In the following, we will always consider the problem of checking the equiv-
alence of states of one single and fixed automaton (S, o, t). We do not loose
generality since for any two DFA (S1, o1, t1) and (S2, o2, t2) it is always possible
to build the automaton (S1] S2, o1] o2, t1] t2) with

o1] o2(x) =

{
o1(x) if x ∈ S1

o2(x) if x ∈ S2

t1] t2(x) =

{
t1(x) if x ∈ S1

t2(x) if x ∈ S2 ,

4

where the language accepted by every state x ∈ S1] S2 is the same as the
language accepted by the same state in the original automaton (Si, oi, ti).

For this reason, we also work with automata without explicit initial states:
we focus on the equivalence of two arbitrary states of a fixed DFA.

2.1 Proving language equivalence via coinduction

We first define a notion of bisimulation on states. We make explicit the under-
lying notion of progression which we need in the sequel for up to techniques.

Definition 1 (Progression, Bisimulation). Given two relations R,R′ ⊆ S × S
on states, R progresses to R′, denoted R� R′ if whenever x R y then

1. o(x) = o(y) and

2. for all a ∈ A, t(x)(a) R′ t(y)(a).

A bisimulation is a relation R such that R� R.

As expected, the bisimulation proof technique is sound and complete w.r.t.
language equivalence:

Proposition 1. Two states are language equivalent iff there exists a bisimula-
tion that relates them.

Proof. Let R[[−]] be the relation {(x, y) | [[x]] = [[y]]}. We prove that R[[−]] is a
bisimulation. If x R[[−]] y, then o(x) = [[x]](ε) = [[y]](ε) = o(y). Moreover, for all
a ∈ A and w ∈ A∗, [[t(x)(a)]](w) = [[x]](a · w) = [[y]](a · w) = [[t(y)(a)]](w) that
means [[t(x)(a)]] = [[t(y)(a)]], that is t(x)(a) R[[−]] t(y)(a).

We now prove the other direction. Let R be a bisimulation. We want to
prove that x R y entails [[x]] = [[y]], i.e., for all w ∈ A∗, [[x]](w) = [[y]](w). We
proceed by induction on w. For w = ε, we have [[x]](ε) = o(x) = o(y) = [[y]](ε).
For w = a · w′, since R is a bisimulation, we have t(x)(a) R t(y)(a) and thus
[[t(x)(a)]](w′) = [[t(y)(a)]](w′) by induction. This allows us to conclude since
[[x]](a · w′) = [[t(x)(a)]](w′) and [[y]](a · w′) = [[t(y)(a)]](w′).

2.2 Naive algorithm

Figure 1 shows a naive version of Hopcroft and Karp’s algorithm for checking
language equivalence of the states x and y of a deterministic finite automaton
(S, o, t). Starting from x and y, the algorithm builds a relation R that, in case
of success, is a bisimulation. In order to do that, it employs the set (of pairs of
states) todo which, intuitively, at any step of the execution, contains the pairs
(x′, y′) that must be checked: if (x′, y′) already belongs to R, then it has already
been checked and nothing-else should be done. Otherwise, the algorithm checks
if x′ and y′ have the same outputs (i.e., if both are final or not). If o(x′) 6= o(y′),

then x and y are different (because there exists w ∈ A∗ such that x
w→ x′ and

y
w→ y′). If o(x′) = o(y′), then the algorithm inserts (x, y) in R and, for all

a ∈ A, the pairs (t(x)(a), t(y)(a)) in todo.

5

Naive(x,y)

(1) R is empty; todo is empty;

(2) insert (x, y) in todo;
(3) while todo is not empty

{
(3.1) extract (x′, y′) from todo;
(3.2) if (x′, y′) ∈ R then skip, else {
(3.3) if o(x′) 6= o(y′) then return false, else {
(3.4) for all a ∈ A, insert (t(x′)(a), t(y′)(a)) in todo;
(3.5) insert (x′, y′) in R; }}

}
(4) return true;

Figure 1: Naive algorithm for checking the equivalence of states x and y of a DFA
(S, o, t); R and todo are sets of pairs of states.

For the time being, we avoid to discuss which data structures are convenient
for implementing R and todo (as well as any complexity issue), but we just
focus our attention on the correctness of the algorithm. Just notice that the
algorithm terminates since a new pair is added to R at each iteration, and there
are finitely many such pairs. (In the sequel, when enumerating iterations, we
ignore those where a pair from todo is already in R so that there is nothing to
do—we can moreover notice that when the algorithm returns true, it necessarily
went 1 + |A| · |R| times in loop (3), where |A| and |R| respectively denote the
size of the alphabet and of the produced relation R.)

Proposition 2. For all states x and y, we have x ∼ y iff Naive(x,y).

Proof. We first observe that if Naive(x,y) returns true then the relation R
that is built before arriving to step (4) is a bisimulation. Indeed, the following
proposition is an invariant for the loop corresponding to step (3):

R� R ∪ todo

This invariant is preserved since at any iteration of the algorithm a pair (x′, y′)
is removed from todo and inserted in R unless it was already present (after
checking that o(x′) = o(y′) and adding the corresponding derivatives to todo).
Since todo is empty at the end of the loop, we actually have R� R, i.e., R is
a bisimulation. By Proposition 1, we deduce x ∼ y.

We now prove that if Naive(x,y) returns false, then x 6∼ y. Note that for
all (x′, y′) inserted in todo, there exists a word w ∈ A∗ such that x

w→ x′ and

y
w→ y′. Since o(x′) 6= o(y′), then [[x′]](ε) 6= [[y′]](ε) and thus [[x]](w) = [[x′]](ε) 6=

[[y′]](ε) = [[y]](w), that is x 6∼ y.

