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A subproblem technique is applied on dual formulations to the solution of thin shell finite element models. Both the magnetic
vector potential and magnetic field formulations are considered. The subproblem approach developed herein couples three problems:
a simplified model with inductors alone, a thin region problem using approximate interface conditions, and a correction problem
to improve the accuracy of the thin shell approximation, in particular near their edges and corners. Each problem is solved on its
own independently defined geometry and finite element mesh.

Index Terms— Eddy current, finite element method (FEM), magnetodynamics, subproblem method (SPM), thin shell (TS).

I. INTRODUCTION

THE solution by means of the subproblem method (SPM)
provides advantages in repetitive analyses and also helps

improving the overall accuracy of the solution [1], [2]. The
SPM allows to benefit from previous computations instead of
starting a new complete finite element (FE) solution for any
variation of geometrical or physical characteristics. Further-
more, each subproblem has its own separate meshe, which
increases computational efficiency.

The SPM for dual finite element b- and h- formulations are
herein developed within the thin shell (TS) framework [1,3,4].
A first problem (SP 1) involving massive or stranded inductors
alone is solved on a simplified mesh without thin regions.
Its solution gives surface sources (SSs) for a second problem
TS (SP 2) through interface conditions (ICs), based on a 1-D
approximation [3], [4]. The TS solution is then corrected in
a third problem (SP 3) via SSs and VSs, that suppress the
TS representation and add the actual volume, to take the field
distribution of the field near edges and corners into account,
which are poorly presented by the TS approximation. The
method is validated on test problems with comparison with
a classical FE method.

II. DEFINITION OF THE SUBPROBLEM APPROACH

A. Canonical magnetodynamic or static problem
A canonical magnetodynamic or static problem p, to be

solved at step p of the subproblem approach, is defined in
a domain Ωp, with boundary ∂Ωp = Γp = Γh,p ∪ Γb,p.
The eddy current conducting part of Ωp is denoted Ωc,p and
the non-conducting region ΩC

c,p, with Ωp = Ωc,p ∪ ΩC
c,p.

Stranded inductors belong to ΩC
c,p, whereas massive inductors

belong to Ωc,p. The equations, material relations and boundary
conditions (BCs) of SPs p = 1, 2 and 3 are:

curlhp = jp , div bp = 0 , curl ep = −∂tbp , (1a-b-c)
hp = µ−1

p bp + hs,p , bp = µphp + bs,p , (2a-b)
jp = σpep + js,p , ep = σ−1

p jp + es,p , (3a-b)

n× hp|Γh,p = jsu,p , n · bp|Γb,p = bsu,p , (4a-b)
n× ep|Γe,p⊂Γb,p = ksu,p , (4c)
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where hp is the magnetic field, bp is the magnetic flux density,
ep is the electric field, js,p is the electric current density, µp is
the magnetic permeability, σp is the electric conductivity and n
is the unit normal exterior to Ωp. The notation [·]γp = |γ+

p
−|γ−

p

expresses the discontinuity of a quantity through an interface
γp (with sides γ+

p and γ−
p ) in Ωp, defining interface conditions

(ICs).
The fields hs,p, bs,p, js,p and es,p in (2a)-(2b) and (3a)-

(3b) respectively are VSs which can be used to account for
changes of permeability or conductivity in each SP. The fields
jsu,p, bsu,p and ksu,p in (4a-b-c) are SSs and generally equal
zero for classical homogeneous BCs. Their discontinuities via
ICs are also equal to zero, for common continuous field traces.
If nonzero, they define possible SSs that account for particular
phenomena occuring in the idealized thin region between γ+

p

and γ−
p [5], [7]. A typical case appears when some field traces

in a previous problem are forced to be discontinuous, whereas
their continuity must be recovered via a correction problem
p; with the SSs fixed as the opposite of the trace solution of
previous SP.

