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Abstract.

The aim of this work is to study the fundamental compressifir@,1)) Pochhammer-Chree mode interaction with non-
axisymmetric damages in cylinders. To this end, experialesmid numerical investigations of non-axisymmetric \oeti
cracks are considered. A non-contact magnetostrictiveeeés used for experimental investigations. Magnetastgdrans-
ducers are used to generate and receive compressionatiguédes. These are enabled by using an axisymmetric and longi
tudinal magnetic polarising field. Both, the incident ane taflected signals are acquired by the same receiver wHimhisal
a direct calculation of the reflected power flow. Differenttigal cracks with various depths milled in steel cylinders
considered. The power flows are compared with those obtdigealthree dimensional numerical method. This numerical
method is based on a hybrid three dimensional (3D) approastbining the classical finite element (FE) method with the
semi-analytical finite element (SAFE) technique. The nesdd Surrounding the damage is analysed with the 3D FE method
whereas transparent conditions are applied to the wave gictions for the far field analysis. These transparentitons!
are based on modal expansions on cross-sections. The Salrfidee is used to compute the eigenmodes. Eigenforces and
modal power flows are post-processed on a straightforwayd kiest, the hybrid method is validated with published tesu
in the literature obtained for a free-end cylinder. Finatlymerical and experimental results are compared withesscc
Keywords: Guided waves, cylinders, vertical cracks, 3D hybrid FE-EARagnetostrictive transducers.
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INTRODUCTION

The interaction of guided waves with damages is a complex@menon and have been studied analytically [1, 2],
numerically [3, 4] and experimentally [5]. Analytical agaches are known to be fast from a computational point of
view but generally limited to simple geometries and disturities. However, numerical methods allowing complex-
shaped waveguides or damage geometries are very time cogsiybrid approaches, combining a FE method and
the normal mode expansion technique have been developstiftying wave scattering by defects in plates [6, 7]. The
modal decomposition performed both at the inlet and oufleteaveguide FE model, by using analytical solutions for
the guided modes of the considered structure which, cant@dimited to a small region surrounding the defect. The
scattered solution is computed for each frequency andgditectly the coefficients of scattered modes without any
post-processing. Analytical solutions for guided modeg&tseen replaced in several occasions by the semi-andlytica
finite element (SAFE) technique (see e.g. Refs. [8, 9]) te gise to the so-called hybrid FE-SAFE method capable
of handling arbitrary cross-sections with complex-shagefibcts (see for instance [10, 11, 12]). In the first part,
we present a study of the interaction of guided waves with-axaaymmetric cracks in infinite circular cylinders.It
is based on the development of a general 3D hybrid FE-SAFEepire. A 3D variational formulation of the FE
method is used and combined with a normal mode expansioredpplthe cross-sections of the cylindrical waveguide
which enables the separation between ingoing and outgoodem The SAFE technique is used to compute the
eigenvectors of the eignmodes. Then, forces are derivedtlifrom the SAFE matrices as well as power reflection
and transmission coefficients. This allows to dispensethihedious step of post-processing for computing condiste
load eigenvectors. In the second part, the 3D hybrid FE-Spielictions are compared to experimental data for the
reflection of the (L(0,1)) fundamental Pochhammer-Chreéenfoom non-axisymmetric vertical cracks. These are
achieved for various depths using a pulse echo magnetosdritevice.
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FIGURE 1. Description of the problem.

