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Abstract We consider the equation div Y = f , with f a zero average function on the torus Td . In their seminal paper [5],
Bourgain and Brezis proved the existence of a solution Y ∈W1,d∩L∞ for a datum f ∈ Ld . We extend their result to the critical
Sobolev spaces W s,p with (s+1)p = d and p ≥ 2. More generally, we prove a similar result in the scale of Triebel-Lizorkin
spaces. We also consider the equation div Y= f in a bounded domain Ω subject to zero Dirichlet boundary condition.
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1 Introduction

This paper is devoted to the regularity of solutions of the equation

div Y= f , where
∫

f = 0. (1.1)

Here, the scalar function f and the vector field Y are defined on the d-dimensional torus1 Td or in a smooth bounded domain
in Rd .

Standard regularity theory asserts that Y gains one derivative with respect to f . For example, when f ∈ Lp, 1 < p <∞,
one can pick Y ∈W1,p. 2 In the limiting cases where f ∈ L1, respectively f ∈ L∞, it is not always possible to pick Y ∈W1,1 [5],
respectively Y ∈W1,∞ [18]; see also [8,13].

In their seminal paper, Bourgain and Brezis [5] discovered another limiting situation: the case where f ∈ Ld . For such f ,
(1.1) has a solution Y ∈W1,d , so that Y ”almost” belongs to L∞. It turns out that (1.1) does have a solution in L∞. This was
noted in [5, Proposition 1]. In principle, there is no reason to have a solution in both L∞ and W1,d . Bourgain and Brezis [5]
obtained the existence of a solution of (1.1) in L∞∩W1,d for a datum f ∈ Ld . The proof is a real tour de force: the construction
of Y is highly nontrivial and the proof of the fact that Y has the desired regularity is extremely involved. In the special case
p = d = 2, existence of Y ∈ L∞∩W1,2 can be established via a simpler duality argument [5, Section 4]. More generally, when
f ∈Wd/2−1,2, existence of a solution Y ∈ L∞∩Wd/2,2 of (1.1) can be obtained by a similar strategy [12,14]. However, no simple
proof of existence is known when p 6= 2.

In this paper, we investigate the regularity properties of the Bourgain-Brezis field Y in other function spaces. We con-
sider regularity in Sobolev-Slobodeskii spaces W s,p and more generally, in Triebel-Lizorkin spaces Fs,p

q , focusing on the
limiting situation where (s+1)p = d. In this case, if f ∈ Fs,p

q , we expect a solution Y ∈ Fs+1,p
q , and the latter space is ”close”

to L∞, thanks to the condition (s+1)p = d.
Our main result is
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1 We identify Td with Rd /(2πZ)d .
2 This follows from elliptic regularity theory: it suffices to let Y=∇u, where u is an appropriate solution of ∆u = f .
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Theorem 1.1 Let p ≥ 2, q ∈ [2, p], d ≥ 2 and s >−1
2

. We assume that

(s+1)p = d. (1.2)

Let f ∈ Fs,p
q (Td) satisfy the compatibility condition

∫
Td

f = 0. Then (1.1) has a solution Y ∈ L∞(Td)∩Fs+1,p
q (Td) such that

‖Y‖L∞(Td ) +‖Y‖Fs+1,p
q (Td ) ≤ C‖ f ‖Fs,p

q (Td ). (1.3)

The result of Bourgain and Brezis corresponds to s = 0, p = d, q = 2. In particular, Theorem 1.1 contains the following
regularity result in the scale of Sobolev-Slobodeskii spaces:

Corollary 1.2 Let p ≥ 2 and d ≥ 2. We assume that (1.2) holds and that s > −1
2

. Let f ∈ W s,p(Td) be such that
∫
Td

f = 0.

Then (1.1) has a solution Y ∈ L∞(Td)∩W s+1,p(Td) such that

‖Y‖L∞(Td ) +‖Y‖W s+1,p(Td ) ≤ C‖ f ‖W s,p(Td ).

Our proof follows the main lines of the one of Bourgain and Brezis in [5]. In particular, as in [5], we make use of a one-sided
inequality, due to Rubio de Francia [20]; see Theorem 5.1 below. This inequality requires p ≥ 2; this is why the condition p ≥ 2
appears in both Theorem 1.1 and Corollary 1.2.3 Whether the assumption p ≥ 2 can be removed is a challenging question.

Observe also that we do not obtain the conclusions of Theorem 1.1 and Corollary 1.2 when s ≤−1
2

. This is probably due to
our method.

