N

N
N

HAL

open science

SPIDAR calibration using Support Vector Regression

Pierre Boudoin, Hichem Maaref, Samir Otmane, Malik Mallem

» To cite this version:

Pierre Boudoin, Hichem Maaref, Samir Otmane, Malik Mallem. SPIDAR calibration using Support
Vector Regression. 2nd International Conference on Image Processing Theory Tools and Applications

(IPTA 2010), Jul 2010, Paris, France. pp.500-505, 10.1109/TPTA.2010.5586748 . hal-00639387

HAL Id: hal-00639387
https://hal.science/hal-00639387
Submitted on 3 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00639387
https://hal.archives-ouvertes.fr

SPIDAR Calibration using Support Vector Regression

Pierre Boudoin, Hichem Maaref, Samir Otmane, Malik Mallem
1 Laboratoire IBISC - Université d’Evry Val d’Essonne
e-mail: {firstname}.{name} @ibisc.fr

Abstract— This paper aims to present all the study done on
the SPIDAR, which is a tracking and haptic device, in order to
improve its accuracy on the given position. Firstly we proposed a
new semi-automatic initialization technique for this device using
an optical tracking system. Then, we propose to use Support
Vector Regression (SVR) to calibrate the SPIDAR in order to
reduce location errors. We obtained very good results with this
calibration, since we reduced the mean error by more than 50%.

Keywords— calibration, support vector regression, SPIDAR,
tracking, virtual reality,.

I. INTRODUCTION

Virtual reality is a domain which is highly dependant on
tracking systems. Users interact in 3 dimensions, with virtual
entities in digital environments. In order to provide the best
user experience, it’s very important that 3D interaction has
to be without any interruption. This interaction relies on the
translation of a real movement into an action in the virtual
world. This work is done by a tracking solution. This tracking
system has to be reliable and the most available as possible.
This point is crucial in order to preserve data continuity
and, so, data processing continuity and finally 3D interaction
continuity.

The main device used in our system is an optical tracking
solution, it’s a very accurate device. On the other hand, it
suffers from a huge defect: tracking-loss. That’s a particuliar
true defect when only one marker is used. So, it’s essential to
be able to switch to another device in these situations in order
to compensate this defect. In our virtual reality system, we’ve
got a SPIDAR [1] and we chose it to stand in for the optical
tracking system.

SPIDAR [1], for SPace Interaction Device for Augmented
Reality, is an electromechanical device, which has 8 couples of
motor/encoder distributed on each vertex of a cubic structure.
One string is attached to each motor via a pulley. These 8
strings converges to an effector. By winding their respective
strings, each motor produces a tension on each string. The
vectorial sum of these tensions produce the force feedback
vector to be applied on the effector, allowing the user to feel
on what he is stumbling or to feel the weight of an object. By
observing the encoders values, the system can compute the
3D position of the effector. The SPIDAR tracking is always
available, but it suffers from a weak accuracy and repeatability.
So it’s impossible to use raw position given by the SPIDAR
without correction.

In our case, it’s a huge problem, since we used a 3D
interaction technique, called Fly Over [2], which needs a

continuous position vector. This technique is based on different
interaction areas offering to the user a continuity in the
interaction. Indeed, the least jump of position during the swing
of a system, would be likely to pass the pointer of Fly-Over
of a zone of interaction towards another. This phenomenon
involves a behavior of the technique thus, not wished by the
user and creating consequently a rupture of the continuity of
the 3D interaction. Thus, it’s important to propose measures in
order to consider the position given by the SPIDAR so that it
is closest to the position given by the optical tracking system,
and so, minimizing effects on the 3D interaction.

This research work is presented as follow. First, we talk
about similar works on virtual reality devices calibration
and correction. Then, we briefly present the Support Vector
Regression method. Finally, we speak about the correction of
the SPIDAR position using SVR.

II. RELATED WORK

Since virtual reality systems use more and more devices,
especially tracking devices, it’s important to perform a good
calibration of them. But not all tracking devices need a huge
correction, thus infrared based optical tracking devices are
accurate enough and so don’t need to be corrected. On the
other hand, it exists some mechanical, electromechanical or
electromagnetic tracking devices which need to be calibrated
and/or corrected.

Most of reseach works has been realized on the electromag-
netic tracking devices because they suffers from electromag-
netic distorsions when magnetical materials are placed into
the tracking range. Moreover, the tracking accuracy falls off
rapidly depending on the distance from the emitter and the
power of the emitter [3]. These effects induce non-linear errors
on the location. In order to correct them, it exists different
ways.

