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roposing a new development of a layer-wise 2D finite-element method for mul-
aminated plate as a superposition of Reissner plates coupled by interfacial stres-
description of the laminates, the interfaces show a particular behavior, elastic or
criterion). The finite element formulation is derived and an eight-node multipar-
The application example of a double lap joint with an elastoplastic adhesive is
esive layer is modeled as an interface. The loading scheme is a load-unload-load
normal stresses are compared to 3D finite element results. A good agreement
s is observed, particularly for the prediction of the history of the slip between
he plastic strains in the adhesive.
1. Introduction

In order to answer to an increasing demand of multifunctional-
ity and optimization, classical structures are becoming more and
more complex, including multilayered parts instead of monolithic
solutions, and specific interfaces as bonding or connectors. These
designs also need complex numerical tools able to predict the
mechanical behavior with accuracy. For laminated structures, it
is well known that high interlaminar stresses play a significant role
not only in local but also in global failure mechanisms. Therefore, a
correct modelling of interfaces is required.

Interfaces are two-dimensional entities between two layers in
which the stress vector continuity is ensured. Usually, a perfect
interface is considered and the 3D displacement field is then con-
tinuous across it. Very thin layers may be modelled as perfect
interfaces in order to simplify the analysis. This is the case, for
example, of thin layers of an adhesive material exhibiting small
strains in an adhesively bonded joint. But, in this example, when
large strains in the thin adhesive layer occur, the discontinuity of
displacements across the interface may be non-negligible (the
interface is imperfect). In [1], by testing composite laminates made
up of carbon-epoxy prepregs, Diaz and Caron measured displace-
ment discontinuities (across interfaces) as large as one tenth of
the thickness of the plies before debonding of layers (Fig. 1) and
a delamination criterion involving a critical interlaminar sliding
value was proposed. In [2], Le Roy et al. proved that a correct
1

modeling of concrete-wood composite beams with discrete
connectors requires the consideration of imperfect interfaces, too.

Another important issue in the modeling of laminated struc-
tures is the technique for evaluating stresses. The use of a 3D ap-
proach is perhaps not the best choice; on the one hand, because
tools have to be as simple and as cheap as possible to be useful
to the designer. On the other hand, because the answers provided
by these simulations, are too sharp, not enough global or macro-
scopic, and, moreover, not always relevant (mesh dependency,
presence of singularities, size of heterogeneities not adequate for
the level of description). Therefore, post-processing is necessarily
used. For example, integrations on areas defined by the operator
can provide converging values, independent of the mesh [3–5].

Due to all these difficulties, it seems more natural to calculate
with 2D approaches the multilayer which has a plate topology. It
is necessary to exhibit relevant global variables, which lie on rigor-
ous mechanical concepts and properly describe the phenomena.
This topic has been handled by the research community for several
years. In the first part of this article, a review of the available 2D
modelling is presented. In a second part, the authors describe their
own approach, and more specifically, the possibility to introduce
an elastoplastic interface sliding. Finally, and since the plasticity
smoothes in this case the 3D singularities, the 2D finite element
model is compared to a 3D finite element approach in the case of
an elastoplastic double lap joint.

2. 2D plate model for composite materials

A very complete review of these models can be found in [6],
where continuum based models, and asymptotic or axiomatic type



Fig. 1. Plastic sliding in a composite interface [1].
approaches are listed. Here, the same proposed classification and
the same focus on the very large family that E. Carrera described
as axiomatic is adopted. These theories postulate a certain intuitive
displacement and/or stress field form in the thickness z-direction.
They may also consider the multilayer as an equivalent single layer
or as if each layer is seen as an independent plate [7]. In the first case,
the models derived from the classical plate theories, for instance,
the Love-Kirchhoff theory or the Reissner–Mindlin theory. They dif-
fer in the degree of the z polynomial choices for displacement fields
(rarely for stress fields), and in some other assumptions. For exam-
ple, the Classical Lamination Theory [7,8] neglects the out-of-plane
strains, when the First Order Theory [9,10] includes these important
effects for composite structures. Some models involve different
kinematics such as Cosserat [11] but most of developments concern
higher order theories which provide a better description of fields by
increasing the degree of polynomials in the z-direction (see [6,12])
or by adding local interpolation strategies during the numerical
implementation (see [13]). These models are rather intended to a
global design and are not designed for predicting local phenomena,
as those due to free edges or interfaces. However, the operational
advantage is undeniable since these approaches permit a plate
description with a number of degrees of freedom independent from
the number of layers. In the same way, some authors propose the so-
called zig-zag models (a complete list can be found in [6] and an his-
torical review in [14]), which keep this last advantage while improv-
ing the kinematic description, by taking into account brutal
mechanical property changes across interfaces. For instance, in
[15,16], a piecewise linear function with a slope changing at each
interface, is added to the global Equivalent Single Layer displace-
ment. In [17], a sinus function replaces the linear piecewise function
and then smoothes the changes in the displacement field. The field
descriptions are finer with these zig-zag approaches (conditions of
stress continuities can also be added) and they provide a good
trade-off and correct solutions for thick structures, for example.