HYBRID FE-SAFE METHOD

General description of the problem

Figure 1 depicts a damage located inside an arbitrary voMneennected to two semi-infinite arbitrary cross-
section waveguides. The interior region is connected tdehiend right waveguides through boundaries den&ed
and Sy, respectively. The volume is bounded §yand S and by a traction free bounda§y. In a first step, for the
volumeV, a standard FE method with a time harmonic regime is used [13]
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The classical FE discretised variational formulation carphrtitioned on the volum¥ as follows (here interior
forces are not considered) :
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whereU,, U, andUr respectively denote the left, interior and right displaeetdofs Dj; = Kjj — WM ij(,i=L1LR
are the associated partitions related to stiffness and measttitiest represents external time harmonic forcéé.
denotes virtual fieldgp is the angular frequency. Then, on the waveguide cros®sscthe displacements and forces
are expanded into sums of modes. Qnthe sum is decomposed into ingoin and outgoing modesSQonly the
outgoing modes are taken into account which enforces th#ideats of ingoing modes to zero giving rise to a
transparent boundary condition. Displacements and faredke left and right sections are then given by:
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wheren denotes the mode numbé¥™ andNg are the number of modes considered in the expansigis(n =
1., NLi) andag, (n=1,...,Ng) are the left and right displacement modal amplitudes,aetsgely. Egs. (3) can be
transformed into products of matrices. For the left sectamefficients of positive-going modes are imposed so that
da;t, = 0. Displacements, forces and virtual displacements cantibeexpressed as:
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(4)

For any trial fieldda; , dU; andday, and after rearrangements one can obain the followingrigiedal system:
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The unknown vectore , U; anda are found by solving the above linear system at each frequenc

In a second step, the SAFE method is used in order to deteitménelastic guided modes for the left and right
cross-sections of the interior region. This technique ceduhe analysis of three dimensional waveguides to two
dimensions by using a spatial Fourier transform along tlepggation directionu(x,y,z) = u(x,y)e"1¥?, wherek is
the wavenumber anglis the propagation direction). Only the cross-sectionghawe meshed, allowing a fast and
accurate computation of eigenmodes for any arbitrary eseson. The SAFE variational formulation is written as:

SU (K1 — w?Ms— jk (Ko —KJ) +k°K3)U=0, (6)

obtained from the following elementary matric&s$ = [ BICB; dS K§ = [¢BJCB; dSandK$ = [ BJCB; dS

ME = j‘sepNeTNe dS whereB; = LXNf; + LyN’fy andB, = LN, N?X, Ney Ly, Ly andL; are defined in a previous
work [13]. By fixing the angular frequenay and finding the wavenumbér Eq. (6) leads to a quadratic eigenvalue
problem. The resolution of this system, after linearigatir the left (right) cross-section gives wavenumbgrs
(krn) and modeshaped , (Urn). The separation into ingoing and outgoing modes then yigidd displacement modal
basesBL g Used in the previous subsection. The next step is to deterthexmodal bases of forcé‘%R The idea is

to derive forces directly from SAFE matrices. For clarigt Uis first consider the right cross-section. From the third
left integral of Eq. (1) and the application of normal modgansions, forces on the right section can be rewritten

as:0Uf fr= Jg, ou’ ( g Ot Rn) dS For one element of surfacéu™ = 5U¢' N€'. Following the approach as in
Treysséde [14] for computing the energy velocity, we vedifieatt = L] 0%, = L] C (B1+ jkiB2) ULS, which

yields: UL fr = dUL Z:El o, (K2 + jkiKs) Uk, This result defines explicitly the forcég,, involved inside the
modal basisT} as:fh, = (K2+ jkiK3) Uk, whereK; andK3 are the SAFE matrices associated with the right
section. Once the displacement modal bases are obtaimethlttulation of modal bas@s" and T is then direct and
consistent with the used FE approximation. For hybrid FE-EAnethods, this may simplify greatly the tedious post-
process of consistent loads based on displacement deeisatssociated with each mode. In the final step, the power

reflection and transmission coefficients are computed higlidiy the reflected and transmitted powers by the incident
P +
P_Ilna Tmn P+ 1
Pty P, andPg, are computed with derlved equations from Poynting vect@indien and Auld’s [1] orthogonality
relat|onsh|p

power, respectivelyRm, = wheremis the incident moda) is the reflected or transmitted mode, and