The easiest method is the linear interpolation [4] but it
doesn’t correct non-linear systems, so it’s very limited.

Polynomial fitting [5] allows to correct non-linear errors.
But depending on the number of coefficients, it could be
very difficult to use online because it will be a heavy load
for the system. Moreover if the number of coefficient is too
important, oscilliations can appear, increasing errors rather
than decreasing them. Moreover, these techniques often fail
to capture small details in the correction. They are better in
determining the overall shape of a non-linear function.

Kindratenko [6] and Saleh [7] worked on a neural network
based calibration of electromagnetic tracking systems and they



obtained good results, better than with other methods.

An et Zan demonstrate the advantage of SVM for the
identification of non-linear systems against the use of neural
networks [8], [9]. They observed that learning time and results
in generalization are better than these given by neural net-
works. But their results was for a mono-dimensionnal system.

Zhao used Smooth Support Vector Regression (SSVR) to
reduce arithmetic complexity inherent to the SVR[10].

Cette réduction de la complexité permet d’appliquer les
SVRs sur des jeux de données plus grands, car rap-
pelons le, le temps d’apprentissage augmente fortement avec
I’augmentation du nombre d’échantillons. Ils ont obtenus
plus rapidement des meilleurs résultats avec leur méthode en
I’appliquant sur un modele d’état de turbine.

But all these techniques are based on interpolation and they
need a valid set of data to be effective. This set of data highly
is often given by a calibration grid. A calibration grid is a
representation of a set of points. All these point have a known
position and can be compared with the position given by the
device that we want to calibrate. But when we’re working in
3D space, it’s very difficult to make use of it because it’s
difficult to place accurately a device on a 3D points. In order
to realize that we can use another mechanical device, such a
robot arm or a haptic arm [11]. Or we can place accurately
passive sensors respecting a geometrical shape [12].

We focus on these methods because the SPIDAR suffers
from same non-linear distorsions and 3D calibration problem-
atic.

Optlcal Tracking

Effector

SPIDAR

Fig. 1.
platform.

SPIDAR and infrared based optical tracking in our virtual reality

III. IDENTIFICATION OF THE SPIDAR
A. Context

In order to preserve the data continuity, it is essential
to correct a well-known problem appearing with tracking
systems: data loss. Data loss appears when the tracking is

unable to update the position calculation, conducting to a jump
in the data when the system is re-enable to update the position.
This phenomena is often misleaded by occultation, especially
in optical tracking system.

A data loss can be managed by three methods:

1) Prediction: We can predict the following data state by
knowing the previous data state through mathematical
method , such Kalman filter.

2) Compensation: A device tracking loss, don’t forbid us
to use another device. It’s very important in this case
that the data incoming from the différent devices to
be expressed in the same space representation (same
referential). This is necessary in order to obtain a data
continuity when the system switch from one device to
another.

3) Correction: The last possibility is to correct data in-
coming from the most available device, in our case the
SPIDAR. To perform the correction, we could use the
a priori knowledge on the SPIDAR position through
another device.

B. Design problems

Motor
Encoder

Fig. 2. Detailled view of a SPIDAR’s motor and its winding guide.

SPIDAR is an electromechanical device and consequently
it could suffer from design problems more or less awkward
for computing the effector’s position. These are problems we
have identified:

1) Encoders are directly mounted on the motor’s axis.
This is an important problem because we must define
the pulley’s diameter in the configuration file of the
SPIDAR’s interface. However, this diameter is not con-
stant, depending on the quantity of string winded. So,
this information is skewed.

2) Diameter of pulleys is too small.

The previous problem become more marked due to the
small diameter of the pulley used. Thus, the diameter



Fig. 3.
virtual calibration grid.

being too small, it variates noticeably as strings being
winded go along. This phenomena would be less marked
if the diameter used was more important.

3) Winding guides badly designed.
The present design of the winding guides, don’t pre-
vent a string from missing the pulley. This phenomena
appears when the effector is being moved fast and
consequently, that motors have to wind an important
quantity of string. This is a real problem, because the
encoder count one revolution but the string doesn’t be
winded.

4) Size of encoders.
Encoders’ size is too small for counting the string quan-
tity which must be winded. When an encoder overflows,
the counter is resetted and the winded string quantity
information is biased.

5) Dimensions of the SPIDAR.
More dimensions are important and more every problem
cited previously is marked. Some problems that are
inconsiderable when dimensions are small, become not
inconsiderable when dimensions are huge.