However, if the objective is to capture more specific features as
interface stresses or edge effects, the natural way is to implement a
so-called layer-wise description. The multilayer can then be shown
as a superposition of membranes or plates, each of them having
their own kinematic or stress description. An outcome of this
2

modeling is a number of degrees of freedom which depends on
the number of layers, but the displacement or stress approxima-
tion can be very close to the 3D solution. A review of these ap-
proaches is proposed again in [6]. The models differ in the choice
of the approximated fields: displacements [8,18] or displacements
and stresses [15,19]. Pure stress approaches are less usual. How-
ever, the study of singularities seems more natural, more conve-
nient with a better and direct description of stress fields. A
noteworthy work has been made in this way by Pagano [20]. Using
a Hellinger–Reissner variational mixed formulation [21] and a
stress field approximation, an efficient model is derived. The key
point which is not often highlighted, is that no displacement
approximations are made, despite the use of a mixed formulation.
2D generalized displacements are shown, energetically associated
with the generalized forces which derive from the stress approxi-
mation, but no constraint conditions on the 3D displacement fields
are established. ‘‘Note that we refrain from assuming the form of
the displacement field in accordance with the objectionable fea-
tures of that approach’’ ([20] p.389). It leads to a less constrained
model than those where both displacement and stresses compo-
nents are approximated. A more recent development of this meth-
od can be found in [6,22] where simplifications are made providing
a more operational formulation. This model was being already
widely validated [23]. A quadrilateral C0 finite element model
(MPFEAP for Multi Particle Finite Element Analysis Modeling)
deriving from this model was also developed [24]. In the next part
of this paper the equations are briefly summarized, and the new
developments with elastic or plastic interface sliding are detailed.

3. A layerwise model with imperfect interfaces

The model called M4� 5n, initially developed for calculating
interface stresses, [25,22], is specifically devoted to the study of
the interface phenomena, delamination initiation or sliding. In
the initial formulation, interfaces are considered as perfect (out-
of-plane stresses continuity, infinitely rigid) and the applications
used an estimation of interface stresses for criterion proposals
[23,1]. But such an approach reaches its own limit very quickly,
since the interfaces can be more complex. For example, discrete



connectors in concrete-wood composite beams [2], elastoplastic
bonds [26,27], honeycombs sandwich [28] or damageable interface
[29] exhibit a strongly non-linear behavior.

There are several ways to manage such specificities. The 3D finite
element is once again not the most adapted model, since the inter-
face concentrates high gradients (even singularities) in a weak
dimension with regard to those of the layers. It is therefore difficult
to use acceptable meshing for both adherends and a thin interface.
From a numerical point of view, it leads to problems with too large
extensions.

Consequently, it is classical to represent joints (with weak
thickness and often weak rigidity) with cohesive elements, and
to develop specially interface finite elements, with no thickness,
which link stresses in the element and displacements close to
the interface [29]. A damage model is generally introduced to cre-
ate delamination [30–34].

Taking into account the weak thickness and weak rigidity, several
analytical works propose also an asymptotic study completed by
numerical calculations. In these mathematical studies [35–37], the
thickness tends to zero and the interface is replaced by a constraint
condition between layers, whether they are linear or not [38].

In this layerwise approach, several steps were taken in this
sense. Firstly, in [1] the inelastic interface was introduced as a
non-elastic strain in the analytical model permitting the sliding
between two layers of composite (Fig. 1). An elastoplastic behavior
was then applied to the law which links the generalized interlam-
inar stresses to the displacement dicontinuities across the inter-
face. This law was fitted to experimental data ([1], Fig. 1 left
panel). The described interface is not yet really physical since it
has not its own behavior.

For thicker and more elastoplastic interfaces, as some bonding
joints ([39], Fig. 2), it might be interesting to introduce in the mod-
el a more representative behavior of such an interface.

