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Structural analysis by bond graph approach: Duality
between causal and bicausal procedures

Mariem El Feki, Audrey Jardin, Wilfrid Marquis-Favre, Laurent Krähenbühl and Daniel Thomasset

Abstract—The infinite structure of linear time-invariant sys-
tems has been principally used to solve control problems.
Nevertheless, this system characterization appears interesting in
the design and sizing of mechatronic systems as well. Indeed,
based on the bond graph language and inverse modelling, a
methodology has already been developed for sizing mechatronic
systems according to energy and dynamic criteria. One of the
novelties of this methodology is its structural analysis step. This
step enables structural properties to be deduced and helps in
the formulation of the specifications. The aim of this paper is
to add new graphical procedures to the structural analysis step
to determine some structural properties (infinite pole orders and
relative orders) from the inverse model (bicausal bond graph
model). The structural analysis of the inverse model remains
interesting since the essential orders are immediately obtained
on the bicausal model. A discussion is carried out regarding the
duality between the causal and bicausal procedures.

Index Terms—Bond graph, structural analysis, causal path,
duality, infinite zero/pole orders, relative order, essential order.

I. INTRODUCTION

THE infinite structure analysis of linear time-invariant
systems leads to the determination of different invariants

such as infinite zero orders, infinite zero order in row (also
called relative orders and essential orders), which have been
used to solve control problems such as decoupling, disturbance
rejection, pole placement, etc. This structure characterization
has been established by different approaches: state-space
approach [1], [2], [3], [4], [5], geometric approach [6],
[7], [8], structured systems [9], [10], [11], [12], graph
theory [13], and, more recently, bond graph approach [14],
[15], [16], [17]. Moreover, the structural analysis appears
interesting in the design and sizing of mechatronic systems.
In fact, based on the bond graph language and inverse
modelling, a methodology has already been developed for
sizing mechatronic systems according to energy and dynamic
criteria [18], [19], [20], [21]. One of the original features of
this methodology is its structural analysis step: before finding
the unknown inputs by simulating the inverse model from
the given specified outputs, the I/O causal paths analysis
is established to deduce the infinite structure. The different
invariants that characterize the infinite structure supply
important information on the system structure. For instance,
the essential order nie of the ith output can be seen as the
highest time-differentiation order of the ith output appearing
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in the inverse model of minimal order [2], [22]. Knowing
these orders, the outputs yi can be correctly specified: the
specifications match with the structure of the given model if
and only if, for each output yi, the corresponding specification
is at least nie times time-differentiable. The relative order n′i
can be seen as the minimal number of times it is necessary
to time-differentiate the output yi in order to make explicitly
appear at least one component of the input’s vector in the
expression of y(n′i)

i . Finally, the comparison of the infinite
zero orders list with the relative orders list leads to conclude
on the decouplability of the model by static-state feedback1.
The decouplability checking enables designing decouplable
systems which are simpler to control instead of designing
non-decouplable systems which imply more sophisticated
control laws.

With its multidisciplinarity concept and its graphical
feature, bond graph language, used in the methodology for
sizing mechatronic systems, shows to be an efficient tool
for the structural analysis for at least two reasons. Firstly,
as bond graph modelling is based on the representation
of energy exchanges in the system, the bond graph model
intrinsically incorporates the model structure from the
energy point of view. Secondly, the state-space and digraph
approaches lead to a loss of information about the details of
the different physical phenomena involved and the way they
are energetically interconnected. On the contrary, the bond
graph language makes easy the reading and the physical
interpretation of the structural properties.

The aim of this paper is to add to the structural analysis step
some new graphical procedures (procedures 6 and 9) to
determine some structural properties (infinite pole orders
and relative orders) from the inverse model (bicausal bond
graph model). These new procedures enable the establishing
of the infinite structure analysis on the bicausal bond graph
model. The structural analysis of the bicausal model makes
easier the determination of the essential orders which plays
an important role in the redaction of the specifications. A
discussion is also provided on duality between the causal
and the bicausal procedures. Bond graph language appears
interesting for the duality study. In fact, duality has been
used with a certain signification by Birkett and Roe [23] to
compare cycle and co-cycle matroids of a bond graph model.
Also, Lichiardopol and Sueur [24], [25] established duality,

1Another method to conclude this is the comparison of the the ith essential
order with the ith relative order for each output yi.
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with another signification than the previous one, between
controllability and observability of linear systems by the bond
graph approach. Here, duality is understood with this second
signification.

The proofs of the proposed graphical procedures are based
on the exploitation of the determinant of the system matrix of
the inverse model. So a bond graph procedure (procedure 2)
is proposed to determine graphically this determinant.
This procedure corresponds to a translation of the digraph
procedure enunciated in [13] and which is adapted to inverse
models in this paper (proposition 1 and equation 9). The
rules of this translation were established in [26]. Note that
a bond graph procedure exists to determine the determinant
of the system matrix of the direct model (causal bond graph
model), so the proposed procedure is an adaptation of the
causal procedure for the inverse model. Moreover, in order
to define and prove the bond graph procedure for the deter-
mination of infinite pole orders, some intermediary results are
proposed:

• theorem 2 for the determination of the infinite pole
orders from the system matrix of the inverse model
(state-space contribution);

• procedure 4 for the determination of the minors of
the system matrix of the inverse model (bond graph
contribution);

• procedure 5 for the determination of the highest
degree of the minors of order i of the transfer matrix
of the inverse model (bond graph contribution).

To introduce and prove the bond graph procedure for the
determination of the relative orders from the bicausal model,
theorem 5 is proposed (state-space contribution). This
theorem enables the calculus of the relative orders from
the inverse model.

This paper is organized as follows. In Section II, some
results on state-space, digraph and bond graph are recalled.
The digraph and the bond graph procedures [13], [26] for
the determination of the determinant of the system matrix are
adapted to the inverse model (proposition 1 and equation 9).
In Section III, the causal procedure to find infinite zero orders
on the bond graph model is recalled and a new procedure is
proposed to find the infinite pole orders of the inverse model on
the bicausal bond graph model (procedure 6). Section IV fo-
cusses on the causal and the bicausal procedures to determine
graphically the relative orders and the essential orders. Indeed,
a new procedure to compute relative orders from the inverse
model is presented using the state-space approach (theorem 5).
Based on this state-space procedure, a bicausal procedure is
defined to compute these orders on a bicausal bond graph
model (procedure 9). In this paper, the different procedures
will be illustrated by a mechanical example and the duality
between the causal and bicausal procedures will be discussed.
Finally, a conclusion is given in Section V.

II. FORMALISM PRELIMINARIES

A. State-space approach

Let us consider the following square linear time-invariant
system Σ:

Σ :

{
ẋ = Ax + Bu
y = Cx + Du

(1)

where:
• x ∈ Rn denotes the state vector;
• u ∈ Rm (resp. y ∈ Rm) is the input (resp. output) vector.

