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Abstract

1 Motivation:

In the last two decades, a lot of protein 3D shapes
have been discovered, characterized and made avail-
able thanks to the Protein Data Bank (PDB), that
is nevertheless growing very quickly. New scalable
methods are thus urgently required to search through
the PDB efficiently.

2 Results:

We present in this paper an approach entitled LNA
(Laplacian Norm Alignment) that performs struc-
tural comparison of two proteins with dynamic pro-
gramming algorithms. This is achieved by charac-
terizing each residue in the protein with scalar fea-
tures. The feature values are calculated using a
Laplacian operator applied on the graph correspond-
ing to the adjacency matrix of the residues. The
weighted Laplacian operator we use estimates at var-
ious scales local deformations of the topology where
each residue is located. On some benchmarks widely
shared by the community we obtain qualitatively sim-
ilar results compared to other competing approaches,
but with an algorithm one or two order of magni-
tudes faster. 180,000 protein comparisons can be
done within 1 seconds with a single recent GPU,
which makes our algorithm very scalable and suitable
for real-time database querying across the Web.

3 Introduction

Proteins are made of a sequence of amino acids
(residues) that folds in a 3 dimensional structure.

Proteins having similar functional properties may
have a very different primary structure, but they usu-
ally share similar tertiary structures. During the past
two decades, a lot of tertiary structures have been
discovered, and 3D fold protein data banks such as
PDB [4] are quickly growing (PDB holds 79000 pro-
tein files as of November 2011). It is therefore crucial
to be able to efficiently search through this database.

Best methods designed to compare or match pro-
tein 3D structures involve heavy computations. [16]
compares Cα distance matrices, [30] extendedly com-
bines aligned fragment pairs based on local geometry,
[18] compares lists of feature of primary, secondary
and tertiary structures, [34, 28] maximize the TM-
score which is independent of protein lengths con-
trary to the Root Mean Square Deviation (RMSD:
[19]). [35] compares intra-molecular residue-residue
relationship. [14, 22] first align secondary struc-
ture elements (SSE) and then refine the alignment
to residue level. Some approaches are based on con-
tact maps matching which is though to be NP-hard
as descibed by [15]: [6, 3, 12]. [27] uses double dy-
namic programming on vector of Cβ distances and is
used to build the CATH [9] classification.

On the other hand, a few methods are a lot faster,
nevertheless at the cost of results quality. [33] en-
hances BLAST [2] by using a structural alphabet and
corresponding substitution matrix. [23, 24] enhance
BLAST using an alphabet corresponding to residue
positions in the Ramachandran plot [29]. [7] char-
acterizes proteins as sequences of α angles (dihedral
angle between four consecutive α carbons) and com-
pares them by searching common fixed length pat-
terns. [21] performs a global alignment of structural
signatures.

We present in this paper a novel way for describing
protein 3D structures. While Cartesian coordinates
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of a residue are dependent upon a reference coordi-
nate system and only give information about its loca-
tion, differential coordinates carry information about
the local topology and the orientation of local struc-
tural details. We use the norm of Laplacian coordi-
nates of residues at different scales to encode a se-
quence of multivariate local deformation descriptors.
The norm of the Laplacian coordinates presents the
great advantage to be invariant to translation and
rotation.
The Laplacian operator have been used in various

methods, mainly for 3D computer vision and 3D mod-
eling. [25] performs articulated shape matching. [11]
uses this operator to smoothen, enhance or check the
quality of triangular meshes.
Dynamic programming algorithms can then be

used to match these multivariate descriptor sequences
and achieve similar classification or clustering results
compared to other approaches. These dynamic pro-
gramming algorithms in O(n2) time complexity re-
quire few memory and can be efficiently implemented
on Graphical Processing Unit (GPU) for an even
faster computation time. This allows to compare one
protein structure against 180,000 others within a sec-
ond time span.
In the following, we describe how we compute the

Laplacian coordinates of residues and their norm. We
then present two dynamic programming algorithms
derived from [26] and [31] for global and local align-
ment respectively and compare our approach with
state of the art methods on two protein datasets
known to be difficult to categorize. We show that
our approach outperforms the fastest know methods
and provides qualitatively similar results than most
of the best known approaches, with algorithms one
or two order of magnitude faster.