In the following part, the description of the model and the main
governing equations are briefly reminded, the interface behavior is
detailed, the 2D finite element is presented, and an application on
an elastoplastic double lap joint is proposed as a validation of the
2D approach.

3.1. Description and notations

The multilayered plate is then composed of n orthotropic elastic
layers bonded together.

� Each layer i, thickness ei, is bounded by the lower surface h�i and
the top surface hþi . The average surface is noted by �hi. Between
two adjacent layers i and i + 1, the adhesive has a thickness ei,i+1
Fig. 2. Plastic sliding in an adhesive submitted to shear stress before loading (left), af
adhesive thickness is 0.25 mm) [39].
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� The volume occupied by the plate is X ¼ x� h�1 ; h
þ
n

� �
� The superscripts i and j, j + 1 indicate layer i and the interface

between layers j and j + 1 (i = 1, . . ., n and j = 1, . . ., n � 1).
� The subscripts a stand for the adhesive layer.
� The Greek subscripts a, b, c, d indicate the components on the

(x,y) plane and are assigned the values 1 and 2. Subscript 3 indi-
cates the normal direction z.
� Tensors, matrices and vectors are expressed in bold face

characters.

3.2. Governing equations

The stress state of each layer i is described by the following gen-
eralized resultants and stresses (details in [25]): the in-plane stress
resultant Ni

ab, the in-plane moment resultant Mi
ab, the out-of-plane

shear stress resultant Qi
ab and the interlaminar shear and normal

stresses at the interface j; jþ 1; sj;jþ1
a and mj,j+1.

Ni
abðx; yÞ ¼

R hþi
h�i

rabðx; y; zÞdz

Mi
abðx; yÞ ¼

R hþi
h�i
ðz� �hiÞrabðx; y; zÞdz

Qi
aðx; yÞ ¼

R hþi
h�i

ra3ðx; y; zÞdz

sj;jþ1
a ðx; yÞ ¼ ra3 x; y;hþj

� �
mj;jþ1ðx; yÞ ¼ r33 x; y;hþj

� �
ð1Þ

Assuming a linear distribution of the in-plane 3D stresses through
each layer thickness (and by the way, parabolic and third order
transverse shear and normal stresses distribution), it can be shown
[25] that the following in-plane elastic strains �i

ab, the curvature vi
ab

and the transverse strains ci
a are the generalized elastic strains asso-

ciated from an energetic point of view to the generalized resultants,
respectively Ni

ab; Mi
ab; Qi

a. For the same reason, the generalized
interlaminar elastic displacements Dej;jþ1

a ; Dej;jþ1
3 are associated with

sj;jþ1
a and mj,j+1.

Ni
ab $ ei

ab ¼ 1
2 Ui

a;b þ Ui
b;a

� �
Mi

ab $ vi
ab ¼ 1

2 /i
a;b þ /i

b;a

� �
Qi

a $ ci
a ¼ /i

a þ Ui
3;a

sj;jþ1
a $ De j;jþ1

a ¼ Dj;jþ1
a �Xj;jþ1

a

Dj;jþ1
a ¼ Ujþ1

a � Uj
a � ej

2 /j
a � ejþ1

2 /jþ1
a

mj;jþ1 $ De j;jþ1
3 ¼ Dj;jþ1

3 �Xj;jþ1
3

Dj;jþ1
3 ¼ Ujþ1

3 � Uj
3

ð2Þ
ter one cycle of loading/unloading (right): plastic deformation is highlighted (the



where the 5n following generalized displacements Ui
a; /i

a; Ui
3,

exhibited by an energetic identification [25], are respectively the
generalized in-plane displacement, rotation field and vertical dis-
placement of layer i. They result from integrations of the 3D dis-
placement components u1,2,3(x,y,z).

Ui
aðx; yÞ ¼

R hþi
h�i

1
ei uaðx; y; zÞdz

Ui
aðx; yÞ ¼

R hþi
h�i

12
ei2

uaðx; y; zÞdz

Ui
3ðx; yÞ ¼

R hþi
h�i

1
ei u3ðx; y; zÞdz

ð3Þ

Note that such a set of generalized displacements gives to each
layer its own Reissner–Mindlin kinematic. The compatibility condi-
tions are then ensured by the interfaces.