The associated transfer matrix is supposed strictly proper and
defined by:

T(s) = C(sI−A)−1B + D (2)

The inverse model is obtained from the direct model Σ
by successive time-differentiations of each output in order to
express the control u as a function of the state vector and the
derivatives of the components of y. So the inverse model can
be expressed as:{

ẋinv(t) = Ainvxinv(t) + Binvuinv(t)
yinv(t) = Cinvxinv(t) + Dinvuinv(t)

(3)

where
• xinv(t) ∈ Rninv is the state vector;
• uinv(t) = yα(t) ∈ Rα (resp. yinv(t) = u(t) ∈ Rm)

is the input (resp. output) vector. The vector uinv(t) =
yα(t) is composed of the components of the output vector
y(t) of the direct model Σ and their successive deriva-
tives appearing during the construction of the inverse
model;

• The matrices Ainv, Binv, Cinv and Dinv are constant
matrices of respective dimensions (ninv × ninv),
(ninv × α), (m× ninv) and (m× α).

In the Laplace domain, the inverse model (3) can be written
as follows:{

sXinv(s)− xinv(0) = AinvXinv(s) + Binv(s)Uinv(s)
Yinv(s) = CinvXinv(s) + Dinv(s)Uinv(s)

(4)
where Uinv(s) = Y(s) ∈ Rm. Binv(s) and Dinv(s) are
polynomial matrices in s of respective dimensions (ninv×m)
and (m×m). xinv(0) is supposed to be zero throughout this
paper.

The characteristic polynomial of the matrix Ainv ∈ R is
equal to det(sI − Ainv). This polynomial can be expressed
as follows:

PAinv
(s) = sninv +

ninv∑
i=1

αis
ninv−i (5)

The transfer matrix Tinv(s) of the inverse model is defined
by:

Tinv(s) = Cinv(sI−Ainv)−1Binv(s) + Dinv(s) (6)
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The matrix Tinv(s) is a rational matrix but it is not proper. The
system matrix Pinv(s) ∈ R(ninv+m)×(ninv+m) of the inverse
model Σ−1 is defined by:

Pinv(s) =
[
sI−Ainv Binv(s)
−Cinv Dinv(s)

]
(7)

B. Digraph approach

In this subsection, a digraph model called the ‘Laplace
digraph’ representing the inverse model (4) is defined and a
procedure to compute the determinant of the system matrix
Pinv(s) is given. This procedure will be used to define the
bond graph procedure to compute the determinant of the
system matrix Pinv(s) of the inverse model (Section II-C). It
uses the transition rules [26] from a digraph to a bond graph
model.

The Laplace digraph is an adaptation of the classical di-
graph [27], [13] to the inverse model where the weights of
some edges can be functions of the Laplace variable s.

Proposition 1. Let us consider the inverse model described
by (4), the associated digraph is characterized by:
• a vertex set V = Uinv ∪ X ∪ Yinv where Uinv =
{y1, ..., ym}, X = {x1, ..., xninv

} and Yinv =
{u1, ..., um} are respectively the sets of input, state and
output vertices;

• an edge set E = EAinv
∪ EBinv(s) ∪ ECinv

∪ EDinv(s)

with:
EAinv

= {(xj , xi)|aij 6= 0}
EBinv(s) = {(yj , xi)|bij(s) 6= 0}
ECinv

= {(xj , ui)|cij 6= 0}
EDinv(s) = {(yj , ui)|dij(s) 6= 0}
where (xj , xi) denotes a directed edge from the vertex
xj ∈ X to the vertex xi ∈ X and aij 6= 0 means
that the (i, j)th entry of the matrix Ainv is not fixed
to zero (of course, the same reasoning is applied to the
sets EBinv(s), ECinv

and EDinv(s)). Each edge (xj , xi)
(resp. (yj , xi), (xj , ui), (yj , ui)) has a weight equal to the
(i, j)th entry of the matrix Ainv (resp. Binv(s), Cinv,
Dinv(s)). Consequently, the weights of the edges (yj , xi)
and (yj , ui) are functions of the Laplace variable s.

The exploitation rules of the Laplace digraph representing
the inverse model (4) are the same as those of the classical
digraph.

Now, let us recall some definitions which are necessary for
the determination, from a digraph, of the determinant of the
system matrix P(s) of the system Σ.

Definition 1. A (directed) path is a sequence of edges such
that the initial vertex of the succeeding edge is the final vertex
of the preceding edge [27], [13].

Definition 2. The weight of a path is equal to the product of
the weights of the edges composing the sequence [27].

Definition 3. A feedback edge is an edge of weight (-1)
between an output vertex and an input vertex [13].

Definition 4. A digraph cycle is a path whose initial and final
vertices are the same [13].

Definition 5. The weight of a digraph cycle is equal to the
weight of the corresponding closed path [13].

Definition 6. Two cycles are said to be disjoint if there is
neither a vertex nor an edge in common [13].

Definition 7. A cycle family is a set of disjoint cycles [13].

Definition 8. The weight of a cycle family is equal to the
product of the weights of the digraph cycles composing that
family [13].

Procedure 1. Let us consider G(Σ) the digraph associated to
the system Σ. The determinant of the system matrix P(s) is
then given by the following expression [13]:

det(P(s)) =
n∑
k=0

ρ
{m}
k sn−k (8)

where:

• n corresponds to the number of state vertices and m cor-
responds to the number of input (resp. output) vertices;

• G(Σ′) is the digraph obtained from the digraph G(Σ)
by adding feedback edge between each output vertex and
each input vertex;

• ρ
{m}
k corresponds, on the digraph G(Σ′), to the sum of

the weights of each cycle family containing k state ver-
tices and at least m feedback edges. In this calculation,
the weight of each cycle family must be multiplied by
(−1)d where d is the number of disjoint cycles contained
in the cycle family such d ≥ m. The weight of each
family must be multiplied also by (−1)σk where σk is
the number of permutations needed to order the output
vertices of the cycle family in the initial order of the
output vertices when the cycles of the family are ordered
in the initial order of the input vertices.

Eq. (9) can be adapted to the inverse model described by
(4):

det(Pinv(s)) =
ninv∑
k=0

ρ
{m}
k (s)sninv−k (9)

where:

• the number of state vertices is equal to ninv;
• the sum of the weights of each cycle family containing k

state vertices and at least m feedback edges depends on
the Laplace variable s.

This direct deduction is possible because the only difference
between the digraph representing the inverse model and the
digraph representing the direct model is the appearance of
the Laplace variable in the weights of some edges ((yj , xi)
and (yj , ui)) on the Laplace digraph. Otherwise this changes
nothing in the weight calculation (see [13]) and consequently
in the calculation of the determinant of the system matrix
Pinv(s).
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Example. Let us consider the inverse model described by the
following system:

q̇ = y1 − y2

u1 = 1
Cq + I1ẏ1 +Ry1 −Ry2

u2 = − 1
Cq + I2ẏ2 −Ry1 +Ry2

(10)

In the Laplace domain, this model is characterized by
the following matrices: Ainv = 0, Binv(s) = [ 1 −1 ],

Cinv =
[

1
C
− 1

C

]
and Dinv(s) =

[
I1s+R −R
−R I2s+R

]
.

The associated digraph is given in Fig. 1.

Fig. 1. Example of the digraph representation of an inverse model.

Fig. 2. The digraph G(Σ′) for the determination of the determinant of the
system matrix Pinv(s).