C. Experimental protocol

We use what we called: a virtual calibration grid (see
fig.3), which consists in the representation of a virtual scene,
composed of many small cubes. Each cube corresponds to a
sub-space of the SPIDAR workspace. This set of small cubes
covers the whole SPIDAR workspace.

The use of virtual reality for calibration allows more flexi-
bility and less complexity because we don’t have to move the
SPIDAR effector with constraints or to place the effector with
a great accuracy on a set of calibration point.

This calibration grid, is represented Fig.3. We can identify
the SPIDAR’s problem with it, following these steps:

On the left - A user using our virtual calibration grid in order to retrieve data for the SVR learning. On the right - Detailled representation of the

1) The user move the real effector (which is in his hand) in
order to place the virtual effector (which is a red sphere
in the virtual scene) in each cube represented.

2) Each time the virtual effector is in collision with a cube,
we record the position given by the SPIDAR and the
position given by the optical tracking.

3) Once these postions is recorded the cube disappears
insuring that there will be only one point for this sub-
space.

The great advantage of this protocol is the homogeneity
distribution of the data set.

We recorded values, respecting this protocol in a workspace
limited to 1 m? splitted into 4096 sub-spaces (16 x 16 x 16).

D. Identification Conclusion

Absolute error space distribution
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Fig. 4. Absolute error 3D distribution in the SPIDAR’s workspace (Dark

green is the best).



Figure 4 represents errors’ space distribution. As we can see
this is a onion skin distribution, meaning different spherical
layers, the absolute error growing as the effector is going in
outside layers.

This identification of the SPIDAR leads us to these obser-
vations:

- Firstly, the mechanical study tells us that too many design
problems

- Moreover, it’s hard to quantify the final effect of these
mechanical problems.

- Another problem, is the loss of knowledge towards the
mathematical model used by the SPIDAR to compute the
effector’s position.

Finally, the SPIDAR suffers from a set of problems, which
have more or less known causes and for which we don’t
know very well the influence on the whole system. In order
to enhance the SPIDAR’s accuracy, it could be interessant to
orient ourself to a solution capable of estimating/correcting the
effector’s position without any knowledge on the mathematical
model. We choose to test that way using Support Vector
Regression for their capacities to estimate a regression function
function without any information on the model.

IV. SUPPORT VECTOR REGRESSION

Support Vector Regression (SVR) is the Support Vector
Machine applied to the regression problem [13]. This part
briefly introduce how SVR works.

Firstly, we need to remind the classical regression problem-
atic. This problem consists in the estimation of a parameter
vector w = [w1, wa, ..., wy,]T belonging to an unknow function
f(x;,w). Only things we know about this function are the
observed data ;. So we have:

yi = f(xi,w) + ei, i=1,2..,N (1)

Where:

x; are input data,
e; are errors,
N is the size of data.

The pair (z;,y;) define. the training set, this represents the
whole input data associated with their respective output values.

The regression function which approximate the unknow
function is define by:

m

flasw) = w;g;(z:) 2)
j=1

Where:
g; define a set of nonlinear transformations.

In order to use SVM in a regression problem, a new type of
loss function has been defined by Vapnik. This loss function
is called e-insensitive and it’s defined by:

Ls(yia f(xza w))

= 0, if |y, — f(x,w)| < ¢ 3)
ly; — fa;,w)| — e, else
With:

€ controls the number of support vectors and determines
the width of the insensitive zone.

First problem:

The first problem spotted by the SVR is to find the param-
eter vector w, which minimizes the empirical risk function
Remp.

N m
. 1
Min Remp(@) = 52 > Le | 9 ) wigi(zi) | )
i=1 j=1

With the constraint:

(w-w) < ¢ &)

This problem can be transposed into another problem where
parameters « and 8] must maximize the function Q(«,f):

N

N
Maz Q(onf) = =€ (i +B:) + Y _viloi — B)
=1 =1
N (©6)
1
—3 > (i = Bi) i — Bi) K (i, )

4,J=1

With constraints:
N N
Y ai=Y B, 0<a;,8<C, i=1..,N (7
i=1 i=1

Where:

K is a kernel function,
C' is a regularization parameter,
¢ defines an insensitive zone.

This second problem can be resolved using quadratic pro-
gramming (QP) which gives us the a and 3}, allowing us to
construct the regression function:

N

f@)=> (af = B) K (@i, 2) ®)

=1
V. CALIBRATING THE SPIDAR USING SVR
A. SVR learning

For the learning step, we use the data used for the SPIDAR
identification. So, we’ve got 4096 measure points covering the
whole SPIDAR workspace.