EXPERIMENTAL RESULTS

Experimental tests were carried out in order to validate gimeulation results relative to the sensitivity of the
axisymmetric L(0,1) mode to vertical notches in a cylinddmple vertical notches were progressively created with
a hand saw to the depths of 0.4, 1.2, 2.2, 3.5, 4.2 mm until &amput in a steel cylinder specimen of 5.4 mm in
diameter and length L of 6 m. The time history signal of thespydropagating along the cylinder was recorded for each
notch depth.Time domain measurements were performedsemdho using non-contact magnetostrictive transducers
[15, 16]. The magnetostrictive device consists of two sraadircling dynamic coils for the emission and reception,
respectively, and each coil is mounted coaxially with a soi@. The magnetic polarizing field strength imposed
along the longitudinal direction by the solenoid allows thevice to excite and detect longitudinal guided waves.
The magnetostrictive transducers operate in the low-&aqy range (her® is lower than 1.5). The geometrical
arrangement of the non-contact transducers allows sysitersaordings of both the incident and reflected waves for
each notch depth. In order to obtain time-resolved echaas@ interference between echoes from the defect and from
the ends of the cylinder), the defect, the transmitter ardifitector are positioned at 5L/8, L/4 and L/2 respectively.
This gives notch-to-transducer distances respectiveBt (8 for the transmitter and L/8 for the detector respetyive
Excitation of the L(0,1) mode was achieved by driving thensmaitter with a ten cycle gaussian-shaped tone-burst
whose maximum frequency is lower than the cut-off frequesfaye L(0,2) mode. The excitation center-frequencies
were varied between 100 to 230 kHz by 10 kHz steps. The fouttiese domain signals were then processed to
extract the reflection coefficient in the frequency domaierdthe L(0,1) mode reflection coefficient was derived by
dividing the spectral component of the L(0,1) reflected pig the spectral component of the L(0,1) incident pulse at
the center-frequency of the excitation pulse. Figure 2aqres the modulus of the reflection coefficient of the L(0,1)



! ‘ ‘ R Y= Tooknz .
+ 165kHz Experiment
Notch depth (mm) o 230kHz
0.8[  expe SIMU 1 0.8 Model
o 04 - 135
x 12 - 27n
+ 22 -- 4.06 °
0.6f o i3 ‘ L 000 2% o.6f
— * Total cut . ° O et _
x 0 0 .-t 'Y
o O L. -
0.4f Ot e 0.4f o
.- | o
|
.7 ! :
0.2 1 0.2
e o
e & Lt
0 e = 0 8o L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 4 5

2 3
Notch depth (mm)

FIGURE 2. Experimental and simulated L(0,1) reflection coefficiestadunction of (a) normalised frequency for various notch
depths and (b) the notch depth for the low-, mid- and highterdinequencies.

mode as a function of the normalised frequency both for thEeemental and simulated datasets. Simulations are
done for a Poisson’s coefficient of 0.31. This first experitakto theoretical comparison is fairly good since first,
both datasets exhibit the same trends versus frequencyeandd; the relative position of theoretical to experimenta
data versus the notch depth is respected. This encouragiuits are confirmed by those presented in figure 2b.
Figure 2b shows the good agreement between the simulatedxgedimental reflection coefficients for the L(0,1)
mode versus the notch depth. Double-valued simulatiortseate obtained for two Poisson’s ratios of 0.25 and 0.31
(the higher reflection coefficient value is associated tciigher Poisson’s ratio).

CONCLUSIONS

In this paper, a 3D hybrid numerical method has been devdlégethe investigation of wave scattering in elastic
waveguides. This method combines the classical FE methadh&nso-called SAFE technique. It has the main ad-
vantage of being able to handle complex-shape inhomoges&itwaveguides of arbitrary cross-sections. Moreover,
it gives a formula that renders straightforward the calioifaof eigenforces and modal power flows. A preliminary
experimental validation of the hybrid 3D method has beeredonvertical saw-cuts of different depths. The first com-
parisons of the theoretical/experimental reflection coieffit, for the (L(0,1)) Pochammer-Chree mode, as a function
of normalized frequency or notch depth are encouraging.
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