4 Method and algorithm

Our method, called Laplacian Norm Alignment
(LNA), characterizes proteins as a multi-dimensional
sequence of quantity of deformation at different scales
of the local space in which residues are embedded.
More precisely, the discrete Laplace operator (dis-
crete Laplacian) is used to measure the divergence
of the gradient of residue positions in a graph that
describes a protein weighted adjacency map. Lapla-
cian coordinates of residues are resilient to translation
but not to rotation. This limitation is overcome by
only keeping for each residue the Euclidean norm of
its Laplacian coordinates that is indeed invariant to

rotation.
The tertiary structure of a protein is usually en-

coded as sequence of 3D Cartesian space coordinates
for each atom of each amino acid. We simplify this
sequence by only keeping carbon alpha (Cα) 3D po-
sitions for each residue.

4.1 Computation of the Laplacian co-

ordinates of each residue

A protein P of length n is defined by a sequence of 3D
coordinates p1, p2, . . . , pn. Let Ω

P (σ) be the weighted
adjacency matrix of an undirected graph with one
node per residue for the protein P . The weight ΩP

ij(σ)
of each edge eij for 1 ≤ i, j ≤ n is computed using a
Gaussian kernel:

ΩP
ij(σ) =




e

−‖pi−pj‖
2

σ2 if |i− j| > 1

0 otherwise and in this case there is no edge

(1)
Let the diagonal matrix DP (σ) be defined as:

DP
ii (σ) =

∑

j

ΩP
ij(σ) (2)

The discrete Laplace operator LP (σ) of the protein
P is given by:

LP (σ) = I −DP (σ)
−1

ΩP (σ) (3)

By applying this operator to the vector of the
residue 3D Cartesian positions, we obtain a vector of
3D Laplacian coordinates for each residue. Finally,
we build a sequence P̃ (σ) = p̃1(σ), p̃2(σ), . . . , p̃n(σ)
of Euclidean norms of the Laplacian coordinates for
each residue, as shown on figure 1.
Since we use a Gaussian kernel, the norm of the

Laplacian coordinates is usually higher in the periph-
ery of the protein than in the center, as shown on
figure 2(b). Hence, beta sheets generate a lowly de-
formed surface, the norm of Laplacian coordinates of
their residues is quite low. A contrario coils can have
a high norm of Laplacian coordinates corresponding
to their residues if they are found in the periphery
of the protein. Alpha helices rarely go through the
center of the protein: for each alpha helix, a ’side’
is near the center of the protein and the other near
the periphery. Consequently, consecutive residues in
the chain have a norm of their Laplacian coordinates
that vary: thus, alpha helices correspond to a saw-
tooth shape as shown on figure 2(a).
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(b) Laplacian operator LP (3)

Figure 1: Example of Laplacian computation for a
protein P in 2D with σ = 3 and k = 1. The sequence
of norm of Laplacian coordinates is P̃ = P̃ (3) =
2.48, 2.39, 3.80, 1.80, 3.26.

4.2 Multi-dimensional characteriza-

tion of residues

The σ parameter in the Gaussian kernel can be tuned
such as to correspond to either a more local or more
global description of the protein for each residue. A
low σ implies that only the closest residues will be
taken into account into the computation of the Lapla-
cian coordinates of residues. On the other hand,
a high σ implies that all other residues in the pro-
tein will be taken into account into the computation,
the difference of contribution between close and far
residues being lower.

The Van Der Walls radius of atoms implies that
sigma should be above 2Å, and the average size of
proteins implies that it should be bellow 50Å. As in-
formation on residue positions is lost when only keep-
ing the norm of Laplacian coordinates, this geomet-
ric description suffers a loss of information that can
reduce the discriminating capability of the alignment
algorithms. This limitation can be overcome by char-
acterizing the local topology in which each residue is
embedded at different scales, while varying parame-
ter σ. For instance, residues can be characterized by

2 norms of Laplacian coordinates: one corresponding
to coordinates computed with σ < 10Å (local de-
scription) and the other with σ > 20Å (more global
description).

Hence a protein P of length n can be characterized
by a sequence P̃ = p̃1, p̃2, . . . , p̃n of k-dimensional
vectors defined as follows:

p̃i = [p̃i(σ1), p̃i(σ2), . . . , p̃i(σk)], 1 ≤ i ≤ n (4)

where σ1, σ2, . . . , σk are all in [2; 50].