The determinant of the system matrix of the inverse model
(10) found by the state-space approach is expressed as follows:

det (Pinv(s)) = I1I2s
3 +R(I1 + I2)s2 +

(I1 + I2)
C

s (11)

Now, let us compute this determinant by applying the
digraph procedure (9). The digraph G(Σ′) (digraph with
feedback edges) is given in Fig. 2. The analysis of the cycle
families is detailed in Fig. 3 and can be summarized in the
following table:

Family ρ
{m}
k (s) · sninv−k d σk

F1 (−(I1s+R)) · (−(I2s+R)) · s(1−0) 2 0
F2 (−(I1s+R)) · (− 1

C ) · s(1−1) 2 0
F3 ( 1

C ) · (I2s+R) · s(1−1) 2 0
F4 ( 1

C ) · (R) · s(1−1) 2 1
F5 (R) · (R) · s(1−0) 2 1
F6 (R) · ( 1

C ) · s(1−1) 2 1

The expression of the determinant of the system matrix
Pinv(s) (11) is, hence, determined graphically.

(a) Family F1

(b) Family F2

(c) Family F3

(d) Family F4

(e) Family F5

(f) Family F6

Fig. 3. Analysis of cycle families.

C. Bond graph approach
According to the bond graph approach, the inverse model is

obtained from the bicausal bond graph model. The invertibility
conditions were discussed in [21], [28] and the inversion
procedure was presented in [29]. Let us consider a bond graph
model representing the system Σ as in (1) and a bicausal bond
graph model representing its inverse model as in (3) and in (4).

Definition 9. In a bond graph model, a causal path is a series
of effort and flow variables successively related according to
the model causality assignment [15], [21].
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Definition 10. In a causal bond graph model, an input/output
(I/O) causal path starts from a modulated element (input) and
goes to a detector (output) [15], [21].

Definition 11. In a bicausal bond graph model, an In-
put/Output (I/O) causal path is a causal path starts from
a double source SeSf (input) and goes to a double detector
DeDf (output).

Definition 12. In a bond graph model, two causal paths are
said to be different only if there is no storage element (I or
C) in integral causality in common [14].

Definition 13. In a bond graph model, two causal paths are
said to be disjoint only if there is no variable in common [21].
This translates, by a graphical disjunction of these two causal
paths, into the bond graph model.

Definition 14. In a bond graph model, the order ωk(vi → vj)
(or the generalized length) of a causal path k© between a
variable υi and another variable υj is equal to the difference
between the number of energy storages in integral causality
and the number of energy storages in derivative causality met
along this path [19] [17].

Definition 15. The gain G(s) (resp. static gain G) of a causal
path is defined by [30]:

G(s) = (−1)n0+n1
∏
i

(mi)ki

∏
j

(rj)lj
∏
e

ge(s) (12)

where:
• n0 corresponds to the total number of the orientation

switches in 0 junctions when the flow variable is followed;
• n1 corresponds to the total number of the orientation

switches in 1 junctions when the effort variable is fol-
lowed;

• mi corresponds to the gain of the elements TFi along
the causal path, with ki equal to (+1) or (-1) according
to the causality on the transformer;

• rj corresponds to the gain of the elements GYj along the
causal path, with li equal to (+1) or (-1) according to
the causality on the gyrator;

•
∏
e ge(s) corresponds to the product of the gains (resp.

static gains ge) of the elements R, I and C of the causal
path.

Definition 16. A causal cycle is a closed causal path which
can contain several distinct storage elements [26].

Definition 17. The gain (resp. static gain) of a causal cycle
is equal to the gain (resp. static gain) of the corresponding
closed causal path [26].

Definition 18. A bond graph family is a set of different causal
cycles and I/O causal paths [31].

Definition 19. The gain (resp. static gain) of a bond graph
family is equal to the product of the gains (resp. static gains) of
the causal cycles and causal paths composing the considered
family [31].

Definition 20. The order of a bond graph family is equal to the
difference between the number of energy storages in integral

causality and the number of energy storages in derivative
causality composing this family.

In this paper, the dynamic elements (I and C) of the bond
graph models (causal and bicausal bond graph models) are
supposed independent. From these bond graph definitions and
from (9), a bond graph procedure is proposed and shown to
determine the determinant of the system matrix Pinv(s).

Procedure 2. In a bicausal bond graph model, the determi-
nant of the system matrix Pinv(s) is given by the following
expression:

det(Pinv(s)) =
ninv∑

k=−nD

ρ
{m}
k sninv−k (13)

where in the bicausal bond graph model:

• ninv (resp. nD) corresponds to the number of storage el-
ements in integral causality (resp. in derivative causality)
and m corresponds to the number of inputs/outputs ;

• ρ
{m}
k corresponds to the sum of the static gains of bond

graph families of order k and containing m different I/O
causal paths . In this calculation, the static gain of each
bond graph family must be multiplied by (−1)d where
d is the number of cycles contained in the bond graph
family such d ≥ m. Also, the static gain of each family
must be multiplied by (−1)σk where σk is the number of
necessary permutations to order the outputs in the initial
order of the output vector when the m I/O causal paths
of the family are ordered in the initial order of the input
vector.

Proof. Let us consider (9) defined for the determination
of the determinant of the system matrix Pinv(s) from a
digraph G(Σ−1). By exploiting the existing correspondence
between the disjoint cycles containing feedback edges on the
digraph and the different I/O causal paths on the bond graph
model [26], the following result can be deduced:

det(Pinv(s)) =
ninv∑
l=0

ρ
{m}
l (s)sninv−l (14)

where in the bicausal bond graph model, ρ{m}l (s) corresponds
to the sum of the gains of families containing l energy storages
in integral causality and m different I/O causal paths. The
gain of each family is computed as follows: if the traversed
storage element is in integral causality then the static gain is
considered and if the traversed storage element is in derivative
causality then the gain is considered. So, the appearance of
the Laplace variable in the gain of the family is due to the
storage elements in derivative causality met along the bond
graph family. Due to this, it is more interesting to consider
the order k of the bond graph family and its static gains
ρ
{m}
k . Moreover, the lowest order of each family is −nD (the

total number of storage elements in derivative causality) and
the highest, ninv (the total number of storage elements in
integral causality). Thus (14) is equivalent to (13). End of
proof.
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Example. Let us consider the bicausal bond graph illustrated
in Fig. 4 and corresponding to the system of equations (10).
The analysis of the bond graph families is detailed in Fig. 5
and Fig. 6 and can be summarized by the following table:

Family k ρ
{m}
k (s) · sninv−k d σk

F1 -2 I1I2 · s1−(−2) 0 0
F2 -1 RI2 · s1−(−1) 0 0
F3 -1 RI1 · s1−(−1) 0 0
F4 0 I1

C · s
1−0 0 0

F5 0 R2 · s1−0 0 0
F6 0 R2 · s1−0 0 1
F7 0 I2

C · s
1−0 0 0

F8 1 R
C · s

1−1 0 0
F9 1 R

C · s
1−1 0 0

F10 1 R
C · s

1−0 0 1
F11 1 R

C · s
1−0 0 1

Fig. 4. Example of bicausal bond graph model.

So the determinant of the system matrix Pinv(s) (11) is
determined from the bicausal bond graph model.

III. INFINITE ZERO/POLE ORDERS

A. State-space approach
In this subsection, some state-space results on infinite

zero/pole orders are recalled. After that, the relationship be-
tween the infinite pole orders of the transfer matrix Tinv(s)
(resp. of a sub-matrix Tinv(s)j1,...,jih1,...,hi

of the transfer matrix)
and the order of the system matrix Pinv(s) (resp. of a
sub-matrix Pinv(s)1,...,ninv,ninv+j1,...,ninv+ji

1,...,ninv,ninv+h1,...,ninv+hi
of the system

matrix) will be given.