In the previous developments, the interfaces are considered as
perfect and interface displacements are only due to the elastic dis-
placements in the neighboring layers. The model made possible to
solve free edge elastic problems with singularities [23]. Now, if the
role of physical interfaces has to be specifically taken into account,
these elastic interface displacements become (see Eq. (2)) the differ-
ence between the global interface displacements Dj;jþ1

a ; Dj;jþ1
3 and the

localized slidings due to the own interface behavior Xj;jþ1
a ; Xj;jþ1

3

which, for instance, can be considered as elastic or plastic.
Then, in this approach, two factors may influence the interfacial

rigidity between two layers: the rigidity of adjacent layers and the
behavior of interface layer. The role of a thick or/and inelastic
adhesive could be then represented by Xj;jþ1

a ; Xj;jþ1
3 . Poor interfacial

stiffness or sliding may cause a remarkable decrease of the struc-
ture rigidity when a perfect interface (infinite stiffness) provides
the expected theoretical stiffness of the structure. It should be
noted here and in the rest of the text, that in the finite element for-
mulation, for a convenient numerical reason, purely elastic strain
of the interface layer, if it exists (soft elastic connector modeling,
for example), will be included in the generalized interlaminar elas-
tic displacements vector composed of the Dej;jþ1

a and Dej;jþ1
3 .

The equilibrium and constitutive equations of the model are
then identified with the help of the Hellinger–Reissner variational
approach [25]. The five following equations are firstly obtained for
each layer i (5n equations for all the laminate):

Ni
ab;b þ si;iþ1

a � si�1;i
a

� �
¼ 0

Q i
b;b þ ðmi;iþ1 � mi�1;iÞ ¼ 0

Mi
ab;b þ ei

2 si;iþ1
a þ si�1;i

a

� �
� Qi

a ¼ 0

ð4Þ

Once again, note that this set of i equations is similar to the classical
Reissner–Mindlin plate equilibrium equation. The role of interface
stresses appears clearly: ensuring equilibrium of all the laminate.

Considering now an orthotropic layer i, the 3D compliance Si
ijkl

can be divided into 3 parts, the in-plane compliance, the transverse
shear and normal compliances, described respectively by the fol-
lowing components, Si

abcd; Si
a3b3; Si

33. It leads, by the use of Hellin-
ger–Reissner theorem (details in [25]), to the following elastic
constitutive equations:

ei
ab ¼ 1

ei S
i
abcdNi

cd

vi
ab¼ 12

ei Si
abcdMi

cd

ci
a ¼ 6

5ei S
i
a3c3Q i

b� 1
10 4Si

a3c3

� �
si;iþ1

b þsi�1;i
b

� �
De j;jþ1

a ¼Dj;jþ1
a �Xj;jþ1

a ¼� 1
10 4Sj

a3b3

� �
Q j

b� 1
10 4Sjþ1

a3b3

� �
Q jþ1

b � ej

30 4Sj
a3b3

� �
sj�1;j

b

þ 2
15 ej 4Sj

a3b3

� �
þejþ1 4Sjþ1

a3b3

� �� �
sj;jþ1

b

� ejþ1

30 4Sjþ1
a3b3

� �
sjþ1;jþ2

b

De j;jþ1
3 ¼Dj;jþ1

3 �Xj;jþ1
3 ¼ 9

70ejSj
3333r

j�1;j
3 þ 13

35 ejSj
3333þejþ1Sjþ1

3333

� �
rj;jþ1

3

þ 9
70ejþ1Sjþ1

3333r
jþ1;jþ2
3

ð5Þ
4

3.3. Interface with its own plastic model

In the following part, a plastic behavior of the interface is as-
sumed. It will precise the form of Xj;jþ1

a and Xj;jþ1
3 in the fourth

and fifth equations of Eq. (5). The interface layer has a thickness
ej,j+1, a Young modulus Ej,j+1 and a Poisson ratio mj,j+1. Based on
the classical hypothesis that the adhesive thickness is weak as
compared to layers thickness, only out-of-plane shear stresses
and normal stress are taken into account. The interlaminar stress
and strains are assumed to be constant through the adhesive thick-
ness. To complete the multilayer modeling behavior (Eq. 5), the
interlaminar slips Xj;jþ1

a and Xj;jþ1
3 have to be stated. They reflect

the physical nature of the interface.
With previous assumptions and definitions, the integration of

the 3D strains leads to the following equations:

2ej;jþ1ej;jþ1
31 ðx;yÞ ¼

R
ej;jþ1 ðu1;3þu3;1Þðx;y;zÞdz¼Xj;jþ1

1 ðx;yÞþ gj;jþ1
1 ðx;yÞ

2ej;jþ1ej;jþ1
32 ðx;yÞ ¼

R
ej;jþ1 ðu2;3þu3;2Þðx;y;zÞdz¼Xj;jþ1

2 ðx;yÞþ gj;jþ1
2 ðx;yÞ

ej;jþ1ej;jþ1
33 ðx;yÞ ¼

R
ej;jþ1 u3;3ðx;y;zÞdz¼Xj;jþ1

3 ðx;yÞ
ð6Þ

where

gj;jþ1
1 ðx; yÞ ¼

Z
ej;jþ1

u3;1ðx; y; zÞdz

and

gj;jþ1
2 ðx; yÞ ¼

Z
ej;jþ1

u3;2ðx; y; zÞdz:

As proposed in [27], the integration of the 3D displacement
component u3(x,y,z) at the interface can be interpolated through
the adjacent layer generalized displacements Uj

3ðx; yÞ, as defined
in Eq. 3. So, the following equations are deduced:

gj;jþ1
1 ðx; yÞ ¼ ej;jþ1 Uj

3;1ðx; yÞejþ1 þ Ujþ1
3;1 ðx; yÞej

ej þ ejþ1

!
ð7Þ

gj;jþ1
2 ðx; yÞ ¼ ej;jþ1 Uj

3;2ðx; yÞejþ1 þ Ujþ1
3;2 ðx; yÞej

ej þ ejþ1

!
ð8Þ

The interface layer is assumed to be isotropic. From 6 the constitu-
tive equations become:

Xj;jþ1
1 ¼ 2ej;jþ1ð1þmj;jþ1Þ

Ej;jþ1 sj;jþ1
1 � gj;jþ1

1 ðx; yÞ þXj;jþ1p

1 ðx; yÞ

Xj;jþ1
2 ¼ 2ej;jþ1ð1þmj;jþ1Þ

Ej;jþ1 sj;jþ1
2 � gj;jþ1

2 ðx; yÞ þXj;jþ1p

2 ðx; yÞ

Xj;jþ1
3 ¼ ej;jþ1

Ej;jþ1 rj;jþ1
3 þXj;jþ1p

3 ðx; yÞ

ð9Þ

where Xj;jþ1p

1 ðx; yÞ; Xj;jþ1p

2 ðx; yÞ; Xj;jþ1p

3 ðx; yÞ are the plastic displace-
ment discontinuities due to the interface, if they exist. If they do
not, this expression can also describe a localized purely elastic
behavior of the interface, as in the problem of connections between
media, with soft interfaces. In [2] such an approach was successfully
used to predict the typical behavior of a concrete-wood composite
beam with discrete connectors.

If there are non-elastic slidings at the interface, Xj;jþ1p

1 ðx; yÞ;
Xj;jþ1p

2 ðx; yÞ; Xj;jþ1p

3 ðx; yÞ can be classically described by:

� A Von-Mises criterion
f ðrÞ ¼ rj;jþ1
eq � rj;jþ1

cr 6 0 ð10Þ

where

rj;jþ1
eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rj;jþ12

3 þ 3 sj;jþ12

1 þ sj;jþ12

2

� �r

and rj;jþ1
cr is a constant critical stress. Any other criteria can be

considered, as a Drucker–Prager one for a confined situation
[26] for instance.



� A 3D plastic flow rule
Fig.
_Xj;jþ1p

1 ¼ 3ej;jþ1 _pj;jþ1 sj;jþ1
1

rj;jþ1
cr

_Xj;jþ1p

2 ¼ 3ej;jþ1 _pj;jþ1 sj;jþ1
2

rj;jþ1
cr

_Xj;jþ1p

3 ¼ ej;jþ1 _pj;jþ1 rj;jþ1
3

rj;jþ1
cr

ð11Þ
if f ðrÞ ¼ 0; _f ðrÞ ¼ 0 and _pj;jþ1 > 0, where pj,j+1 is the cumulative
plastic strain at the interface j, j + 1.

Diaz et al. [27] cuidado propose a resolution of the equations by
applying the LATIN (LArge Time INcrement) method introduced by
Ladeveze [40] for a double lap bonding problem.

In the following part, the paper introduces the development of
the finite element model MPFEAP for such an interface behavior.

4. Multiparticle finite element model

Based on the previous development, a C0 finite element model,
involving an eight-node isoparametric quadrilateral element with
5n degrees of freedom at each nodal point and four second-order
Gaussian points, is formulated. A program called MPFEAP (Multi-
particle Finite Element Analysis Program) has been developed for
the implementation of the proposed element in [24] which permits
to solve static laminated elastic plate problems. A recent develop-
ment uses the mixed algorithm subspace algorithm proposed by
Dhatt and Touzot [41] to calculate p first vibration modes. The
present development includes the elastoplastic interface intro-
duced in the previous section.