4.3 Sequence comparison

We propose 2 dynamic programming approaches for
global and local comparison of proteins. Given two
sequences P̃ and Q̃ of respective lengthm and n, both
approaches perform computations in O(m.n) time,
and use k-dimensional vectors for the characteriza-
tion of residues.
More precisely, the similarity is computed by com-

paring segments of the multivariate sequence that de-
scribe each protein. Let τ(p̃i, q̃j) be the dissimilarity
between the i-th segment (i.e. i-1-th and i-th values)

of P̃ and j-th segment of Q̃, and defined as follows:

τ(p̃i, q̃j) =

k∑

t=1

{
|p̃i(σt)− q̃j(σt)|+ |p̃i−1(σt)− q̃j−1(σt)|+

3.|(p̃i(σt)− p̃i−1(σt))− (q̃j(σt)− q̃j−1(σt))|

(5)
The constant value 3 has been empirically de-

termined during preliminary experiments as a good
trade-off allowing to weight the contributions of the
differences between segment extremities and the dif-
ferences between segment slopes.

4.3.1 Global comparison

The global similarity LNANWk between two se-
quences P̃ and Q̃ with respective lengths m and n

is evaluated using a dynamic programming algorithm
derived from [26].

LNANWk(P̃ , Q̃) =
S(p̃m, q̃n)√

(m− 1).(n− 1)
(6)

and recursively defined as follows:

S(p̃i, q̃j) = max





S(p̃i−1, q̃j)

S(p̃i−1, q̃j−1) + e−ν.τ(p̃i,q̃j)

S(p̃i, q̃j−1)

(7)

3



(a) Euclidean norms of the 3D Laplacian coordinates com-
puted for each residue for two didderent σ values and super-
imposed secondary structure.

(b) Low values are coded in blue
while high values are coded in red.
This figure was made with PyMol
[10].

Figure 2: Protein SCOP/Astral id d3raba . Norm of Laplacian coordinates with σ = 20 (top) and σ = 4
(bottom).

with the following initial conditions:

S(p̃0, q̃j) = S(p̃i, q̃0) = S(p̃0, q̃0) = 0

The scoring function e−ν.τ(p̃i,q̃j) ranges in [0 .. 1]
and is maximal when segment extremities have the
same Laplacian coordinates norms in all k dimen-
sions. The constant gap penalty is set to 0 so that
the similarity measure we propose is normalized in
[0 .. 1]. This property can be very useful to per-
form fast filtering for quick searching or large scale
database clustering. Fast filtering can be achieved by
only comparing sequences length.

4.3.2 Local comparison

For local comparison, the computation of τ(p̃i, q̃j)
is performed using normalized Laplacian norm se-
quences: all p̃i and q̃j values are divided by the aver-

age of the sequence P̃ and Q̃ respectively, so that the
average of each Laplacian norm sequence is 1. The lo-
cal similarity LNASWk between two sequences P̃ and
Q̃ with respective lengths m and n is evaluated using
a dynamic programming algorithm derived from [31].

LNASWk(P̃ , Q̃) = max{S(p̃i, q̃j), 1 ≤ i ≤ m, 1 ≤ j ≤ n}
(8)

and recursively defined as follows:

S(p̃i, q̃j) = max





S(p̃i−1, q̃j) + g

S(p̃i−1, q̃j−1) + 1− ν.τ(p̃i, q̃j)

S(p̃i, q̃j−1) + g

0

(9)
with the following initial conditions:

S(p̃0, q̃j) = S(p̃i, q̃0) = S(p̃0, q̃0) = 0

Contrary to LNANWk, this measure is not normal-
ized and ranges in [0 .. min(m,n)] with a negative
gap penalty value.

5 Results and discussion

Dynamic programming algorithms require low mem-
ory usage. Both LNANWk and LNASWk algorithms
are implemented on GPU using the OpenCL language
[20]. Experiments are performed on a Nvidia Tesla
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M2050 GPU. We first use a subset of SCOP [17]
to determines optimal parameters. We then evalu-
ate our approach on ranking and classification tasks
against two different datasets: COPS [13] and pro-
teus300 [3, 12]. We also measure speed performance
on the whole PDB database to see how our approach
scales when applied to real databases.

5.1 Optimization of the parameter

values

Both dynamic programming algorithms we propose
require to adjust few parameters. We determine opti-
mal sets of parameter values using a subset of SCOP
downloaded on the Astral compendium website [8].
From the the 40% ID filtered subset of SCOP 1.75,
among 640 families having at least 4 members, we se-
lect at random 4 proteins from each family . We then
build 4 subsets (one protein from each family in each
subset) and perform a 4-fold cross-validation to op-
timize the set of parameters. For each query set, we
record the top 3 returned results and check whether
they belong to the same family of the query or not.
Thus, the best possible score is 3× 4× 640 = 7680.
Parameter values are determined for LNANWk and

LNASWk with k ∈ {1, 2}. We also performed tests
with higher values for k. However, results tend to
decrease in quality as a higher number of dimension
is used and computational time increases.