Definition 21. The degree of a rational function F (s) = N(s)
D(s)

is defined by [32]:

deg(F (s)) = deg(N(s))− deg(D(s)) (15)

Theorem 1. For any (p × m) rational matrix G(s) (not
strictly proper or even proper) of rank r, the Smith-MacMillan
factorization at infinity is defined by [4], [32]:

G(s) = B1(s)
[

∆(s) 0
0 0

]
B2(s) (16)

with B1(s) and B2(s) biproper matrices (proper and with
proper inverse): det

(
lim
s→∞

Bi(s)
)
6= 0, i = {1, 2} and ∆(s) =

diag (st1 , . . . , str ), t1 ≥ . . . ≥ tr. ti; i = {1, . . . , r}; can be
computed as a function of the minors of G(s):

ti = δi − δi−1

where δi is the highest degree of the minors of order i of G(s),
δ0 = 0.
• If ti > 0 then ni = ti is an order of a pole at infinity;
• If ti < 0 then ni = −ti is an order of a zero at infinity.

The transfer matrix T(s) of the system Σ has only zeros
at infinity [1]. So, the transfer matrix Tinv(s) of the inverse
model (3) has only poles at infinity2. So, let us propose a
state-space procedure to compute the orders of these poles at
infinity from the system matrix Pinv(s).

Theorem 2. Let us consider Tinv(s)j1,...,jih1,...,hi
∈ Ri×i the

sub-matrix obtained from the matrix Tinv(s) by selecting
the rows h1, . . . , hi and the columns j1, . . . , ji such that
det(Tinv(s)j1,...,jih1,...,hi

) 6= 0 and δ
i
j1,...,ji
h1,...,hi

is the degree of this

determinant3, then:

δ
i
j1,...,ji
h1,...,hi

= β
i
j1,...,ji
h1,...,hi

− ninv (17)

where:
• ninv is the state dimension of the inverse model ;
• β

i
j1,...,ji
h1,...,hi

is the degree of

det
(
Pinv(s)1,...,ninv,ninv+j1,...,ninv+ji

1,...,ninv,ninv+h1,...,ninv+hi

)
;

• Pinv(s)1,...,ninv,ninv+j1,...,ninv+ji
1,...,ninv,ninv+h1,...,ninv+hi

∈ R(ninv+i)×(ninv+i)

is deduced from the system matrix Pinv(s) by selecting
only the rows 1, . . . , ninv, ninv + h1, . . . , ninv + hi and
the columns 1, . . . , ninv, ninv + j1, . . . , ninv + ji (the
ninv first rows of the ninv first columns of Pinv(s) are
conserved).

Furthermore, δ
i
j1,...,ji
h1,...,hi

is necessarily maximal for β
i
j1,...,ji
h1,...,hi

maximal, thus
δi = βi − ninv (18)

where δi = max
j1, . . . , ji ∈ (J1,mK)i

h1, . . . , hi ∈ (J1,mK)i

{δ
i
j1,...,ji
h1,...,hi

} the highest de-

gree of the minors of order i of Tinv(s) and βi =
max

j1, . . . , ji ∈ (J1,mK)i

h1, . . . , hi ∈ (J1,mK)i

{β
i
j1,...,ji
h1,...,hi

} is the highest degree of the

minors of order i of Pinv(s).

Proof. By applying Schur’s formula, the determinant of the
system matrix can be expressed as:

det(Pinv(s)) = PAinv
(s) det(Tinv(s)) (19)

So, by generalizing to the minors, the following result is
obtained:

det
(
Pinv(s)1,...,ninv,ninv+j1,...,ninv+ji

1,...,ninv,ninv+h1,...,ninv+hi

)
= PAinv

(s) det
(
Tinv(s)j1,...,jih1,...,hi

) (20)

2This result can be deduced directly from the Smith-MacMillan factoriza-
tion at infinity of the transfer matrix of the direct model Σ.

3The zero minors of Tinv(s) have no effect on the infinity structure.
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(a) Family F1 (b) Family F2

(c) Family F3 (d) Family F4

(e) Family F5 (f) Family F6

(g) Family F7 (h) Family F8

Fig. 5. Analysis of bond graph families:F1 . . .F8.
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(a) Family F9 (b) Family F10

(c) Family F11

Fig. 6. Analysis of bond graph families:F9 . . .F11.

As det
(
Tinv(s)j1,...,jih1,...,hi

)
6= 0, then det

(
Tinv(s)j1,...,jih1,...,hi

)
∼

s−→+∞
s−ninv det

(
Pinv(s)1,...,ninv,ninv+j1,...,ninv+ji

1,...,ninv,ninv+h1,...,ninv+hi

)
be-

cause4, from (5), PAinv
(s) ∼

s−→+∞
sninv .

Pinv(s) is a polynomial matrix, and so
det
(
Pinv(s)1,...,ninv,ninv+j1,...,ninv+ji

1,...,ninv,ninv+h1,...,ninv+hi

)
is a polynomial

in s, and, consequently, det
(
Tinv(s)j1,...,jih1,...,hi

)
∼

s−→+∞

s
−ninv+deg

(
det
(
Pinv(s)

1,...,ninv,ninv+j1,...,ninv+ji
1,...,ninv,ninv+h1,...,ninv+hi

))
. Thus, it

can be deduced: δ
i
j1,...,ji
h1,...,hi

= β
i
j1,...,ji
h1,...,hi

− ninv and for the

maximas δi = βi − ninv . End of proof.

Note. Theorem 2 will be used in the proof of the bicausal
procedure 9 for the determination of the infinite pole orders
(Section III-C).

B. Bond graph approach: Causal procedure

The causal procedure is applied to the bond graph model
in preferential integral causality to compute the infinite zero
orders of the direct model Σ.

Procedure 3. Let us consider a bond graph model represent-
ing a linear time-invariant system as in (1) with D = 0. The
system Σ is supposed square and invertible so the number of

4the notation ∼
s−→+∞

represents the limit as s tends to +∞.

the infinite zero orders is equal to m. Moreover, each infinite
zero order ni can be computed as follows [33]:{

n1 = L1

ni = Li − Li−1

(21)

where, in the bond graph model in preferential integral causal-
ity, Li is the smallest sum of the orders of i different I/O causal
paths.

Note. This procedure enables of increasingly ordering the
infinite zero orders.

C. Bond graph approach: Bicausal procedure

In this subsection, a bicausal procedure to determine the
minors of the system matrix of the inverse model is deduced
from procedure 2. After that, a procedure will be proposed to
determine the highest degree δi of the minors of order i of
Tinv(s) on a bicausal bond graph model. Finally, a bicausal
procedure to compute the infinite pole orders will be deduced.

Procedure 4. In a bicausal bond graph model, the minors
of the system matrix Pinv(s) are given by the following
expression:

det
(
Pinv(s)1,...,ninv,ninv+j1,...,ninv+ji

1,...,ninv,ninv+h1,...,ninv+hi

)
=

ninv∑
k=−nD

ρ

{
i
j1,...,ji
h1,...,hi

}
k sninv−k

(22)
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where:
• ninv (resp. nD) corresponds to the number of storage el-

ements in integral causality (resp. in derivative causality)
and m is the number of inputs/outputs;

• ρ

{
i
j1,...,ji
h1,...,hi

}
k corresponds to the sum of the static gains

of bond graph families of order k and containing only
i different I/O causal paths between yj1 , . . . , yji and
uh1 , . . . , uhi

. In this calculation, the static gain of each
bond graph family must be multiplied by (−1)d where d is
the number of disjoint cycles contained in the bond graph
family such d ≥ m. The static gain of each family must
be multiplied also by (−1)σk where σk is the number of
permutations needed to order the inputs uh1 , . . . , uhi

in
the initial order of the input vector when the i I/O causal
paths of the family are ordered in the initial order of the
output vector.