Since both Hopcroft and Karp’s algorithm and the one we introduce in Sec-
tion 3 are simple variations of this naive one, it is important to illustrate its

6

x
a //

1

y
a
))

2

z
a

ii

3

u
a
// v

a
))
w

a

ii

x
a,b //

1

y
a,b //

2
5

z a,bdd

3

4

v

a,b
))
w

a,b

ii

u
a

66

b

::

Figure 2: Checking for DFA equivalence, naively.

execution with an example. Consider the DFA with input alphabet A = {a}
in the left-hand side of Figure 2, and suppose we want to check if x and u are
language equivalent. During the initialisation, (x, u) is inserted in todo. At the
first iteration (of cycle (3)), since o(x) = 0 = o(u), (x, u) is inserted in R and
(y, v) in todo. At the second iteration, since o(y) = 1 = o(v), (u, v) is inserted
in R and (z, w) in todo. At the third iteration, since o(z) = 0 = o(w), (z, w) is
inserted in R and (y, v) in todo. At the fourth iteration, since (y, v) is already in
R, then the algorithm does nothing. Since there are no more pairs to check (in
todo), the relation R is a bisimulation and the algorithm terminates returning
true.

The iterations of the algorithm are concisely described by the numbered
dashed lines in Figure 2. The line i means that the connected pair is inserted
in R at iteration i.

Remark 1. Minimization [4, 2] is an alternative way of checking language
equivalence; there are two main differences.

1. Minimization algorithms equate all the language equivalent states of a
given automaton. The above naive algorithm instead checks the equiva-
lence of only two states and, at the end, not all the equivalent states are
in the relation R. For instance, the states x and w of the left-hand side
example from Figure 2 are also language equivalent, but they are not in
the relation R computed by Naive(x,u).

2. Minimization algorithms require to know from the beginning the whole au-
tomaton (X, o, t), while Naive can be executed “on the fly” [3]: it can be
executed on a lazy DFA, which is constructed on demand. This property
is essential for the algorithm that we introduce in Section 3.

2.3 Hopcroft and Karp’s algorithm

The previous naive algorithm is approximately quadratic in the number of states
of the DFA: a new pair is added to R at each iteration, and there are only n2

such pairs, where n = |S| is the number of states of the DFA.

7

HK(x,y)

(1) R is empty; todo is empty;

(2) insert (x, y) in todo;
(3) while todo is not empty

{
(3.1) extract (x′, y′) from todo;
(3.2) if (x′, y′) ∈ e(R) then skip, else {
(3.3) if o(x′) 6= o(y′) then return false, else {
(3.4) for all a ∈ A, insert (t(x′)(a), t(y′)(a)) in todo;
(3.5) insert (x′, y′) in R; }}

}
(4) return true;

Figure 3: Hopcroft and Karp’s algorithm for checking the equivalence of states x and
y of a DFA (S, o, t); R and todo are sets of pairs of states.

To make this algorithm (almost) linear, Hopcroft and Karp actually use a
union-find data structure to record a set of equivalence classes rather than a set
of visited pairs. With respect to Figure 1, it suffices to update steps 3.2 and
3.5 as follows:

(3.2) if equiv(R, x′, y′) then ...

(3.5) merge(R, x′, y′)

As a consequence, their algorithm may stop earlier, when an encountered
pair of states is not already in R but in its reflexive, symmetric, and transitive
closure. For instance in the right-hand side example from Figure 2, we can skip
the fifth pair (y, w), since y and w already belong to the same equivalence class
according to the previous four pairs. More generally, there can be at most n
iterations (two equivalence classes are merged at each iteration); the algorithm
is thus almost linear: by using a union-find data structure, steps 3.2 and 3.5

can be performed in almost constant time [13].
Let e(R) be the symmetric, reflexive, and transitive closure of a binary

relation R on states; an alternative way of presenting this algorithm, without
considering the concrete union-find data-structure, consists in simply replacing
step 3.2 with

(3.2) if (x′, y′) ∈ e(R) then ...

The whole algorithm, named HK, is given in Figure 3. We now show that this
actually corresponds to using an “up-to technique” to improve the coinductive
proof method.

2.4 Bisimulations up-to

Definition 2 (Bisimulation up-to). Let f : P(S×S)→ P(S×S) be a function
on relations on S. A relation R is a bisimulation up to f if R � f(R), i.e.,

8

whenever x R y then

1. o(x) = o(y) and

2. for all a ∈ A, t(x)(a) f(R) t(y)(a).

With this definition, Hopcroft and Karp’s algorithm just consists in building
a bisimulation up to e. To prove the correctness of the algorithm it suffices to
show that any bisimulation up to e is contained in a bisimulation. We use for
that the notion of compatible function [11, 9]:

Definition 3 (Compatible function). A function f : P(S × S)→ P(S × S) on
relations on S is compatible if it preserves progressions: for all R,R′,

R� R′ entails f(R)� f(R′) .

Theorem 1 (Correctness of compatible functions). Let f be a compatible func-
tion. Any bisimulation up to f is contained in a bisimulation.

Proof. Suppose that R is a bisimulation up to f : R � f(R). Using compat-
ibility of f and by a simple induction on n, we get ∀n, fn(R) � fn+1(R).
Therefore, we have ⋃

n

fn(R)�
⋃
n

fn(R) ,

i.e., fω(R) =
⋃
n f

n(R) is a bisimulation. This latter relation trivially contains
R, by taking n = 0.

We could prove directly that e is a compatible function; we however take a
detour to ease our correctness proof for the algorithm we propose in Section 3.