4.1. Geometry and displacement interpolations

The square element defined in the n, g space is shown in Fig. 3.
It is based on eight nodal points and the shape functions are de-

scribed in [41].
The 5n (n stands for the number of layers) displacement un-

known vector of ith node is defined as

dT
i ¼ U1

i1U1
i2U1

i3/
1
i1/

1
i2 � � �U

n
i1Un

i2Un
i3/

n
i1/

n
i2

D E
ð12Þ

where Uk
i1 and /k

i2 are the generalized displacements defined in
Eq. (3).

4.2. Strain interpolation and associated stress

The 11n � 3-dimension strain vector � is expressed with the
generalized strains defined in Eq. 2 and by separating the compo-
nents concerning the 6n membrane strain vector �c, the (n � 1)
normal strain and the (4n � 2) shear strain vector �Q as follows:
1 2

34

5

6

7

8

I II

III IV

x

y

ξ

η

3. The eight-node element and its four second-order Gaussian station.

5

�Th�c;�Q i
�c ¼ he1

11e1
222e1

12v1
11v1

222v1
12 . . . en

11en
222en

12vn
11vn

222vn
12i

T

�Q ¼ hc1
1c1

2D1;2
1 D1;2

2 D1;2
3 c2

1c2
2 . . . cn�1

1 cn�1
2 Dn�1;n

1 Dn�1;n
2 Dn�1;n

3 cn
1cn

2i
T

ð13Þ

So, the 3-dimension generalized elementary interlaminar strain
vector can be organized as follows:

�j;jþ1 ¼ hDj;jþ1
1 Dj;jþ1

2 Dj;jþ1
3 i ð14Þ

The 3 components of the slip vector due to the plastic deformation
of the interface j,j + 1 as defined in Eq. 11 are compiled in Xp j,j+1:

Xp j;jþ1 ¼ hXj;jþ1
1

p
Xj;jþ1

2

p
Xj;jþ1

3

p
i ð15Þ

The associated stress vector is expressed similarly, including the
generalized forces as previously defined in Eq. 1:

rT ¼ hrc;rQ i
rc ¼ hN1

11N1
22N1

12M1
11M1

22M1
12 � � �N

n
11Nn

22Nn
12Mn

11Mn
22Mn

12i
T

rQ ¼ hQ 1
1Q 1

2s
1;2
1 s1;2

2 r1;2
3 Q 2

1Q 2
2 � � �Q

n�1
1 Qn�1

2 sn�1;n
1 sn�1;n

2 rn�1;n
3 Q n

1Q n
2i

T

ð16Þ
4.3. Stress–strain relation

The M4-5n generalized strains and stresses relationship can be
expressed in the matrix form as

� ¼ Srþ �0 ð17Þ

where the compliance matrix S of dimension (11n � 3) � (11n � 3)
is composed of the in plane compliance matrix Sp

6n�6n (in plane com-
ponents Si

abcd of the layer i), the normal and shear compliance
ðSi

a3b3; S
i
3333Þ compiled in the matrix SQ

ð5n�3Þ�ð5n�3Þ

S ¼ Sp 0
0 SQ

	 

ð18Þ

The initial strain vector �0 is due to the load T+ and T� given on the
top and the bottom surfaces. The elastic constitutive equation in
stiffness terms can be computed as

r ¼ S�1ð�� �0Þ ¼ Dð�� �0Þ ð19Þ
� In the elastic case (it means with infinitely rigid interfaces),

matrix D of dimension (11n � 3) � (11n � 3) is simply defined
by
D ¼ Del ¼ Dp 0
0 DQ

	 

¼ Sp�1

0
0 SQ�1

!
ð20Þ
� In the elastic case with elastic sliding at interfaces, for a conve-
nient numerical reason, purely elastic behaviors of the inter-
faces are included in the out-of-plane part DQ of the above
elastic matrix Del.
� In the elastic case with plastic sliding at interfaces, the stiffness

matrix is reduced and calculated by:
D ¼ Del � Dcor ð21Þ

where, the correction matrix Dcor has non-zero terms corre-
sponding to the plastic interfaces which are deduced by retour
radial algorithm (or projected algorithm). So, in the following
section, the Dcor will be the correction matrix of the elastoplastic
interface.