B. From inductor alone to TS
The constraints for SPs 1, 2 and 3 are respectively expressed

via SSs and VSs. VSs are considered in Section II-C. SSs
are defined via the BCs and ICs of impedance-type boundary
conditions (IBC) combined with contributions from SP 1.
The TS model [4] is written as a SP following the already
calculated inductor source field from SP 1. The b-formulation
uses a magnetic vector potential a (such that curla = b),
written as a = ac+ad [4]. A similar analogous decomposition
is done for the h-formulation, with h = hc + hd. Fields ac,
hc and ad, hd are respectively continuous and discontinuous
through the TS.

Let us analyse the SS case in both b- and h-formulations
as follows:

1) Constraint of SPs for b-formulation: Even if there is no
thin region in SP 1, we have to forsee its future addition in
order to get a relative constraint between SP 1 and SP 2 via the
corresponding ICs with γt = γ±

t = γ±
1 = γ±

2 and nt = −n
for the TS. One has for SPs 1 and 2 [4],

[n× h1]γ1 = n× h1|γ+
1
−n× h1|γ−

1
= 0, (5)

Page 1 of 4



2 COMPUMAG-SYDNEY 2011, CMP–881

[n× h]γ2 = [n× h1]γ2 + [n× h2]γ2 = σβ ∂t(2ac + ad),
(6)

n× h1|γ2+
+ n× h2|γ2+

=
1

2

�
σβ ∂t(2ac + ad) +

1

µβ
ad

�
,

(7)

β = γ−1
p tanh(

dpγp
2

), γp =
1 + j

δp
, δp =

�
2/ωσpµp, (8)

where dp is the TS thickness, δp is the skin depth, ω = 2πf ,
j is the imaginary unit. For δp � dp, one has β ≈ dp/2. In
statics, (6) is equal to zero. The discontinuity [n× h1]γ2 in (6)
does not need any correction because solution SP 1 presents
no such discontinuity, i.e. [n× h1]γ1 = [n× h1]γ2 = 0.

2) Constraint of SPs for h-formulation: One gets for SPs
1 and 2 [4],

[n× e1]γ1 = n× e1|γ+
1
−n× e1|γ−

1
= 0, (9)

[n× e]γ2 = [n× e1]γ2 + [n× e2]γ2 = σβ ∂t(2hc + hd),
(10)

n× e1|γ2+
+ n× e2|γ2+

=
1

2

�
σβ ∂t(2hc + hd) +

1

µβ
hd

�
.

(11)

Analogously, for b-formulation in statics, (10) is equal to
zero. The discontinuity [n× e1]γ2 in (10) does not need any
correction because solution SP 1 verifies [n× e1]γ2 = 0.

C. From TS to volume model
The TS solution in SP 2 is next corrected by SP 3 that

overcomes the TS assumptions [4]. The VSs for SP 3 are thus
[1], [7],

hs,3 = (µ−1
3 − µ−1

2 )b2 , bs,3 = (µ3 − µ2)h2 , (12a-b)
js,3 = (σ3 − σ2)e2 , es,3 = (σ−1

3 − σ−1
2 )j2. (13a-b)

In order to correct the TS model, one has to suppress the
TS representation via SSs opposed to TS ICs, and to add the
actual volume shell via VSs that account for volume changes
of µp and σp from the properties of ambient region in SP 2 to
these of volume shell in SP 3 (with µ2 = µ0, µ3 = µvolume,
σ2 = 0 and σ3 = σvolume). This correction can be limited to
the neighborhood of the shell, which allows to benefit from a
reduction of the extension of the associated mesh [1].