Proposition 3 (Compositionality of compatible functions). The following func-
tions are compatible:

1. the identity function id : R 7→ R;

2. the composition f ◦ g : R 7→ f(g(R)) of compatible functions f and g;

3. the union
⋃
F : R 7→

⋃
f∈F f(R) of an arbitrary family F of compatible

functions.

Proof. The first two points are straightforward; for the last one, assume that F
is a family of compatible functions. Suppose that R � R′; for all f ∈ F , we
have f(R)� f(R′) so that

⋃
f∈F f(R)�

⋃
f∈F f(R′).

As a consequence, the iteration fω of a compatible function f is compatible.

Lemma 1. The following functions are compatible:

1. the constant to identity function r : R 7→ {(x, x) | ∀x};

9

2. the converse function s : R 7→ {(y, x) | x R y};

3. the squaring function t : R 7→ {(x, z) | ∃y, x R y ∧ y R z};

Intuitively, given a relation R, (s ∪ id)(R) is the symmetric closure of R,
(r ∪ s ∪ id)(R) is its reflexive and symmetric closure, and (r ∪ s ∪ t ∪ id)ω(R)
is its symmetric, reflexive and transitive closure: we have e = (r ∪ s ∪ t ∪ id)ω.
Another way to understand this decomposition of the symmetric, reflexive, and
transitive closure function (e) is to recall that for a given R, e(R) can be defined
inductively by the following rules:

x e(R) x
r

x e(R) y

y e(R) x
s

x e(R) y y e(R) z

x e(R) z
t

x R y

x e(R) y
id

Therefore, together with Proposition 3, Lemma 1 ensures that e is compatible.

Corollary 1. For all states x and y, we have x ∼ y iff HK(x,y).

Proof. Same proof as for Proposition 2, by using the invariant R� e(R)∪ todo
for the loop. We deduce that R is a bisimulation up to e after the loop. Since
e is compatible, R is contained in a bisimulation by Theorem 1.

As an example, take the automaton on the right of Figure 2. While the
naive algorithm constructs the relation

RNaive = {(x, u), (y, v), (z, w), (z, v), (y, w)} ,

which is a bisimulation, Hopcroft and Karp’s algorithm stops one step earlier,
resulting in the relation

RHK = {(x, u), (y, v), (z, w), (z, v)} ,

which is not a bisimulation (because (x, u) ∈ RHK , x
b→ y, u

b→ w and (y, w) /∈
RHK), but a bisimulation up to e (since (y, w) ∈ e(RHK)).

Remark 2. Observe that unlike with the naive algorithm, the relation R built
from Hopcroft and Karp’s algorithm might change depending on the order in
which the pairs (x′, y′) are processed from the todo list (step (3.1)). For in-
stance, after inserting (x, u) in R, we might insert (y, w), then (z, v) and finally
(z, w), resulting in the following relation:

R′HK = {(x, u), (y, w), (z, v), (z, w)}

We can however notice that e(RHK) = e(R′HK) = e(RNaive). This actually
holds in general, whatever the order in which the todo list is processed: we
always have

RHK ⊆ RNaive ⊆ e(RHK)

10

(the first containment holds by definition of the algorithm, the second holds
because e(RHK) is a bisimulation—proof of Theorem 1, we have eω = e). It
follows that e(RHK) = e(RNaive), e being monotonic and idempotent.

Since e(RHK) is obtained by merging equivalence classes, this means that the
number of iterations required by HK does not depend on the order in which the
pairs are processed. This latter property will not hold anymore in the algorithm
that we will introduce in Section 3, so that the policy for choosing (x′, y′) in the
step (3.1) will be relevant for the efficiency of the algorithm.

3 Optimised algorithm for NFA

We now introduce our optimised algorithm for non deterministic finite automata
(NFA). We start with standard definitions about semi-lattices, NFA, determin-
isation, and language equivalence for NFA.

A semi-lattice with bottom (X,+, 0) consists of a set X and a binary opera-
tion +: X×X → X that is associative, commutative, idempotent (ACI) and has
0 ∈ X (the bottom) as identity. Since we will always consider semi-lattices with
bottom, hereafter we will avoid to specify every time “with bottom”, but we will
just write “semi-lattice”. Given two semi-lattices (X1,+1, 01) and (X2,+2, 02),
an homomorphism of semi-lattices f : (X1,+1, 01) → (X2,+2, 02) is a function
f : X1 → X2 such that for all x, y ∈ X1, f(x+1y) = f(x)+2f(y) and f(01) = 02.
The set 2 = {0, 1} is a semi-lattice when taking + to be the ordinary Boolean
or. Also the set of all languages 2A

∗
carries a semi-lattice where + is the union

of languages and 0 is the empty language. More generally, for any set X, P(X)
is a semi-lattice where + is the union of sets and 0 is the empty set.

In the rest of the paper we will indiscriminately use 0 to denote the element
0 ∈ 2, the empty language in 2A

∗
and the empty set in P(X). Analogously, +

will denote the “Boolean or” in 2, the union of languages in 2A
∗

and the union
of sets in P(X).

A non-deterministic finite automaton (NFA) over the input alphabet A is a
triple (S, o, δ), where S is a finite set of states, o : S → 2 is the output function
(as for DFA), and δ : S → P(S)A is the transition relation which assigns to each
state x ∈ S and input letter a ∈ A a set of possible successor states.