The regularity result concerning the divergence equation was subsequently extended by Bourgain and Brezis [6] to more
general Hodge systems. It is plausible that a version of Theorem 1.1 still holds for these systems. We will return to this
question in a subsequent work.

Our paper is organized as follows. In Section 2, we recall the definition of the Triebel-Lizorkin spaces. In Section 3, we
describe the Bourgain-Brezis construction, give the main steps of the proof of Theorem 1.1 and state the main estimates.
In Sections 4 and 5 we collect the harmonic analysis background used in the proof of Theorem 1.1; the estimates we prove
in Section 5 are crucial in the proof of Theorem 1.1. In Section 6, we establish the validity of the main estimates stated in
Section 3. In Section 7, we discuss the solvability of (1.1) in bounded domains. More specifically, we prove the following

Theorem 1.3 Let p ≥ 2, q ∈ [2, p], d ≥ 2 and s >−1
2

satisfy (1.2). Let Ω be a smooth bounded domain in Rd . Let f ∈ Fs,p
q (Ω)

satisfy the compatibility condition
∫
Ω

f = 0. 4

Then there exists Y ∈ Fs+1,p
q (Ω)∩L∞(Ω) such that

{
div Y= f in Ω
tr Y= 0 on ∂Ω

. Moreover, we can choose Y such that

‖Y‖L∞(Ω) +‖Y‖Fs+1,p
q (Ω) ≤ C‖ f ‖Fs,p

q (Ω) .

A final appendix gathers the proofs of some elementary estimates involving trigonometric polynomials used in the proof of
Theorem 1.1.
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2 Projections and Triebel-Lizorkin spaces

We denote by P (Td) the space of trigonometric polynomials.
If ∆ is a subset of Zd , then we denote by P∆ the projection on the Fourier coefficients in ∆:

P∆( f )(x) := ∑
n∈∆

f̂ (n)eın·x.

This projection makes sense if either ∆ is finite and f ∈D′(Td), or ∆ is arbitrary and f ∈P (Td).
Of special importance in the theory of function spaces are the projections on dyadic sets. These sets are finite unions of

intervals5 and are defined as follows:
∆d

0 = {0}, ∆d
j := [2 j−1 ≤ |n| < 2 j], ∀ j ≥ 1;

here, we work with the norm |n| =max
{|n j |; j ∈ J1,dK

}
.6

3 The condition p ≥ 2 amounts to s ≤ d/2−1.
4 When s < 0, this condition has to be suitably interpreted, see Section 7 below.
5 An interval in Zd is a Cartesian product of intervals in Z.
6 The notation Ja,bK, with a,b ∈Z, denotes the set {n ∈Z;a ≤ n ≤ b}.
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One of the possible equivalent definitions of the Triebel-Lizorkin spaces is [22, Theorem 3.5.3]

Fs,p
q (Td)=

{
f ∈D′(Td) : ‖ f ‖Fs,p

q (Td ) =
∥∥∥∥∥
∥∥∥∥(

2 jsP∆d
j
( f )(x)

)
j∈N

∥∥∥∥
lq(N)

∥∥∥∥∥
Lp(Td )

<∞
}

. (2.1)

The scale of Triebel-Lizorkin spaces contains in particular most of the Sobolev-Slobodeskii spaces: when 1< p <∞, we have

W s,p(Td)=
{

Fs,p
2 (Td), if s ∈N

Fs,p
p (Td), if s 6∈N .

In particular, when s = 0, the above and (2.1) amount to the square function theorem

‖ f ‖Lp ∼
∥∥∥∥∥∥∥∥(

P∆d
j
( f )(x)

)∥∥∥∥
l2(N)

∥∥∥∥
Lp(Td )

, 1< p <∞. (2.2)

A word about the condition
∫
Td

f = 0, which appears in (1.1): when s in Theorem 1.1 is positive, we have f ∈ L1(Td), so

that the condition
∫
Td

f = 0 makes sense. For arbitrary s, this condition has to be understood as

f̂ (0)= 0. (2.3)

3 Proof of Theorem 1.1

It suffices to establish (1.3) when f ∈P (Td). The general case is obtained by density. We use the notations which will be
introduced in (3.6)-(3.8) below. Since f̂ (0)= 0, we have f = f 1 +·· ·+ f d , with f k =PBk ( f ).
Theorem 1.1 will be a consequence of