III. FINITE ELEMENT WEAK FORMULATIONS

A. Magnetic Vector Potential Formulation
The weak bp-formulation is obtained from the weak form

of the Ampere’s law (1a), i.e. [1]-[5]. For SPs 1 and 2, they
read

(µ−1
1 curla1, curla�

1)Ω1 + �n× h1,a
�
1�Γh,1 + �n× h1,a

�
1�Γb,1

+�[n× h1]γ1 ,a
�
1�γ1 = (js,1,a

�
1)Ω1 , ∀a�

1 ∈ F 1
1 (Ω1) , (14)

(µ−1
2 curla2, curla�

2)Ω2 + (σ2∂ta2,a
�
2)Ω2 + (σ2grad v2,a�

2)Ω2

�n× h2,a
�
2�Γh,2 + �n× h2,a

�
2�Γb,2 + �[n× h2]γ2 ,a

�
2�γ2

= 0 , ∀a�
2 ∈ F 1

2 (Ω2) , (15)

where F 1
p (Ωp) is a gauged curl-conform function space de-

fined on Ωp, gauged in ΩC
c,p, and containing the basis functions

for a as well as for the test function a� (at the discrete level,

this space is defined by edge FEs; the gauge is based on
the tree-cotree technique); (· , ·)Ω and < · , · >Γ respectively
denote a volume intergal in Ω and a surface intergal on Γ of the
product of their vector field arguments. The surface integral
terms on Γh,p account for natural BCs of type (4a), usually
zero. The unknown term on the surface Γb,p with essential BCs
on n.bp is often omitted because it does not locally contribute
to (14). It will be shown to be the key for the post-processing
a solution, a part of which n × hp|Γb,p , is used as a SS in
further problems [5], [7].

The term �[n× h2]γ2 ,a
�
2�γ2 in (15) can be rewritten as:

�[n× h2]γ2 ,a
�
2�γ2 = �[n× h2]γ2 ,a

�
c + a�

d�γ2 =

�[n× h2]γ2 ,a
�
c�γ2 + �[n× h2]γ2 ,a

�
d�γ2 , (16)

where a�
d and a�

c are test functions; a�
d is defined as equal

to zero on the TS side γ−
2 [4]. To explicitly express the field

discontinuities, (16) is also rewritten as

�[n× h2]γ2 ,a
��γ2 = �[n× h2]γ2 ,a

�
c�γ2 + �n× h2,a

�
d�γ2+

.
(17)

The hp trace discontinuity �[n×h2]γ2 ,a
�
c�γ2 in (17) is given

by (6), i.e.

�[n×h2]γ2 ,a
�
c�γ2 = �[n×h]γ2 ,a

�
c�γ2 = �σβ ∂t(2ac+ad),a

�
c�γ2 .

(18)
The term �n× h2,a�

d�γ2+
in (17) related to the positive side

of the TS is given by (7), suppressing n×h1|γ+
2

of SP 1 and
adding the actual TS BC. For that, the term �n×h1,a�

d�γ2+
is

a SS that can be naturally expressed via the weak formulation
of SP 1 in (14), i.e.

−�n× h1,a
�
d�γ+

2
= (µ−1

1 curla1, curla�
d)Ω2=Ω1 . (19)

The contribution of the volume integral in (19) is limited to a
single layer of FEs on the posittive side of Ω+

2 = Ω+
1 touching

γ+
2 = γ+

1 , because it involves only the traces n × a�
d|γ+

2
. At

the discrete level, the source a1, initially in mesh of SP 1,
has to be projected in mesh of SP 2 [1], [10]. The TS SP 2
solution of (15) is then corrected by SP 3 via the VSs by (10a)
and (11a). Fields have also to be transferred from the mesh of
TS SP 2 to the mesh of SP 3. From that, the weak form for
SP 3 is

(µ−1
3 curla3, curla�

3)Ω3 + (σ3 ∂ta3,a
�
3)Ωc3 + �n× h3,a

�
3�Γh,3

+�n× h3,a
�
3�Γb,3 + (σ3 grad v3,a�

3)Ωc3 + (hs,3, curla�
3)Ω3

+(js,3,a
�
3)Ωc3 = 0, ∀a�

3 ∈ F 1
3 (Ω3) . (20)