The powerset construction transforms every NFA (S, o, δ) into the DFA
(P(S), o], δ]) where o] : P(S) → 2 and δ] : P(S) → P(S)A are defined for all
X ∈ P(S) as

o](X) =

o(x) if X = {x} with x ∈ S
0 if X = 0

o](X1) + o](X2) if X = X1 +X2

δ](X)(a) =

δ(x)(a) if X = {x} with x ∈ S
0 if X = 0

δ](X1)(a) + δ](X2)(a) if X = X1 +X2

11

For an example consider the NFA (S, o, δ) depicted on the left below. Part
of the corresponding DFA is depicted on the right, where we use a new notation:
states are denoted by expressions of the form x1 + · · · + xn corresponding to
the set {x1, . . . , xn} (thus x corresponds to {x} and 0 to the empty set). Like
previously, expressions are overlined iff they are final states.

x
a // y

a
77 z

a
vv

a

}}
x

a // y
a // z

a // x+ y
a // y + z

a // x+ y + z

a

��

Observe that the state z makes one single a-transition going into x + y. This
state is final, since o](x + y) = o](x) + o](y) = o(x) + o(y) = 1 + 0 = 1.
Moreover it makes an a-transition into δ](x + y)(a) = δ](x)(a) + δ](y)(a) =
δ(x)(a) + δ(y)(a) = y + z.

The language accepted by the states of a NFA (S, o, δ) can be conveniently
defined via the powerset construction: the language accepted by x ∈ S is the
language accepted by the singleton {x} in the DFA (P(S), o], δ]), in symbols
[[{x}]]. Therefore, in the following, instead of considering the problem of lan-
guage equivalence of states of the NFA, we will focus on language equivalence
of sets of states of the NFA: given the sets of states X and Y in P(S), we say
that X and Y are language equivalent (X ∼ Y) iff [[X]] = [[Y]]. This is exactly
what happens in classical automata theory where NFA are equipped with a set
of initial states.

It is worth to note that, by definition, both o] and δ] are semi-lattices ho-
momorphisms. This property will be fundamental in Lemma 2 for proving the
soundness of the up-to technique we are going to introduce. Moreover it induces
compositionality of language equivalence, as stated by following theorem.

Theorem 2. Let (S, o, δ) be a non-deterministic automaton and (P(S), o], δ])
be the corresponding deterministic automaton obtained through the powerset con-
struction. The function [[−]] : P(S)→ 2A

∗
is a semi-lattice homomorphism, that

is, for all X1, X2 ∈ P(S),

[[X1 +X2]] = [[X1]] + [[X2]] and [[0]] = 0 .

Proof. We prove that for all words w ∈ A∗, [[X1+X2]](w) = [[X1]](w)+[[X2]](w),
by induction on w.

• for ε, we have:

[[X1 +X2]](ε) = o](X1 +X2) = o](X1) + o](X2) = [[X1]](ε) + [[X2]](ε) .

12

• for a · w, we have:

[[X1 +X2]](a · w)

= [[δ](X1 +X2)(a)]](w) (by definition)

= [[δ](X1)(a) + δ](X2)(a)]](w) (by definition)

= [[δ](X1)(a)]](w) + [[δ](X2)(a)]](w) (by induction hypothesis)

= [[X1]](a · w) + [[X2]](a · w) . (by definition)

For the second part, we prove that for all words w ∈ A∗, [[0]](w) = 0, again by
induction on w. Base case: [[0]](ε) = o](0) = 0. Inductive case: [[0]](a · w) =
[[δ](0)(a)]](w) = [[0]](w) that by induction hypothesis is 0.

In order to check if the sets of states X and Y of an NFA (S, o, δ) are
language equivalent, we can employ bisimulation on the DFA (P(S), o], δ]). In
other words, a bisimulation for a NFA (S, o, δ) is a relation R ⊆ P(S) × P(S)
on sets of states, such that whenever X R Y then

1. o](X) = o](Y) and

2. for all a ∈ A, δ](X)(a) R δ](Y)(a).

Since this is just the old definition of bisimulation (Definition 1) applied on
(P(S), o], δ]), it is immediate to see that X ∼ Y iff there exists a bisimulation
that relates them.

Remark 3 (Linear time v.s. branching time). It is important not to confuse
these bisimulation relations with the standard Milner-and-Park bisimulations [7]
(which strictly imply language equivalence): in a standard bisimulation R if the
following states x and y are in R,

x1
...x

a 55

a))
xn

y1
...y

a 55

a))
ym

then each xi should be in R with some yj (and vice-versa). Here, instead, we
first transform the transition relation into

x
a // x1 + · · ·+ xn y

a // y1 + · · ·+ ym ,

using the powerset construction, and then we require that x1 + · · · + xn and
y1 + · · ·+ ym are related by R.

3.1 Bisimulation up to congruence

As explained in the introduction, we rely on the notion of bisimulation up to
congruence. More precisely, this notion of congruence has to be understood
w.r.t. set theoretic union of sets of states (+). We start with the following
notion of congruence closure:

13

Definition 4 (Congruence closure). Let u : P(P(S)×P(S))→ P(P(S)×P(S))
be the function on relations on sets of states defined as:

R 7→ {(X1 +X2, Y1 + Y2) | X1 R Y1 ∧X2 R Y2} .

The function c = (r ∪ s ∪ t ∪ u ∪ id)ω is called the congruence closure function.

Intuitively, c(R) is the smallest equivalence relation which is a congruence
with respect to the operation + and which includes R. It could alternatively be
defined inductively using the rules r, s, t, and id from the previous section, and
the following one:

X1 c(R) Y1 X2 c(R) Y2

X1 +X2 c(R) Y1 + Y2
u

(Note that we do not include a rule for the constant 0 since it is subsumed by
reflexivity (r).) Here is a concrete example; consider the following relation:

R = {(x, y + z), (u, y + v)} .