Note. det
(
Pinv(s)1,...,ninv,ninv+j1,...,ninv+ji

1,...,ninv,ninv+h1,...,ninv+hi

)
is computed

from the bicausal bond graph model where only the double
sources associated to yj1 , . . . , yji and the double detectors
associated to ui1 , . . . , uii are considered in this calculation5.

Now, let us describe a bond graph procedure to determine
graphically the highest degree of the minors of order i of
Tinv(s).

Procedure 5. Let δi be the highest degree of the minors of
order i of Tinv(s), then

∀i ∈ {1 . . .m}, δi = −Li (23)

where, in the bicausal bond graph model, Li is the smallest
order that a set of i different I/O causal paths can have.

Proof. Let δi be the highest degree of the minors of order
i of Tinv(s), and βi be the highest degree of the minors of
order i of Pinv(s), and let Li be the smallest order that a
set of i different I/O causal paths can have on the bicausal
bond graph model. From Theorem 2 it can be deduced that
δi = βi − ninv . ninv is the number of storage elements in
integral causality on the bicausal bond graph model. Each βi
can be computed as follows:

βi = max
j1, . . . , ji ∈ (J1,mK)i

h1, . . . , hi ∈ (J1,mK)i

{β
i
j1,...,ji
h1,...,hi

} (24)

where:
β
i
j1,...,ji
h1,...,hi

= deg
(

det
(
Pinv(s)1,...,ninv,ninv+j1,...,ninv+ji

1,...,ninv,ninv+h1,...,ninv+hi

))
.

As det
(
Pinv(s)1,...,ninv,ninv+j1,...,ninv+ji

1,...,ninv,ninv+h1,...,ninv+hi

)
6= 0 , then from

procedure 4:

det
(
Pinv(s)1,...,ninv,ninv+j1,...,ninv+ji

1,...,ninv,ninv+h1,...,ninv+hi

)
=

ninv∑
k=−nD

ρ

{
i
j1,...,ji
h1,...,hi

}
k sninv−k

5The other double sources and double detectors are not deleted from the
bicausal bond graph model in order not to change the causality assignment.

So:

det
(
Pinv(s)1,...,ninv,ninv+j1,...,ninv+ji

1,...,ninv,ninv+h1,...,ninv+hi

)
∼

+∞

ρ

{
i
j1,...,ji
h1,...,hi

}
ω

j1,...,ji
h1,...,hi

s
ninv−ω

j1,...,ji
h1,...,hi

where ωj1,...,jih1,...,hi
is the smallest order that a bond graph family

can have (this family contains exactly i different I/O causal
paths between yj1 , . . . , yji and uh1 , . . . , uhi ).

In this paper, we consider only the structural analysis6,

so ρ

{
i
j1,...,ji
h1,...,hi

}
ω

j1,...,ji
h1,...,hi

is supposed not equal to 0. In this case:

β
i
j1,...,ji
h1,...,hi

= deg
(

det
(
P(s)1,...,ninv,ninv+j1,...,ninv+ji

1,...,ninv,ninv+h1,...,ninv+hi

))
=

ninv − ωj1,...,jih1,...,hi
and consequently: δ

i
j1,...,ji
h1,...,hi

= −ωj1,...,jih1,...,hi
=

−Li. End of proof.

From procedure 5, a bond graph procedure to obtain graph-
ically the orders of the infinite poles of the inverse model (4)
will be deduced and shown.

Procedure 6. Let us consider a bond graph model represent-
ing the inverse model (3). The number of infinite poles is equal
to m and each infinite pole order ni can be computed as
follows: {

n1 = −L1

ni = Li−1 − Li
(25)

where, on the bicausal bond graph model, Li is the smallest
sum of the orders of i different I/O causal paths.

Proof.

• For i = 1, from Theorem 1, we have: n1 = δ1. Moreover,
it has been shown in procedure 5 that δi = −Li. So, the
result n1 = −L1 is immediately deduced.

• For i ≥ 2 and from Theorem 1 and procedure 5:

ni = −δi−1 + δi

= Li−1 − Li

End of proof.

Note. This procedure enables, according to Theorem 1, to
decreasingly order the infinite pole orders.

6If we consider a deeper analysis level, ρ

{
i
j1,...,ji
h1,...,hi

}
ω

j1,...,ji
h1,...,hi

can be equal to zero.

In this case, the bond graph families of order ωj1,...,ji
h1,...,hi

+1 must be considered

and the corresponding coefficient ρ

{
i
j1,...,ji
h1,...,hi

}
ω

j1,...,ji
h1,...,hi

+1
is checked. If this coefficient

is equal to zero then the order ωj1,...,ji
h1,...,hi

must be recurrently increased by 1

until the corresponding coefficient ρ

{
i
j1,...,ji
h1,...,hi

}
ω

j1,...,ji
h1,...,hi

is different from 0.
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D. Example
In order to illustrate the two last procedures, let us consider

the example composed of three masses in translation (Fig. 7).
The connection between the masses m1 and m2 is modelled
by means of a spring and a shock absorber in parallel. The
connection between the masses m2 and m3 is modelled by
means of a spring in parallel to an actuator delivering a force
F2. An effort F1 is imposed on the mass m1. The velocities
v2 and v3 of the masses m2 and m3 are measured.

Fig. 7. Technological diagram of a mechanical system.

Fig. 8. Bond graph model of the mechanical system in preferential integral
causality

Fig. 9. Set S1 of different I/O causal paths.

According to the rules of bond graph modelling, the

associated bond graph model can be constructed. The
preferential integral causality is assigned according to the
SCAP procedure (i.e. Sequential Causality Assignment
Procedure) [34] as shown in Fig. 8. From the causal bond
graph model, the state-space model Σ can be deduced with:
x =

[
p1 p2 p3 q1 q2

]T
, u =

[
F1 F2

]T
, y =

[
v2 v3

]T
, A =


− b

m1
b

m2
0 −k1 0

b
m1

− b
m2

0 k1 −k2
0 0 0 0 k2
1

m1
− 1

m2
0 0 0

0 1
m2

− 1
m3

0 0

,

B =


1 0
0 1
0 −1
0 0
0 0

, C =
[

0 1
m2

0 0 0

0 0 1
m3

0 0

]
and D = [0].