B. Magnetic Field Formulation
The weak hp-formulation is obtained from the weak form

of the Faraday’s equation (1c) [1], [7]. The field hp is split
into two parts, hp = hs,p +hr,p, where hs,p is a source field
defined by curlhs,p = js,p, and hr,p is unknown. For SPs 1
and 2, one has

∂t(µ1h1,h
�
1)Ω1 + ∂t(µ1hs1,h

�
1)Ω1 + �n× e1,h

�
1�Γe,1+

�[n× e1]γ1 ,h
�
1�γ1 = 0 , ∀h�

1 ∈ F 1
1 (Ω1) . (21)

∂t(µ2h2,h
�
2)Ω2 + (σ−1

2 curlh2, curlh�
2)Ω2 + �n× e2,h

�
2�Γe,2

+�[n× e2]γ2 ,h
�
c�γ2 + ∀h�

2 ∈ F 1
2 (Ω2) , (22)
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where F 1
p (Ωp) is a curl-conform function space defined on Ωp

and containing the basis functions for h as well as for the test
function h�. The surface integral terms on Γe,p account for
natural BCs of type (4c), usually zero.

The term �[n× e2]γ2 ,h
�
2�γ2 in (22) expresses as:

�[n× e2]γ2 ,h
��γ2�[n× e2]γ2 ,hc + h�

d�γ2

= �[n× e2]γ2 ,h
�
c�γ2 + �[n× e2]γ2 ,h

�
d�γ2 , (23)

where h�
d and h�

c are test functions; h�
d is equal to zero on the

TS side γ−
2 [4]. The field discontinuity term in (23) becomes

�[n× e2]γ2 ,h
��γ2 = �[n× e2]γ2 ,h

�
c�γ2 + �n× e2,h

�
d�γ2+

.
(24)

The ep trace discontinuity �[n× e2]γ2 ,h
�
c�γ2 in (24) is given

by (10), i.e.

�[n×e2]γ2 ,h
�
c�γ2 = �[n×e]γ2 ,h

�
c�γ2 = �σβ ∂t(2hc+hd),h

�
c�γ2 .

(25)
The term �n×e2,h

�
d�γ2+

in (24) is given by (11), suppressing
n × e1|γ+

2
of SP 1 and adding the actual TS BC. Thus, the

term �n× e1,h
�
d�γ2+

is a SS that can be naturally presented
via the weak formulation of SP 1 in (21), i.e.

−�n× e1,h
�
d�γ+

2
= (µ1∂ths1,h

�
d)Ω1 + (µ1∂th1,h

�
d)Ω1 .

(26)

The contributions of the volume integrals in (26) are also
limited to a single layer of FEs on the posittive side of
Ω+

1 = Ω+
2 touching γ+

2 = γ+
1 , because it involves only the

traces n×h�
d|γ+

2
. At the discrete level, the source h1, initially

in mesh of SP 1, has to be projected in mesh of SP 2 [1], [10].
The inaccurate TS SP 2 solution of (22) is then corrected by
SP3 via VSs by (12b) and (13b). The weak form for SP 3 is
∂t(µ3h3,h

�
3)Ω3 + (σ−1

3 curlh3, curlh�
3)Ω3 + ∂t(bs,3,h

�
3)Ω3

+(es,3, curlh�
3)Ω3 + �n× e3,h

�
3�Γe3 = 0,

∀h�
3 ∈ F 1

3 (Ω3) . (27)

C. TS Correction-VSs in the Actual Volumic Shell
Changes of material properties from µ2 and σ2 to µ3 and

σ3 are taken into account in (20) and (27) via the volume
integrals (hs,3, curla�

3)Ω3 , (js,3,a�
3)Ωc3 and (es,3, curlh�

3)Ω3 ,
∂t(bs,3,h

�
3)Ω3 . The VS hs,3 is given by (12a), with b2 =

curla2 (at the discrete level, the source a2 in (20) is initially
given in mesh of SP 2 and must be projected in mesh of SP
3). The VS js,3 is given by (13a), generally reduced to js,3
= σ3e2 = σ3(−∂ta2 − grad v2). Potential v2 can generally be
fixed to zero. The VS es,3 in (19b) is to be obtained from
the still undetermined electric field e2, with es,3 = (σ2/σ3-
1)e2. Indeed, the field e2 is unknown in ΩC

c,2. Its determination
requires to solve an electric problem defined by the Faraday
and electric conservation equations, with regard to the electric
constitutive relation [7].