4.4. Adaptation of a radial return algorithm

The integration algorithm called Radial Return Algorithm is
widely used for nonlinear analysis of structures. The load is
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discretized. At each time step, the system state is calculated based
on the state of previous time step. To do this, local and global iter-
ations are calculated until the convergence condition is satisfied.
Because of some neglected stress terms in the matrix of the adhe-
sive, the algorithm must be adapted to this model: all the stress
and strains terms neglected in the theory are not taken into ac-
count in the algorithm formulation.

1. At n + 1th time step, the elastic predictor: relas
nþ1 ¼ ½s1 s2 r3�T is

calculated from the closest state calculated: strain �n+1, plastic
deformation of the interface of nth time step Xp

n and plastic
deformation increased at n + 1th time step calculated at kth
iteration DXp;k

n

2. Calculate relas;eq
nþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

3 þ 3s2
1 þ 3s2

2

q
3. Estimate
Fig. 4. Double lap joint studied.
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f elas
nþ1 ¼ f ðrelas

nþ1;pnÞ ¼ relas;eq
nþ1 � RðpnÞ

where R(pn) = rcr is a critical constant strength in the case of
perfect plasticity

(a) If f elas
nþ1 6 0, update the cumulative plastic strain, plastic ten-

sor and plastic deformation increased

pnþ1 ¼ pn; Dcor ¼ 0; DXp;kþ1
n ¼ DXp;k

n

(b) If f elas
nþ1 > 0:
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Fig. 5. Load-unload-load scheme.
(i) Solve Dpn satisfying:

relas;eq
nþ1 � 3lDpn � Rðpn þ DpnÞ ¼ 0

where l is the Lame coefficient.
(ii) Refresh cumulative plastic strain:

pnþ1 ¼ pn þ Dpn

(iii) Evaluate b and c constants:

b ¼ 3lDpn

relas;eq
nþ1

c ¼ 3l
3lþ R0nþ1

(iv) Update plastic strain increment:

dXp
nþ1 ¼

3Dpn

2relas;eq
nþ1

s1

s2
2
3 r3

2
64

3
75

DXp;kþ1
nþ1 ¼ DXp;k

nþ1 þ dXp
nþ1

(v) Correct plastic tensor Dcor:

Dcor ¼ 3lðc� bÞ

e relas;eq
nþ1

� �2

4
9r

2
3

2
3r3s2

2
3r3s1

2
3r3s2 s2

2 s1s2
2
3r3s1 s1s2 s2

1

2
64

3
75þ 2lb

e

2
3 0 0
0 1

2 0
0 0 1

2

2
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ð22Þ
5. Example and numerical results

The relevance of the 2D finite element is studied through a com-
parison with a 3D finite element method (ABAQUS). The case study
is a double lap joint. In this example, interlaminar stresses and
slips are considered.

The double lap joint is 124 mm long and 16.2 mm wide. A uni-
form tension is applied (Fig. 4) and the joint is calculated by
MPFEAP and the 3D model of ABAQUS. Note that interlaminar
shear stress s1 and interlaminar normal stress r3 correspond,
respectively, to rxz et rzz of 3D stress tensor of joint layer. Due to
the symmetry, only one quarter of the joint is studied (shaded re-
gion). The material properties are:
6

Adherent composite with carbon fiber:E1 = E2 = E3 = 162,000
MPa, m12 = m13 = m23 = 0.3, e = 1.2 mm Adhesive layer:E = 2500 MPa,
m = 0.3,e = 0.25 mm, critical stress rcr = 37 MPa

The tension scheme is a load-unload-load scheme (Fig. 5). The
interfacial stresses and slips at load points A (265 MPa), A0

(1337 MPa), B (272 MPa), C (516 MPa), D (770 MPa), E (1054 MPa)
and F (1353 MPa) are compared. In order to model the shaded re-
gion of the double lap joint with MPFEAP (Fig. 4), different plane
meshes are used: 8 by 20 and 10 by 40 elements, and each 2D ele-
ment integrates adherents and adhesives. Each mesh is refined near
the edges (Figs. 6 and 7). These meshes predict well the plasticity
beginning at the edges. The mesh 10 � 40 satisfies the interlaminar
stress and slip convergence.

To model the joint with ABAQUS, a mesh of 123 by 20 ele-
ments describes the plane geometry. Four elements in thickness
of each layer and 8 elements in thickness of adhesive layer are
used and necessary to ensure the convergence of calculations.
The interlaminar stresses of model s1, s2, r3 are compared to
r33, rxz, ryz of the 3D model provided by ABAQUS in the middle
of the adhesive layer. The interlaminar slips X1, X2, X3 provided
by ABAQUS are the difference between the ABAQUS displace-
ments of the superior adhesive surface and the lower adhesive
surface.