By summing these two pairs using rule u, we deduce x+ u c(R) y + z + v, and
since u R y + v, we also get x + u c(R) z + u. We can deduce many other
equations; in fact, c(R) defines the following partition of sets of states:

{0} {y} {z} {v} {z + v}

{x, y + z, x+ z, x+ y, x+ y + z} {u, y + v, u+ v, y + u, y + u+ v}

{x+ u, z + u, y + z + v, and the 14 remaining sets} .

Lemma 2. The function u is compatible.

Proof. Suppose that R � R′, we have to show u(R) � u(R′). Suppose that
X u(R) Y , i.e., X = X1 + X2 and Y = Y1 + Y2 for some X1, X2, Y1, Y2 such
that X1 R Y1 and X2 R Y2. By assumption, we have

o](X1) = o](Y1) o](X2) = o](Y2)

t](X1)(a) R′ t](Y1)(a) t](X2)(a) R′ t](Y2)(a) (for all a ∈ A)

Since o] and t] are homomorphisms, we deduce

o](X1 +X2) = o](Y1 + Y2)

t](X1 +X2)(a) u(R′) t](Y1 + Y2)(a) (for all a ∈ A)

Theorem 3. Any bisimulation up to c is contained in a bisimulation.

Proof. By Theorem 1, it suffices to show that c is compatible, which follows
from Lemmas 1 and 2, and Proposition 3.

14

x
a //

a

��

u

a

��
y

a
// v

a

^^

a

OO

x
a //

1

y + u

a
%%

4
x+ u+ v

a
&&

6
y + u+ v

a
''

8

y
a
// v

a
//

2

x+ u

a

OO

3
y + v

a

OO

5
x+ y + u

a

OO

7
x+ y + u+ v

a

��

Figure 4: Bisimulations up to congruence, on a single letter NFA.

We already gave an example of bisimulation up to context in the introduc-
tion, which is a particular case of bisimulation up to congruence (up to context
corresponds to using the function (u ∪ id)ω, where we do not close the given
relation under reflexivity, symmetry, and transitivity).

A more involved example illustrating the use of all ingredients of the congru-
ence closure function (c) is given in Figure 4. The relation R expressed by the
dashed numbered lines (formally R = {(y, x), (v, y + u)}) is neither a bisimula-
tion, nor a bisimulation up to equivalence, since v → x+ u and y + u→ y + v,
but (x + u, y + v) /∈ e(R). However, R is a bisimulation up to congruence: we
have (x+ u, y + v) ∈ c(R):

x+ u c(R) y + u ((y, x) ∈ R)

c(R) y + y + u (+ is idempotent)

c(R) y + v ((v, y + u) ∈ R)

In contrast, we need eight pairs to get a bisimulation up to e containing the
pair (y, x): this is the relation depicted with both dashed and dotted lines in
Figure 4.

3.2 Optimised algorithm for NFA

As expected, this up-to congruence proof technique can be turned into an al-
gorithm HKC for checking equivalence of sets of states in an NFA. The code is
given in Figure 5. It basically corresponds to Hopcroft and Karp’s algorithm
(Figure 3), except that:

1. the states of the underlying DFA are computed on the fly, by the powerset
construction;

2. we use the up-to congruence technique in step 3.2.

15

HKC(X,Y)

(1) R is empty; todo is empty;

(2) insert (X, Y) in todo;
(3) while todo is not empty

{
(3.1) extract (X ′, Y ′) from todo;
(3.2) if (X ′, Y ′) ∈ c(R) then skip, else {
(3.3) if o](X ′) 6= o](Y ′) then return false, else {
(3.4) for all a ∈ A, insert (δ](X ′)(a), δ](Y ′)(a)) in todo;
(3.5) insert (X ′, Y ′) in R; }}

}
(4) return true;

Figure 5: On the fly and up-to congruence variant of Hopcroft and Karp’s algorithm,
for checking the equivalence of sets of states X and Y of a NFA (S, o, δ).

Corollary 2. For all sets of states X and Y , we have X ∼ Y iff HKC(X,Y).

Proof. Same proof as for Proposition 2, by using the invariant R� c(R)∪ todo
for the loop. We deduce that R is a bisimulation up to c after the loop. We
conclude with Theorem 3.

3.3 Computing the congruence closure

In the algorithm of Figure 5, we need to check whether some pairs belong to
the congruence closure of the current relation R (step 3.2). We present here
a simple solution, based on rewriting modulo associativity, commutativity, and
idempotence (ACI).

The idea is to look each pair (X,Y) in the relation R as a pair of rewriting
rules, which we will use to compute normal forms for sets of states:

X → X + Y

Y → X + Y .

Indeed, by idempotence, X R Y entails X c(R) Y c(R) X + Y .

Definition 5. Let R ⊆ P(S) × P(S) be a relation on sets of states. The
rewriting relation R ⊆ P(S)×P(S) is the smallest irreflexive relation defined
by the following rules:

X R Y

X R X + Y

X R Y

Y R X + Y

Z R Z
′

U + Z R U + Z ′

Lemma 3. The rewriting relation R is convergent and contained in c(R).

16

Proof. We have that Z R Z
′ implies |Z ′| > |Z|, where |X| denotes the cardi-

nality of the set X (note that R is irreflexive). Since |Z ′| is bounded by |S|,
the number of states of the NFA, the relation R is strongly normalising. We
can also check that whenever Z R Z1 and Z R Z2, either Z1 = Z2 or there
is some Z ′ such that Z1 R Z

′ and Z2 R Z
′. Therefore, R is convergent.

Finally, if Z R Z ′ then there exists (X,Y) ∈ (s ∪ id)(R) such that Z =
Z + X and Z ′ = Z + Y . Therefore Z c(R) Z ′ and, thus, R is contained in
c(R).