IV. APPLICATION EXAMPLE

The first test problem is a shielded induction heater. It
comprises two stranded inductors, a plate in the middle, and
two screens (µscreen = 1, σscreen = 37.7MS/m) (2-D, Fig. 1).
It is first considered via an SP 1 with the stranded inductors
alone (Fig. 2, top left, a1), adding a TS FE SP 2 (Fig. 2, top
right, a2) that does not include the inductor anymore. Finally,

an SP 3 replaces the TS FEs with actual volume FEs (Fig. 2,
bottom middle, a3). The complete solution is shown as well
(Fig. 2, bottom right, a1+a2+a3). The magnetic flux density
error on TS SP 2 is pointed out through the relative correction
(Fig. 3, top), for different plate parameters. Significant errors
can reach 85% in the end regions of the plate. Accurate local
corrections are checked to be close to the complete volume
FE solution by SP 3 (Fig. 3, bottom). The TS longitudinal
magnetic flux and eddy current density are obtained via the
relative correction as well (Fig. 4). They can reach several tens
of percents in the shells, such as 60% near the screen ends
(Fig. 4, top), with δ = 0.92mm, or 40% (Fig. 4, bottom),
with δ = 1.59mm.

The second test problem is the TEAM problem 21 (model B,
coil and plate, Fig. 5). The inacccuracies on the Joule power
loss density of TS SP 2 are pointed by the importance of
correction SP 3 (Fig. 6). The error on TS SP 2 solution along
the vertical half edge (z-direction) can reach 75% at the middle
of the plate (Fig. 6, top), or 80% along the horizontal half inner
width (x-direction) (Fig. 6, bottom), with δ = 2.975mm and
d = 10mm in both cases. The errors diminish for a smaller
thickness (d =2mm), being lower than 18.85% (Fig. 6, top,
bottom). Distribution of eddy current density on the TS SP 2
and in the actual volume SP 3 for d = 2mm and d = 10mm
are depicted in Fig. 5 (from left to right).

V. CONCLUSIONS

The correction of inaccuracies of a TS model has been done
via an SPM. Accurate eddy current, power loss density and
magnetic flux distributions are successfully obtained at the
edges and corners of the thin regions. All the steps of the
method have been illustrated and validated with the b- and h-
formulations in 2D and 3D cases. In particular, it has been
successully applied to the TEAM problem 21.

Fig. 1. Shielded induction heater (d = 2÷6mm, Lpl = 2m, Ls = 2m+2d
, Hs = 0.4m, Cdx = 0.8m, Cdy = 0.01m, Cy = 0.2m, Cx = 0.05m)

a1

aproj ,VS

aproj ,SS

a3

a2

a1 + a2 + a3

Fig. 2. Flux lines for the SP 1 (a1), SP 2 added (a2), SP 3 solution (a3) and
the total solution (a1+a2+a3) with the different meshes used (f = 1 kHz,
µplate = 100, σplate = 1MS/m). Projection of SP 1 solution (aproj ,SS)
in the SP 2, and of SP 2 solution (aproj ,VS) in the SP 3.
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and comparison of the corrected solution (bottom) with aclassical FE volume
model, with different effects of d, µr (σplate = 1MS/m, f = 1kHz)
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Fig. 5. TEAM problem 21 (1/4th of the geometry, magnetodynamics); eddy
current density for the TS SP 2 and volume SP 3 solution (from left to right);
for error reaching 18.85% with d = 2mm and 77.3% with d = 10mm (f =
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