Compared to the 3D method, the proposed layerwise 2D model
advantages are:
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� The necessary number of degree of freedom for the M4-5n
model is very smaller than that for the 3D model. (2685 degrees
of freedom for the 8 � 20 mesh and 5155 degrees of freedom for
the 10 � 40 mesh, 265,608 degrees of freedom for the ABAQUS
mesh).
� Due to the compact vision (integration with respect to z) of the

multilayer, the M4-5n model provides relevant finite results
even on the edges (details in [42]). By contrast, the 3D method
results are generally singular on the edges. In this case, the plas-
ticity smoothes these singularities in the 3D calculation and
provides finite and converged values.
� The M4-5n model does not need a through the thickness dis-

cretization even to obtain interface values. By contrast, the
quality of the through the thickness discretization is very deter-
minant and computationally expensive in the 3D method.

To discuss the numeric results obtained by MPFEAP, the equiv-
alent stress, generalized stresses, and slidings of the interface are
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considered. Equivalent stress req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

3 þ 3s2
1 þ 3s2

2

q
is calculated

at the reference loading points A, A1, A2, A3, A0 (Fig. 8). These
points correspond respectively to 265 MPa, 530 MPa, 795 MPa,
1060 MPa and 1337 MPa. At load point A, the first elements near
the edge begin to be plasticized. From A to A0, plastic zone propa-
gates (Fig. 8). From A0 to F, stresses and interfacial generalized dis-
placements will be compared to the results obtained by the 3D
model. The shear stress s1 obtained by the present model during
all the cycle is presented in Fig. 9. The results of the 8 � 20 mesh
and of the 10 � 40 mesh correspond to those of ABAQUS. The inter-
laminar transverse slip X1 (Fig. 10) is also very well approximated.
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In Fig. 11, the interlaminar normal stress r3 obtained by the M4-5n
model approximation is shown. The results are very close despite a
chaotic nature of the stress field. The interlaminar normal slip X3

comparison presented in Fig. 12 is very satisfactory, too. In brief,
from Figs. 9–12, it is clear that MPFEAP and the 3D finite element
produce almost the same interlaminar slip and stresses during all
the load cycle. It means that the interlaminar generalized stresses
in M4-5n are the average 3D value obtained by the 3D finite ele-
ment model, and the interlaminar generalized slip in M4-5n is
the 3D slip obtained by 3D model. The mesh in the 3D finite ele-
ment model will be more refined in the case the adhesive thickness
30 40 50 62
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Fig. 12. Normal slip X3 during the load-unload-load cycle.
reduces. By contrast, the mesh in MPFEAP is not under the influ-
ence of the adhesive thickness. As for this case (eadherent = 1.2 mm,
eadhesive = 0.25 mm), the calculation time of ABAQUS is much longer
than the MPFEAP one, 7 h as compared to 25 min.

6. Conclusion

In this paper, a 2D plane representation of a multilayer with
imperfect interface is proposed. The mechanical approach belongs
to the layerwise model family. The 3D stresses are approximated
through the thickness by polynomial expressions consistent with
3D equilibrium conditions. By an energetic balance principle, a
plate kinematic is associated to each layer providing interface con-
ditions, which are necessary to respect the multilayer global equi-
librium. Such an approach makes possible to describe directly the
interface local phenomena and to determine the level of stresses,
and the elastic or plastic sliding which can be found in connected
or bonded systems. A comparison with a 3D calculation is pro-
posed for a load-unload double lap elastoplastic joint. The results
are very satisfactory, and the following benefits of the plate ap-
proach are highlighted:

� Since the thickness is not meshed (plate approach), the mesh is
in MPFEAP much simpler than that in a 3D classical finite ele-
ment model approach, and, as a consequence, the number of
degrees of freedom is significantly reduced. In this application,
for only one plastic interface, a ratio of 1/100 is shown between
the number of nodes of MPFEAP and ABAQUS. Obviously, in the
case of a multilayer with several interfaces, this ratio decreases
even more with the number of interfaces.
� The computation time is much lower.
� Due to the specific 2D compacted vision of the laminate, results

are not singular on the edges, and therefore, elastic or plastic
delamination stress criteria can be proposed. This has been
done in [1] for studying delamination in carbon-epoxy compos-
ites. The confrontation between an analytical approach of the
9

free edge problem and an experimental campaign have vali-
dated such a stress criteria, which can be related to toughness
or energetic considerations.

The implementation of this element in Abaqus is underway.
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