In the sequel, we denote by X↓R the normal form of a set X w.r.t. R.
Intuitively, the normal form of a set is the largest set of its equivalence class.

Recalling the example from Figure 4, the common normal form of x + u and
y + v can be computed as follows (R is the relation {(y, x), (v, y + u)}):

x+ u

''
y + v

ww
x+ y + u

**
x+ y + v

tt
x+ y + u+ v

Lemma 4. Let X,Y ∈ P(S), we have (X + Y)↓R = (X↓R + Y ↓R)↓R.

Proof. Follows from confluence (Lemma 3) and from the fact that for all Z,Z ′, U ,
Z R Z

′ entails U + Z R U + Z ′.

Theorem 4. We have (X,Y) ∈ c(R) iff X↓R = Y ↓R.

Proof. From left to right. We proceed by induction on the derivation of (X,Y) ∈
c(R). The cases for rules r, s, and t are straightforward. For rule id, suppose
that X R Y , we have to show X↓R = Y ↓R:

• if X = Y , we are done;

• if X (Y , then X R X + Y = Y ;

• if Y (X, then Y R X + Y = X;

• if neither Y ⊆ X nor X ⊆ Y , then X,Y R X + Y .

(In the last three cases, we conclude by confluence—Lemma 3.)
For rule u, suppose by induction that Xi↓R = Yi↓R for i ∈ 1, 2; we have to show
that (X1 + Y1)↓R = (X2 + Y2)↓R. This follows by Lemma 4.

From right to left. By Lemma 3, we have X c(R) X↓R for any set X, so that
X c(R) X↓R = Y ↓R c(R) Y .

In the corresponding normalisation algorithm, each pair of R may be used
only once as a rewriting rule. However, we do not know in advance in which
order to apply these rules. Therefore, checking whether (X,Y) ∈ c(R) with this
algorithm requires time proportional to r2n, where r = |R| is the size of the

17

relation R, and n = |S| is the number of states of the NFA (assuming linear
time complexity for set-theoretic union and containment of sets of states).

There is room for optimisation; we could try for instance to normalise the
set of rewriting rules when adding new rules (step 3.5), or to optimise rewriting
rules during normalisation (like it is done with the union-find data structure,
where paths are compressed during the find operation). We could also look for
better data structures to represent congruence classes. We leave this for future
work: this is orthogonal to the ideas presented here.

3.4 Heuristics matters

Like Hopcroft and Karp’s algorithm for DFA (Figure 3), our algorithm for NFA
produces a relation which is not a bisimulation, only a bisimulation up-to (here,
up to congruence). The same argument as in Remark 2 can be made: while the
produced relation depends on the order in which todo is processed, its congru-
ence closure, which is a bisimulation, does not. However, unlike from Hopcroft
and Karp’s algorithm, the number of steps required to build this bisimulation
up-to does depend on this choice.

Consider for instance the following NFA over the alphabet A = {a, b}:

x
a
66 z bdd

a,b
vv

a,booya,b ::

a,b

OO
a

HH

Starting from the singleton sets {x} and {y}, the algorithm may compute a
bisimulation up to congruence containing three or four pairs. If we start with
the b-transitions, we reach the pair (0, x+ y), which imposes strong constraints
(namely, both x and y are empty) so that most subsequent visited pairs are
already in the congruence closure:

x
a //

b

++
1

z

a

��

b

tt
x+ y + z

a,b

XX 3
0 a,b
zz

2

y

a
::

b
// x+ y

a

jj

b

XX

pairs
ε x− y
b 0− x+ y
a z ... x+ y + z
bb 0 ... x+ y
ba 0− x+ y + z
bab 0 ... x+ y + z
baa 0 ... x+ y + z

(On the right-hand side, we list the visited pairs, marking them with a dash
(−) when they are added to R, and with dots (...) when they already belong to
c(R).) On the contrary, if we delay the processing of (0, x+ y), the other pairs

18

we add to R are less constraining, so that we need one more step, as illustrated
below:

x
a //

b

++
1

z

a

��

b

vv
x+ y + z

a,b

XX

2

0 a,b
zz

4

y

a
::

b
// x+ y

a

hh

b

XX

3

pairs
ε x− y
a z − x+ y + z
aa x+ y− x+ y + z
aaa x+ y + z ... x+ y + z
aab x+ y ... x+ y + z
ab x+ y + z ... x+ y + z
b 0− x+ y
ba 0 ... x+ y + z
bb 0 ... x+ y

While the order in which letters of the alphabet should be processed to be
optimal seems hard to guess, empiric experiments tend to show that it is usually
better to explore the underlying DFA in a breadth first manner rather than in
depth first. Other heuristics are possible, like guessing which pairs will impose
strong constraints in the congruence closure of the relation R, or which ones
will result in small sub-DFA. We leave the study of such ideas for future work.

4 Complexity hints

We do not know how to properly analyse the complexity of our algorithm, for
several reasons:

1. it depends on the heuristic we use to decide in which order to process the
pairs in todo;

2. it depends on the algorithm we use to check whether a pair belongs to the
congruence closure of a finite relation, and the algorithm we proposed in
Section 3.3 to this end can certainly improved;

3. the worst case complexity might not be representative of the actual be-
haviour in practice (this holds also for Hopcroft and Karp’s algorithm:
NFA which produce very large DFA by the powerset construction are not
so frequent);

4. an average-case analysis seems out of reach: we found no results about
Hopcroft and Karp’s algorithm in the literature, here we would moreover
need to understand the average size of the minimal relation generating a
given congruence (this is trivial for equivalences).