Method LNASW1 LNASW2 LNANW1 LNANW2
Gap -0.53 -0.5 NA NA
σ1 5.7 5.0 6.1 5.4
σ2 NA 14.5 NA 14.3
ν 0.67 0.41 0.24 0.15

Score 5468 5757 5333 5523
Score (%) 71.20 74.96 69.44 71.91
Time (sec) 74 82 86 98

Table 1: Optimal parameter values found using 2560
proteins from the 40% ID filtered subset of SCOP
1.75.

Table 1 shows optimal parameter values found. For
the remainder of this paper, our approaches are pa-
rameterized with these values. We also reported the
time used by the GPU to compute the 4,915,200 com-
parisons. LNASW2, which obtains the best results,
performs about 60,000 protein comparisons per sec-
ond. For best performances, we recommend using
k = 2.
Figure 3 plots the ROC curves for LNA approaches.

The false positive rate starts to increase when about
75 % of correct answers is returned.
Table 2 shows the precision obtained according to

Figure 3: ROC curves for LNA on a 2560 proteins
subset of the 40% ID filtered subset of SCOP 1.75.

Precision LNASW1 LNASW2 LNANW1 LNANW2
1 124 150 0.67 0.59

0.95 50 51 0.56 0.45
0.9 43 42 0.54 0.43
0.8 37 35 0.52 0.40

Table 2: Precision according to LNA score obtained
on a 2560 proteins subset of the 40% ID filtered subset
of SCOP 1.75.

LNA score returned. For instance, if the comparison
of two proteins using LNANW2 returns a score of 0.45,
then there is 95 % chance that these two proteins
belong to the same SCOP family.

5.2 COPS

The COPS benchmark [13] is built upon the COPS
classification performed by [32]. This benchmark
contains 176 queries, and for each query there is 6
true positives and 1050 true negatives. We use this
benchmark to compare alignment methods by plot-
ting ROC curves. We compare our approach against
FAST [35], GOSSIP [21] and Yakuza [7]. We use
the default parameters for FAST and Yakuza. For
GOSSIP, we use an accuracy of 10 and two similarity
values (0.6 and 0.7).

Figure 4 plots the ROC curve for each approach.
FAST is the best approach for this benchmark and
GOSSIP is the worst. Our approach is above Yakuza
using the local alignment method and bellow it with
the global one.
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Method AUC Max. accuracy Recognition Fam. clu. Clu. err Time
LNASW1 0.996461 0.993378 298/300 29/30 2/300 < 1 sec (GPU - All vs All)
LNASW2 0.998560 0.995808 298/300 29/30 1/300 < 1 sec (GPU - All vs All)
LNANW1 0.998403 0.995028 300/300 29/30 2/300 < 1 sec (GPU - All vs All)
LNANW2 0.999256 0.995741 300/300 30/30 0/300 < 1 sec (GPU - All vs All)
FAST 0.999697 0.997269 300/300 30/30 0/300 72 min (CPU - One vs One)
Yakuza 0.973567 0.986945 291/300 22/30 22/30 1 min 39 (CPU - One vs All)

GOSSIP-0.6 0.970459 0.987715 290/300 24/30 10/30 53 min 33(CPU - All vs All)
GOSSIP-0.7 0.941064 0.990925 290/300 24/30 16/30 20 min 44 (CPU - All vs All)

CE 0.994442 0.991483 297/300 28/30 5/300 ∼ 40h (CPU)
DaliLite 0.999024 0.994404 299/300 30/30 0/300 ∼ 9h30 (CPU)
TM-align 0.998726 0.992999 300/300 28/30 4/300 ∼ 4h (CPU)

A purva+sse (7.5Å) 0.997359 0.992865 300/300 30/30 0/300 ∼ 23h (CPU)
Eig 7 (11Å) 0.990275 0.988071 300/300 29/30 2/300 ∼ 6h (CPU)

Table 3: Ranking, classification, clustering and speed performances results for the proteus 300 dataset.

Figure 4: ROC curves for the COPS benchmark.