The transfer matrix T(s) of the direct model is written:

T(s) =
1
det

[
t11 t12
t21 t22

]
(26)

with:
• det = s5 + b( 1

m1
+ 1

m2
)s4 + ( k1m1

+ k1+k2
m2

+ k2
m3

)s3 +
bk2( 1

m1m2
+ 1

m2m3
+ 1

m1m3
)s2 + k1k2( 1

m1m2
+ 1

m2m3
+

1
m1m3

)s
• t11 = b

m1m2
s3 + k1

m1m2
s2 + bk2

m1m2m3
s+ k1k2

m1m2m3

• t12 = 1
m2
s4 + b

m1m2
s3 + k1

m1m2
s2

• t21 = bk2
m1m2m3

s+ k1k2
m1m2m3

• t22 = − 1
m3
s4 − b

m3
( 1
m1

+ 1
m2

)s3 − k1
m3

( 1
m1

+ 1
m2

)s2

Using Theorem 1 gives the infinite zero orders by the state-
space approach:{

t1 = δ1 = −1
t2 = δ2 − δ1 = −3 + 1 = −2

(27)

So n1 = 1 and n2 = 2. This represents the reference result
to which the bond graph-based one will be compared.

To determine the infinite zero orders from the bond graph
model in preferential integral causality, the analysis of I/O
causal paths is conducted (Fig. 9): S1 = { 1©, 2©} is the set of
different I/O causal paths between the pair of inputs (F1, F2)
and the pair of outputs (v2, v3) which has the smallest order7.
So:{

L1 = ω2(F2 → v3) = 1
L2 = ω1(F1 → v2) + ω2(F2 → v3) = 2 + 1 = 3

(28)

Then, it can be deduced that:{
n1 = L1 = 1
n2 = L2 − L1 = 3− 1 = 2

(29)

This result is in agreement with that found with the state-
space approach, Theorem 1.

Now let us determine the infinite pole orders according
firstly to the state-space approach, Theorem 1, and secondly

7The order of a set of I/O causal paths is the sum of the orders of all I/O
causal paths of this set.
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according to the bicausal approach, procedure 6.

The invertibility conditions are verified (for more details,
see [29], [28]), so the bicausal bond graph model can be
constructed as shown in Fig. 10 according to the SCAPI
procedure (i.e. Sequential Causality Assignment Procedure for
Inversion). From the bicausal bond graph model, the inverse
model of minimal order (3) can be deduced:



q̇1 = −k1b q1 + m2
b v̇2 + m3

b v̇3

q̇2 = v2 − v3

F1 =
m1k

2
1

b2
q1 +

m1m2

b
v̈2 +

m1m3

b
v̈3

+ (m1 +m2 −
m1m2k1

b2
)v̇2

+m3(1− m1k1

b2
)v̇3

F2 = k2q2 −m3v̇3

(30)

Fig. 10. Bicausal bond graph model of the mechanical system.

Fig. 11. Set S2 of different I/O causal paths.

The transfer matrix Tinv(s) of the inverse model is written
(34). According to Theorem 1, the infinite pole orders are

computed by the state-space approach as follows:{
n1 = t1 = δ1 = 2
n2 = t2 = δ2 − δ1 = 3− 2 = 1

(31)

This represents the reference result to which the bond
graph-based one will be compared.

To determine the infinite pole orders from the bicausal bond
graph model, the analysis of I/O causal paths is conducted
(Fig. 11): S2 = { 3©, 4©} is the set of different I/O causal
paths between the pair (v2, v3) and the pair (F1, F2) which
has the smallest order. So:{

L1 = ω3(v2 → F1) = −2
L2 = ω3(v2 → F1) + ω4(v3 → F2) = −2− 1 = −3

(32)
Then, it can be deduced that:{

n1 = −L1 = 2
n2 = L1 − L2 = −2 + 3 = 1

(33)

This result is in agreement with that found according to the
state-space approach, Theorem 1.

E. Interpretation and duality

The two procedures (causal and bicausal procedures) enable
of finding the same results as those found by the the state-space
approach. The causal procedure 3 enables of determining the
infinite zero orders from the bond graph model in preferential
integral causality by the analysis of the orders of different I/O
causal paths and the bicausal procedure 6 enables of determin-
ing the infinite pole orders from the bicausal bond graph model
by the analysis of the orders of different I/O causal paths. So
the only difference between the two procedures (except the fact
that the causal procedure is applied to the direct bond graph
model and the bicausal procedure is applied to the inverse
bond graph model) is that in the causal bond graph model the
orders of I/O causal paths are considered and in the bicausal
bond graph model the orders of I/O causal paths are considered
with a minus sign.

IV. ESSENTIAL ORDER AND RELATIVE ORDER

A. State-space approach

In this subsection, the state-space definitions of the relative
order and the essential order are recalled. These definitions
enable the computing of these orders from the direct model
Σ. A new procedure to compute the relative orders from the
inverse model (3) is proposed. This procedure will be used to
demonstrate the bicausal bond graph procedure.

Theorem 3. The relative order n′i of the output yi is to the
minimal number of times it is necessary to time-differentiate
the output yi in order to make explicitly appear at least one
component of the input vector u in the expression of y(n′i)

i .
Such an order can be computed by one of these three following
methods:
• n′i is equal to the minimal difference between the poly-

nomial degrees of the denominators and the numerators
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Tinv(s) =

 m1m2k
2
1s

2

b3s(s+
k1
b )

+ m1m2
b s2 +

(
m1 +m2 − m1m2k1

b2

)
s

m1m3k
2
1s

2

b3s(s+
k1
b )

+ m1m3
b s2 +

(
m3 − m1m3k1

b2

)
s

k2(s+
k1
b )

s(s+
k1
b )

−k2(s+
k1
b )

s(s+
k1
b )
−m3s

 (34)

composing the transmittances of the I/O transfer matrix
row ti(s) [35], [30].

• n′i can be calculated as [35], [36], [2]:

n′i =

{
0 if di 6= 0
inf
k∈N∗

{k | ciAk−1B 6= 0}

• n′i is equal to the order of the infinite zero of
(A,B, ci,di), namely [35], [36]:

n′i = inf
k∈N
{k | lim

s→∞
skti(s) 6= 0}

where ci (resp. di) is the ith row of C (resp. D) and ti(s) =
ci(sI−A)−1B + di.

Theorem 4. The essential order nie of the output yi is
equal to the highest time-differentiation order of the output yi
appearing in the inverse model [2], [22]. For a right-invertible
system (A,B,C), the essential order nie of the output yi can
be expressed as [2]:

nie =
m∑
j=1

nj −
m−1∑
j=1

nij (35)

where:
• nj is the jth infinite zero order of the system (A,B,C);
• nij is the jth infinite zero order of the system (A,B,Ci)

with:

Ci =
[
cT1 cT2 . . . cTi−1 cTi+1 . . . cTm

]T
(36)

and ∀k ∈ {1, . . . , i− 1, i+ 1, . . . ,m}, ck is the kth row
of C.

Now, let us propose a state-space procedure to compute the
relative orders from the inverse model (4). This procedure will
be used to display the duality between these orders and the
essential orders.

Theorem 5. For a square invertible system, the relative order
n′i of the output yi can be expressed as:

n′i =
m∑
j=1

nj −
m−1∑
j=1

nij (37)

With:
• nj is the jth infinite pole order of the system

(Ainv,Binv(s),Cinv,Dinv(s)).
• nij is the jth infinite pole order of the system(

Ainv,Binvi
(s),Cinv,Dinvi

(s)
)

with:

Binvi
(s) =

[
binv1 . . . binvi−1 binvi+1 . . . binvm

]
Dinvi

(s) =
[
dinv1 . . . dinvi−1 dinvi+1 . . . dinvm

]
and ∀k ∈ {1, . . . , i−1, i+1, . . . ,m}, binvk

(resp. dinvk
)

is the kth column of Binv(s) (resp. Dinv(s)).