Therefore, we only provide partial answers here: we first give an example
showing that HKC can be exponentially better than HK; we then show a bad case,
where both algorithms behave the same and require exponential time; we finally
give experimental data obtained on all small NFA and on larger random NFA.

19

x
a,b
// x0

a,b // · · ·
a,b // xn a,bhh

y
a //a,b :: y0

a,b // · · ·
a,b // yn

z
b //a,b :: z0

a,b // · · ·
a,b // zn

Figure 6: Cases where HKC is linear while HK requires exponential time.

In all cases, we focus on the size of the constructed bisimulation up-to: this
does not depend on the implementation of the congruence closure, and this
number is strongly related to the number of iterations (as mentioned before
Proposition 2, the main loop is executed 1 + |A| · |R| times, where |A| and |R|
respectively denote the size of the alphabet and of the produced relation R).

4.1 Good cases

Consider the family of NFA given in Figure 6, where n is an arbitrary natural
number. They intuitively correspond to the following regular expressions, and
we have we have x ∼ y + z.

x : (a+ b)n+1 · (a+ b)?

y : (a+ b)? · a · (a+ b)n

z : (a+ b)? · b · (a+ b)n

The top automaton (x) is already deterministic, and the two other ones (y
and z) yield exponential minimal DFA (in fact, starting from state y or z, the
powerset construction results in a minimal DFA which has 2n+1 states; starting
from state y + z, it yields a DFA with 2n+2 − 1 states which is not minimal—x
is the minimal DFA in this case).

While the standard algorithm (HK) requires 2n+2 − 1 steps to prove that
x ∼ y + z (all states of both DFA have to be mentioned in a bisimulation up
to equivalence), our algorithm (HKC) requires only 2n+ 3 steps with a breadth
first heuristic for picking pairs from todo. Indeed, it constructs the following
relation:

Rn = {(x, y + z)}
∪ {(xi, y + y0 + · · ·+ yi + z) | 0 ≤ i ≤ n} (1)

∪ {(xi, y + y0 + · · ·+ yi−1 + zi + z) | 0 ≤ i ≤ n} . (2)

We have |Rn| = 2n + 3 and we can check that Rn is a bisimulation up to
congruence:

20

Lemma 5. For all natural numbers n, Rn is a bisimulation up to c for the NFA
depicted in Figure 6.

Proof. First notice that

y + y0 + z c(Rn) y + z0 + z , (†)

since these two sets are related to x0 by Rn, and

xi c(Rn) y + y0 + · · ·+ yi + zi + z , (‡)

by summing up pairs (1) and (2) and using idempotence. We then consider each
kind of pair of Rn separately:

• (x, y + z): we have t](x)(a) = x0 Rn y + y0 + z = t](y + z)(a), similarly,
t](x)(b) = x0 Rn y + z0 + z = t](y + z)(b).

• (xi, y + y0 + · · ·+ yi + z) for i < n: we have

t](xi)(a) = xi+1

Rn y + y0 + · · ·+ yi + yi+1 + z (by (1))

= t](y + y0 + · · ·+ yi + z)(a) , and

t](xi)(b) = xi+1

Rn y + y0 + · · ·+ yi + yi+1 + z (by (1))

c(Rn) y + y1 + · · ·+ yi + yi+1 + z0 + z (by (†))
= t](y + y0 + · · ·+ yi + z)(b) ;

• (xi, y + y0 + · · ·+ yi−1 + zi + z) for i < n: we have

t](xi)(a) = xi+1

Rn y + y0 + · · ·+ yi + zi+1 + z (by (1))

= t](y + y0 + · · ·+ yi−1 + zi + z)(a) , and

t](xi)(b) = xi+1

Rn y + y0 + · · ·+ yi + zi+1 + z (by (2))

c(Rn) y + y1 + · · ·+ yi + zi+1 + z0 + z (by (†))
= t](y + y0 + · · ·+ yi−1 + zi + z)(b) ;

• (xn, y + y0 + · · ·+ yn + z): we have

t](xn)(a) = xn

Rn y + y0 + · · ·+ yn + z (by (1))

= t](y + y0 + · · ·+ yn + z)(a) , and

t](xn)(b) = xn

Rn y + y0 + · · ·+ yn + z (by (1))

c(Rn) y + y1 + · · ·+ yn + z0 + z (by (†))
= t](y + y0 + · · ·+ yn + z)(b) ;

21

• (xn, y + y0 + · · ·+ yn−1 + zn + z): we have

t](xn)(a) = xn

c(Rn) y + y0 + · · ·+ yn + zn + z (by (‡))
= t](y + y0 + · · ·+ yn−1 + zn + z)(a) , and

t](xn)(b) = xn

c(Rn) y + y0 + · · ·+ yn + zn + z (by (‡))
c(Rn) y + y1 + · · ·+ yn + zn + z0 + z (by (†))
= t](y + y0 + · · ·+ yn−1 + zn + z)(b) .

Considering heuristics, notice that the breadth-first strategy is crucial to
get this behaviour: with a depth-first strategy, we would not add the pairs
(x0, y + y0 + z) and (x0, y + z0 + z) from the beginning, and these pairs, which
entail (†), are used to skip most pairs appearing during the unfolding of the DFA.
Indeed, using to depth-first strategy, we get bisimulations up to congruence
whose size is exponential—although they are smaller than the bisimulations up
to equivalence obtained with HK.

4.2 Bad cases

Even though the previous example shows that our algorithm can be polynomial
where the standard Hopcroft and Karp’s algorithm is exponential, the problem
of checking language equivalence of NFA is PSPACE-complete [6], and NP-
complete when restricted to the one-letter case. We now give an example in the
one-letter case where our algorithm requires exponential time (a nice property
in the one-letter case is that todo contains at most one element, which means
that we do not have to chose a heuristic for extracting pairs from that set).