5.3 Proteus300

The proteus300 dataset was first used in [3] and later
in [12]. It contains 300 protein domains evenly dis-
tributed across 30 SCOP families (27 super-families
and 24 folds). The number of residues in the proteins
ranges from 64 to 455. Protein length are quite ho-
mogeneous inside families. Contrary to COPS bench-
mark, global alignment methods should perform well
on this dataset.

We measure classification, Area Under the ROC
Curve (AUC) [5], maximum accuracy, clustering and
speed performances. We compare our approach
against the same methods than in section 5.2: [35,
21, 7] using the same settings. We also report re-
sults from [12]. Results are summarized in table 3.
AUC and accuracy measures were computed using
the ROCR package [1].

For each protein, we compute its similarity score

with all other proteins and assign the family of the
most similar protein in the dataset (Nearest Neigh-
bor rule). We then measure the number of correctly
assigned families for the whole dataset. Yakuza and
GOSSIP obtain the worst results. All other presented
approaches reach similar classification performances
(table 3, col. 4): all approaches have at most 3 errors
on the 300 protein domains and 6 of them (LNANW1,
LNANW2, FAST, TM-align, A purva+sse and Eig 7)
have no error.

The similarity matrix is also used to compute AUC
and accuracy (3, col. 2-3)) measures. Our approach
has comparable results with respect to other meth-
ods. Again, FAST obtains the best results, while we
rank second on AUC criterion with the global align-
ment method and second on maximum accuracy cri-
terion with the local alignment method.

We measure clustering performances at family
level with the Un-weighted Pair Group Method with
Arithmetic Mean (UPGMA) algorithm (3, col. 5-6)).
Our approach achieves comparable results with state
of the art methods. The global alignment method
performs slightly better than the local one, LNANW2

achieving a perfect classification.

Finally we give the computational time required
to compute the similarity matrix between all 300
proteins. Experiments were run on a 2 GHz Intel
Xeon and 8GB RAM for [35, 21, 7]. For other ap-
proaches, we used results reported in [12] and ob-
tained with a 2.8 GHz CPU Intel Pentium and 1GB
RAM. One vs One means both proteins are prepro-
cessed for each comparison. One vs All means a
query is preprocessed and compared against a pre-
processed database. All vs All means all proteins of
a preprocessed database are compared between them-
selves.
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Even with a 100x gain compared to CPU (which
is usually the best performances obtained by porting
an algorithm to GPU), we can see that our approach
is one or two order of magnitude faster compared to
other approaches, while achieving very good results.
These performances are due to the O(n2) time com-
plexity of alignment algorithms that is used for the
matching of pair of proteins.
We believe Yakuza could be as fast as our approach

if ported on GPU, however we obtain better ranking
and classification performances with our approach on
both tested datasets. On both COPS and Proteus
datasets, FAST achieves the best results but ranks
fourth for the speed. On the other hand, LNA ranks
second for the quality of results but is the fastest
method.

5.4 Experiment on the whole PDB

database

As of November 2011 the Protein Data Bank contains
about 79,000 protein files. By only keeping sequences
with a minimum length of 30, we obtain 179,094 ter-
tiary structures of proteins, with an average length
of 247. We measure in this experiment how our ap-
proach performs for a real scale problem. We mea-
sure speed for LNASW2 and LNANW2. We also test
various score acceptation threshold for LNANW2 to
measure fast filtering performances.

Figure 5: Response time for one query against the
whole PDB database.

Figure 5 shows the response time according to
query length. As shown on previous experiments,
LNANW2 is the slowest alignment method proposed.
For all approaches, the average response time for a

200 residue length query is around 1 second, which
is very suitable for a real-time Web service. Fast fil-
tering allowed by the normalized LNANW2 alignment
method is very interesting when looking for high pre-
cision. It allows a speedup up to 3 times for very
long protein queries. For a 230 residue length query,
the reported speedup is around 34 % with a 0.6 score
acceptation threshold.

6 Conclusions

We have proposed in this paper an approach for
speeding up computation of protein structure similar-
ity. We have presented an approach that compresses
3D information into meaningful 1D or 2D informa-
tion. Our algorithm obtains similar results as state
of the art methods, as shown by experiments per-
formed using various datasets. But the key advan-
tage of our approach is its speed. Our algorithm is
one or 2 order of magnitude faster than existing meth-
ods: 180,000 protein comparisons can be done within
1 seconds with a single recent GPU, which makes
our algorithm very scalable and suitable for real-time
database querying across the Web. We plan to look
if our approach could be improved by using primary
structure information. We are also looking forward
how to realize multiple sequence alignment.
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