Proof. 8 The transfer matrix of the inverse model Tinv(s) can
be factorized as:

Tinv(s) = [Tinv1(s)|tinvi
(s)|Tinv2(s)] (38)

with tinvi(s) the ith column of Tinv(s).

The first step of this proof consists of a column permutation
to simplify the manipulations of the matrix, thus:

Tinv(s) = Tinv(s)M
= [tinvi(s)|Tinv1(s)|Tinv2(s)]

(39)

with M the permutation matrix defined by:

M =



0
...
0

1
. . .

1

0 · · · 0
...

. . .
...

0 · · · 0
1 0 · · · 0 0 · · · 0
0
...
0

0 · · · 0
...

. . .
...

0 · · · 0

1
. . .

1


Thus Tinv(s) and Tinv(s) have the same structure at infinity
and the infinite pole order of the first column of Tinv(s) is
equal to the infinite pole order of the ith column of Tinv(s).
So the infinite zero order of the ith row of T(s) = T−1

inv(s)
is equal to the infinite zero order of the first row of T

−1

inv(s).

The second step of this proof is to express the relation
Tinv(s) and the Smith–McMillan factorization at infinity of
the subsystem

(
Ainv,Binvi

(s),Cinv,Dinvi
(s)
)

where:

Binvi
(s) =

[
binv1 . . . binvi−1 binvi+1 . . . binvm

]
Dinvi

(s) =
[
dinv1 . . . dinvi−1 dinvi+1 . . . dinvm

]
and ∀k ∈ {1, . . . , i − 1, i + 1, . . . ,m}, binvk

(resp. dinvk
) is

the kth column of Binv(s) (resp. Dinv(s)).

In fact, the Smith–McMillan factorization at infinity of the
subsystem

(
Ainv,Binvi

(s),Cinv,Dinvi
(s)
)
, characterized by

the transfer matrix [Tinv1(s)|Tinv2(s)], is defined by:

[Tinv1(s)|Tinv2(s)] = B1(s)Λ(s)B2(s) (40)

with B1(s) and B2(s) biproper matrices of respec-
tive dimensions (m×m) and (m-1×m-1) and Λ(s) =[

∆(s)
0

]
, where ∆(s) = diag

(
sni1 , . . . , sni(m−1)

)
.

ni1, . . . , ni(m−1) are the infinite pole orders of the system

8This proof is similar to the proof of the definition of essential order
(Theorem 4) presented in [2]. The only difference is that this proof is applied
to the inverse model (4) while the proof in [2] is applied to the direct model
Σ.
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(
Ainv,Binvi

(s),Cinv,Dinvi
(s)
)
. So Tinv(s) can be ex-

pressed as:

Tinv(s) =
[
tinvi

(s) B1(s)Λ(s)B2(s)
]

= B1(s)
[
B
−1

1 (s)tinvi
(s) Λ(s)B2(s)

] (41)

Under the left action of biproper transformation, the structure
at infinity of the columns of Tinv(s) corresponds to that
of
[
B
−1

1 (s)tinvi(s) Λ(s)B2(s)
]
. This result can be shown

thanks to the properties of a biproper matrix and thanks to
the following definition of the infinite pole order of a column
gi(s) [37]:

inf
k∈N∗

{k | lim
s→∞

s−kgi(s) 6= 0} (42)

It can be deduced that, under the right action of the biproper
matrix B

−1

1 (s), the structure at infinity of the rows of T
−1

inv(s)

corresponds to that of
[
B
−1

1 (s)tinvi
(s) Λ(s)B2(s)

]−1

.

Moreover, [
B
−1

1 (s)tinvi
(s) Λ(s)B2(s)

]

= T(s)


1 0 . . . 0
0
...
0

B2(s)

 (43)

with T(s) =
[

B
−1

1 (s)tinvi(s) Λ(s)
]
. Thus,

[
B
−1

1 (s)tinvi
(s) Λ(s)B2(s)

]−1

=
1 0 . . . 0
0
...
0

B
−1

2 (s)

T
−1

(s)
(44)

Thanks to the particular form of the biproper matrix, the first

row of
[
B
−1

1 (s)tinvi
(s) Λ(s)B2(s)

]−1

corresponds to the

first row of T
−1

(s). So, it can be deduced that the first rows
of T

−1

inv(s) and T
−1

(s) have the same infinite zero order and
consequently, the ith row of T(s) has this same infinite zero
order.

Now, let us determine the first row of T
−1

(s). In fact, the
inverse of this matrix is defined by:

T
−1

(s) =
1

det
(
T(s)

)adj (T(s)
)

(45)

The first row of adj
(
T(s)

)
is defined by:[

0 . . . 0 (−1)(m−1)

m−1∏
j=1

snij

]
Since

Tinv(s) = B1(s)T(s)


1 0 . . . 0
0
...
0

B2(s)

 (46)

Then,

T(s) = B
−1

1 (s)Tinv(s)


1 0 . . . 0
0
...
0

B
−1

2 (s)

 (47)

Also, the Smith–MacMillan factorization at infinity of Tinv(s)
can be expressed as:

Tinv(s) = B1(s)Λ(s)B2(s) (48)

with B1(s) and B2(s) biproper matrices and Λ(s) =
diag (sn1 , . . . , snm) where {n1, . . . , nm} are the orders of the
poles at infinity of Tinv(s). Thus,

T(s) = B
−1

1 (s)B1(s)Λ(s)B2(s)M


1 0 . . . 0
0
...
0

B
−1

2 (s)


(49)

The determinant of T(s) is:

det
(
T(s)

)
= b(s)

m∏
j=1

snj (50)

with b(s) a biproper function resulting from the determinants
of the biproper matrices of the factorization at infinity of T(s)
(49). Thus the first row of T

−1
(s) is defined by: 0 . . . 0

(−1)(m−1)

m−1∏
j=1

snij

b(s)

m∏
j=1

snj


So, the infinite zero order of the first row of T

−1
(s), and

consequently of the ith row of T(s), corresponds to: n′i =

−

m−1∑
j=1

nij −
m∑
j=1

nj

. The infinite zero order of the ith row

of T(s) is defined as the relative order of yi. Then, the relative
order associated to yi is defined by:

n′i =
m∑
j=1

nj −
m−1∑
j=1

nij (51)

End of proof.

Theorem 5 will be used to define the bicausal procedure for
the determination of the relative orders.

B. Bond graph approach: Causal procedures

The causal procedures are applied to the bond graph model
in preferential integral causality to determine the relative
orders and the essential orders from the direct model Σ.

Procedure 7. In a bond graph model in preferential integral
causality, the relative order n′i of the output yi is equal to the
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minimal order a causal path can have between the output yi
and any input [19], [15]9.

Procedure 8. In a bond graph model in preferential integral
causality, the essential order nie of the output yi can be
computed as follows [38]:

nie = Lm − L(i)
m−1 (52)

where:

• Lm is the smallest sum of the orders of m different I/O
causal paths in the initial bond graph model;

• L
(i)
m−1 is the smallest sum of the orders of m−1 different

I/O causal paths in the bond graph model obtained by
deleting the ith detector element in the initial bond graph
model.

C. Bond Graph approach: Bicausal procedures

The bicausal procedures are applied on bicausal bond graph
model to determine the relative orders and the essential orders
from the inverse model (3).