The example is given in Figure 7; it consists of the DFA corresponding to
the full language (state x) which we compare with the parallel composition of
cycles of a length varying in [1..n], for a given natural number n. In regular
expressions syntax, it amounts to the following (trivial) equation:

a? =
n∑
i=1

(ai)? .

For any natural number k, let Sk be the following set of states:

Sk =

n∑
i=1

xik mod i .

For all k, we have Sk
a→ Sk+1, and this sequence is periodic, of period p =

lcm[1..n], the least common multiplier of the first n positive numbers (known
to be greater than 2n for n > 7).

By running Hopcroft and Karp’s algorithm between x and S0, we get a
bisimulation up to equivalence in p steps (this relation is actually a bisimulation,

22

x

a

ZZ

x10

a

WW
x20

a
��
x21

a

UU
x30

a

��
x31 a

// x32

a

VV
x40

a ��
x41
a ��

x43

aZZ

x42
a
DD

x50
a

{{
x51
a ��

x54

acc

x52 a
// x53

a
DD

. . .

Figure 7: Bad case, where HK and HKC behave the same and require exponential time
with one-letter automata

the up-to equivalence technique is not used). We can show that the optimised
algorithm behaves exactly the same: the up-to congruence technique does not
help. Intuitively, at the j-th iteration, we have

R = {(x, Sk) | k < j} ;

therefore if j < p then (x, Sj) does not belong to R. This pair does not belong
to c(R) either: x↓R = x +

∑
k<j Sk while Sj is in normal form and does not

contain x.

Remark 4. Note that if we merge states x and x10 in this example, the standard
algorithm still requires lcm[1..n] steps, but the optimised one only requires n
steps: at step n− 1, we have

R = {(x00, Sk) | k < n} ,

and now, the pair (x00, Sn) belongs to c(R): x00↓R ⊆ Sn↓R, since x00 belongs to
Sn; and x00↓R is the full state, i.e., {xji | i < j}, since we went through all states
of each cycle. Therefore, x00↓R = Sn↓R, and thus x00 c(R) Sn by Lemma 4.

4.3 Experimental data

We performed an exhaustive simulation for small NFA with one letter. The
results are summarised in the table below: for each line, we ran the two algo-
rithms on all NFA, storing the size of the largest bisimulation up-to obtained in
this way (i.e., the worst case).

|S| worst case
HK HKC

3 5 3
4 12 5
5 17 7
6 26 9

23

These exhaustive computations are not tractable for larger sizes, and the
apparent linear behaviour for HKC is a trap, as the example from Section 4.2
shows. To get an intuition of the behaviour of our algorithm on larger NFA, we
performed a few tests on random automata:

|S| HK HKC

mean median mean median
20 710.3 653.0 15.5 14.0
30 4884.1 4367.0 19.4 19.0

Here we worked with an alphabet of three letters, the probability to have
a transition with a given label between two nodes is 10% in the first line, 5%
in the second one (we chose these values to avoid getting NFA which mostly
degenerate into trivial DFA). In both cases the mean and the median values
were computed based on 1000 experiments, and we used a breadth-first heuristic
in the implementation of HKC.

These preliminary experimental results look really promising; we would like
to understand whether it is possible to assess them more formally.

Acknowledgements.

We are grateful to Marcello Bonsangue, Jan Rutten, and Alexandra Silva for
the helpful discussions we had.

References

[1] M. Bonsangue A. Silva, F. Bonchi and J. Rutten. Generalizing the powerset
construction, coalgebraically. In Proc. FSTTCS, volume 8 of LIPIcs, pages
272–283. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[2] J. A. Brzozowski. Canonical regular expressions and minimal state graphs
for definite events. In Mathematical Theory of Automata, volume 12(6),
pages 529–561. Polytechnic Press, NY, 1962.

[3] J.-C. Fernandez, L. Mounier, C. Jard, and T. Jron. On-the-fly verification
of finite transition systems. Formal Methods in System Design, 1(2/3):251–
273, 1992.

[4] J. E. Hopcroft. An n log n algorithm for minimizing in a finite automaton.
In Proc. International Symposium of Theory of Machines and Computa-
tions, pages 189–196. Academic Press, 1971.

[5] J. E. Hopcroft and R. M. Karp. A linear algorithm for testing equivalence
of finite automata. Technical Report 114, Cornell University, December
1971.

24

[6] A.R. Meyer and L. J. Stockmeyer. Word problems requiring exponential
time. In Proc. STOC, pages 1–9. ACM, 1973.

[7] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[8] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I/II.
Information and Computation, 100(1):1–77, 1992.

[9] D. Pous. Complete lattices and up-to techniques. In Proc. APLAS, volume
4807 of Lecture Notes in Computer Science, pages 351–366. Springer, 2007.

[10] J. Rutten. Automata and coinduction (an exercise in coalgebra). In Proc.
CONCUR, volume 1466 of Lecture Notes in Computer Science, pages 194–
218. Springer, 1998.

[11] D. Sangiorgi. On the Bisimulation Proof Method. Journal of Mathematical
Structures in Computer Science, 8:447–479, 1998.

[12] D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge
University Press, 2011.

[13] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22(2):215–225, 1975.

25

	Introduction
	Hopcroft and Karp's algorithm for DFA
	Proving language equivalence via coinduction
	Naive algorithm
	Hopcroft and Karp's algorithm
	Bisimulations up-to

	Optimised algorithm for NFA
	Bisimulation up to congruence
	Optimised algorithm for NFA
	Computing the congruence closure
	Heuristics matters

	Complexity hints
	Good cases
	Bad cases
	Experimental data