B. SVR settings

In the support vector regression method, two parameters
play an important role for the smoothness and the noise of
the regression function. These parameters are € and C'. These
parameters are chosen a priori, in an empirical way.

We find that we’ve got the best performance with e-SVR
method when: ¢ = 0.1 and C = 1.

C. SVR performances

Absolute error space distribution

140 mm

124 mm

2000
109 mm

1800
93 mm

1600
78 mm

1400

PRULY)

62 mm

1200
47 mm

1000

1000 31 mm

16 mm

0 mm

Fig. 5. Mean absolute error representation in the SPIDAR’s workspace - full
error range (Dark green is the best).
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Fig. 6. Mean absolute error representation in the SPIDAR’s workspace -
reduce error range (Dark green is the best).

In order to study the SVR performances, we represent the
same absolute error 3D spatial distribution as previously but
after calibration using SVR. As we can see, figures 5 and
6, shows that SVR is quite effective and greatly improve the
SPIDAR accuracy in comparison with the figure 4. Support
Vector Regression performs a good calibration in the whole
workspace except in its corners. Fig.7 shows that after cali-
bration the SPIDAR accuracy is less dependant of the distance
from its middle.

Before calibration After calibration
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Fig. 7. Absolute error on location versus distance from the middle of the
SPIDAR before and after calibration.

We also give errors bar graphs before and after using SVR
(see Fig.8) and we put representative data in arrays comparing
them with raw location (Raw), SVR calibrated location (SVR)
and linear interpolation calibrated location (PF1) for informa-
tion purpose only. Each bar graph is coupled with an array
resuming characteristic values of the error distribution, where
mean is the empirical mean error, std is the standard deviation
of the data set and max is the maximum error.

As we can see with Fig.8 and table V-C, before calibration
(Raw) the mean absolute error reaches 72.87 mm and the
standard deviation is 47.06 mm, which mean that the raw
SPIDAR position suffers of a bad accuracy and an important
statistical dispersion. After calibration using SVR the mean
absolute error is below 12 mm and the standard deviation
is equal to 6 mm, meaning a higher accuracy and a lower
statistical dispersion.
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Absolute error on location
SPIDAR (mm)

Fig. 8. Absolute errors distribution bar graph before and after calibration by
the SVR method.

[ Absolute error || Raw | SVR | PF1 |
Mean (mm) 72.87 11.47 15.31
Std (mm) 47.06 6.00 40.75
Max (mm) 155.19 | 42.19 198.32

D. Generalization

In order to evaluate SVR performances, we need to observe
this response output with unknown data sets. This step is
called generalization. Figures 9 and 10 show results obtained
with two generalization data sets. These data sets have been
recorded during two time-splitted measure campaigns.



150 1 1501
o
o
< 100 i 100
Q
(=]
o
0 10 20 30 0 10 20 30
Absolute error on location Absolute error on location
SPIDAR (mm) SPIDAR + SVR (mm)
Fig. 9. Absolute errors distribution bar graph before and after calibration

using SVR on the 15¢ data set.

[ Absolute error [[ Raw [ SVR [ PFI |
Mean (mm) 13.23 5.06 9.67
Std (mm) 8.41 5.14 7.53
Max (mm) 37.60 | 24.04 | 48.25

1) Results on the 1° data set:: We can observe that the
SVR method has a good response to the generalization. Thus,
the absolute mean error on the position has been reduced by
2.5 times, going from 13.3 mm to 5.06 mm.
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Fig. 10. Absolute errors distribution bar graph before and after calibration
using SVR on the 2"¢ data set.

[ Absolute error ][ Raw [ SVR [ PFI |
Mean (mm) 15.79 6.59 9.67
Std (mm) 11.64 6.45 7.53
Max (mm) 54.53 | 47.50 | 48.25

2) Results on the 2™ data set:: With this data set, the use
of SVR keeps good performances since the absolute mean
error has been reduced by a bit more than a half.

3) Interpretation: Calibration using SVR is robust at any
data as soon as the data belongs to the SPIDAR’s workspace.
Such results aren’t surprising since the learning protocol was
extremely rigorous and covered all the SPIDAR’s workspace
guaranteeing an efficient learning, so SVR method was able
to perform a good calibration.

VI. CONCLUSION

In this paper we propose a method to calibrate SPIDAR
using Support Vector Regression (SVR), which is a quite new

method for doing system identification. We also proposed a
rigorous learning protocole using virtual reality to perform
what we call a virtual calibration grid exempting us to
constraint movement in order to perform the calibration of a
3D tracking device. We obtain good results and our whole
calibration procedure is quite robust even if we reset the
SPIDAR.
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