Procedure 9. In a bicausal bond graph model, the relative
order n′i of yi can be expressed as:

n′i = L
(i)
m−1 − Lm (53)

where:

• Lm is the smallest sum of the orders of m different I/O
causal paths in the bicausal bond graph model;

• L
(i)
m−1 is the smallest sum of the orders of m − 1

different I/O causal paths obtained without considering,
in the bicausal bond graph model, the ith double source
element10.

Proof. From procedure 6, it can be deduced that
m∑
j=1

nj =

−Lm and
m−1∑
j=1

nij = −L(i)
m−1. So, from these results and from

Theorem 5, this bicausal procedure can be deduced. End of
proof.

Procedure 10. In a bicausal bond graph model, the essential
order nie of yi can be expressed as [39], [38]:

nie = −min
k,j
{ωk(yi → uj)} (54)

where min
k,j
{ωk(yi → uj)} is the minimal order a causal path

can have between the double source associated with yi and
any double detector.

9Attention has to be paid to the fact that an exception to this definition may
happen. As highlighted in [15], if there are two paths having the same minimal
order ωimin and such that the sum of their gains is equal to zero, then the
relative order of the studied output can be greater than ωimin . Actually, only
n′i ≥ ωimin is true in the general case.

10The ith double source element is not deleted from the bicausal bond
graph model in order to not change the causality assignment.

D. Example

Let us consider the mechanical system illustrated in
Fig. 7. The use of Theorem 3 and Theorem 4 enables to
deduce the relative orders and the essential orders from the
direct model Σ by a state-space approach (26): n′1 = 1,
n′2 = 1, n1e = n1 + n2 − n11 = 1 + 2 − 1 = 2 and
n2e = n1 + n2 − n21 = 1 + 2 − 1 = 2. This represents the
reference result to which the bond graph-based ones will be
compared.

Fig. 12. Determination of the relative orders.

Now let us determine the relative orders and the essential
orders by the bond graph causal procedures:
• The analysis of the bond graph model in preferential

integral causality leads to the conclusion that the shortest
causal path between the output v2 (resp. v3) and any input
corresponds to the path 5© (resp. 2©) between v2 (resp.
v3) and F2 as shown in Fig. 12. So n′1 = ω5(F2 → v2) =
1 and n′2 = ω2(F2 → v3) = 1.

• To compute the essential orders, let us determine the
infinite zero orders of the subsystem (A,B,C1) (resp.
(A,B,C2)). For that, let us consider the bond graph
models shown in Fig. 13(a) and in Fig. 13(b) where the
elements Df : v2 and Df : v3 have been respectively
deleted from the initial bond graph model. From their
causal analysis, it follows that:

L2 = 3 Fig. 9 and (28)
L

(1)
1 = ω2(F2 → v3) = 1

L
(2)
1 = ω5(F2 → v2) = 1

So, according to procedure 8, it can be concluded that:{
n1e = L2 − L(1)

1 = 3− 1 = 2
n2e = L2 − L(2)

1 = 3− 1 = 2
(55)

These results are in agreement with those found using the
state-space approach.
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(a)

(b)

Fig. 13. Determination of infinite zero orders nij .

Now, let us determine the relative orders and the essential
orders by the bicausal procedures:
• To compute the relative orders, let us

determine the infinite pole orders of the
subsystem

(
Ainv,Binv1(s),Cinv,Dinv1(s)

)
(resp.(

Ainv,Binv2(s),Cinv,Dinv2(s)
)
). For that, let us

consider the bond graph models shown in Fig. 14(a)
and in Fig. 14(b) where the elements SeSf : v2 and
SeSf : v3 are respectively not considered. From their
causal analysis, it follows that:

L2 = −3 Fig. 11 and (32)
L

(1)
1 = ω6(v3 → F1) = −2

L
(2)
1 = ω3(v2 → F1) = −2

So, according to procedure 9, it can be concluded that:{
n′1 = L

(1)
1 − L2 = −2 + 3 = 1

n′2 = L
(2)
1 − L2 = −2 + 3 = 1

(56)

• The analysis of the bicausal bond graph model leads to
the conclusion that the smallest order causal path between
the output v2 (resp. v3) and any input corresponds to

(a)

(b)

Fig. 14. Determination of infinite pole orders nij .

Fig. 15. Determination of essential orders in bicausal bond graph model.

the path 3© (resp. 6©) between v2 (resp. v3) and F1 as
shown in Fig. 15. So n1e = −ω3(v2 → F1) = 2 and
n2e = −ω6(v3 → F1) = 2.
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These results are in agreement with those found using the
state-space approach, Theorem 1.

E. Interpretation and duality

The causal and the bicausal procedures for the determination
of relative orders and essential orders enable finding the
same results as those found by the state-space approach.
The causal procedure (procedure 7) enables determining the
relative orders from the bond graph model in preferential
integral causality by the analysis of the orders of the I/O
causal paths. The bicausal procedure (procedure 9) enables
determining these orders from the bicausal bond graph model
by the analysis of the orders of the I/O causal paths of the
subsystems

(
Ainv,Binvi

(s),Cinv,Dinvi
(s)
)
.

Also, procedure 8 enables determining the essential
orders from the bond graph model in preferential integral
causality by the analysis of the orders of the I/O causal paths
of the subsystems

(
A,B,Ci

)
. The procedure 10 enables

determining these orders from the bicausal bond graph model
by the analysis of the orders of I/O causal paths.

So, the causal procedure for the determination of the
relative orders is the dual of the bicausal procedure for the
determination of the essential orders and the causal procedure
for the determination of the essential orders is the dual of
the bicausal procedure for the determination of the relative
orders. However attention has to be paid to the fact that
whatever the bond graph representation (causal or bicausal),
the output yi always refers to the same physical quantity.
Talking about relative and essential orders on the bicausal
model does not involve the outputs of the inverse model
which are in fact the physical inputs of the system.

V. CONCLUSION

In this paper, two bicausal procedures were given and
demonstrated to graphically determine structural properties
of linear time-invariant systems. The first procedure enables
computing the infinite pole orders of the inverse model
and the second procedure enables determining the relative
orders from the bicausal bond graph model. To prove the
latter procedure, a new state-space procedure to compute
the relative order was given. In fact, in the literature and
in the classical approaches (state-space approach, geometric
approach, etc.), the relative order is defined from the direct
model (before model inversion) because this order gives an
idea of the necessary minimal time-differentiation order of
each output yi in order to make appear at least one component
of the input vector in the expression of y(n′i)

i .

The causal procedure for the determination of the relative
orders is simpler than the bicausal one, while the bicausal
procedure for the determination of the essential orders is
simpler than the causal one. So, the structural analysis of
one bond graph model rather than another one depends on

the aim of the analysis. The duality between the causal
and bicausal procedures for the determination of relative
orders and essential orders shows the duality between these
invariants.

The proposed bond graph procedures represent a contribu-
tion to the structural analysis step of the methodology for
sizing mechatronic systems according to energy and dynamic
criteria. The main advantage of conducting structural analysis
in the sizing methodology lies in the fact that the resulting
diagnostic does not depend on parameter values or on the
physical phenomena equations. Moreover, this approach offers
the advantage to be entirely graphical and close to the physical
meaning. The structural analysis step can help the engineer to
write his specifications and then to correctly formulate his
sizing problem (and this without running a simulation).
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