Proposition 3.1 There exist δ0 > 0 and α> 0 such that, for every f ∈P (Td) satisfying ‖ f ‖Fs,p
q (Td ) ≤ δ0, there exist functions

Y1, . . . ,Yd :Td →C such that
‖Yk‖L∞(Td ) ≤ 1, ‖Yk‖Fs+1,p

q (Td ) ≤ 1, for k ∈ J1,dK, (3.1)

and
‖∂kYk − f k‖Fs,p

q (Td ) ≤ ‖ f ‖1+α
Fs,p

q (Td )
, for k ∈ J1,dK. (3.2)

From Proposition 3.1, we get at once

Corollary 3.2 There exist δ0 > 0 and α> 0 such that, for every 0< δ≤ δ0 and every g ∈ Fs,p
q (Td) satisfying (2.3), there exists

X= (X1, . . . ,Xd) ∈ Fs+1,p
q (Td) such that

‖Xk‖L∞(Td ) ≤
‖g‖Fs,p

q (Td )

δ
, ‖Xk‖Fs+1,p

q (Td ) ≤
‖g‖Fs,p

q (Td )

δ
, for k ∈ J1,dK, (3.3)

and
‖divX− g‖Fs,p

q (Td ) ≤ dδα‖g‖Fs,p
q (Td ). (3.4)

Proof of Theorem 1.1 using Corollary 3.2. Let f ∈ Fs,p
q (Td). We set g0 := f and δ :=min

(
(2d)−1/α,δ0

)
. By Corollary 3.2, there

exists X0 ∈ Fs+1,p
q (Td) such that

‖X0
k‖L∞(Td )∩Fs+1,p

q (Td ) ≤
‖g0‖Fs,p

q (Td )

δ
, for k ∈ J1,dK, ‖divX0 − g0‖Fs,p

q (Td ) ≤ dδα‖g0‖Fs,p
q (Td ).

More generally, assume that g0, . . . , gl have been defined, as well as the corresponding vector fields X0, . . . ,Xl provided by
Corollary 3.2. Thus we have

‖Xl
k‖L∞(Td )∩Fs+1,p

q (Td ) ≤
‖gl‖Fs,p

q (Td )

δ
, for k ∈ J1,dK, ‖divXl − gl‖Fs,p

q (Td ) ≤ dδα‖gl‖Fs,p
q (Td ). (3.5)

We then set gl+1 := gl −divXl and let Xl+1 ∈ Fs+1,p
q (Td) satisfy (3.3) and (3.4) with g replaced by gl+1.

Combining (3.5) with our choice of δ, we find that

‖gl+1‖Fs,p
q (Td ) ≤ dδα‖gl‖Fs,p

q (Td ) ≤ . . .≤ (dδα)l+1‖g0‖Fs,p
q (Td ) ≤

1
2l+1 ‖g0‖Fs,p

q (Td ).

It then follows that

‖Xl
k‖L∞(Td )∩Fs+1,p

q (Td ) ≤
‖g0‖Fs,p

q (Td )

2lδ
, for k ∈ J1,dK.

We can thus define X :=∑
l
Xl , which satisfies ‖X‖L∞(Td )∩Fs+1,p

q (Td ) ≤ C‖ f ‖Fs,p
q (Td ). Moreover, the fact that ‖gl‖Fs,p

q (Td ) goes to

0 when l →+∞ implies that divX= f . This completes the proof of Theorem 1.1. ä
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It remains to explain the

Proof of Proposition 3.1. We write
Zd \{0}= ⋃

j≥0

(
B1

j ∪ . . .Bd
j

)
, (3.6)

with

B1
j := {n ∈∆d

j : 2 j−1 ≤ |n1| < 2 j}, B2
j := {n ∈∆d

j : 2 j−1 ≤ |n2| < 2 j}\B1
j , . . . , B

d
j :=∆d

j \

(
d−1⋃
k=1

Bk
j

)
. (3.7)

Hence, for each j ≥ 0, ∆d
j =

d⋃
k=1

Bk
j , the union being disjoint. We also let

Bk = ⋃
j≥0
Bk

j , for k ∈ J1,dK, (3.8)

and
B=B1 ∩ (N×Zd−1), B j =B1

j ∩ (N×Zd−1).

We describe the construction of Y1 which only involves B1, B1
j and f 1 =PB1 ( f ). The component Yk, with k ∈ J2,dK, is built

in the same way from f k =PBk ( f ). We note that f 1 is a trigonometric polynomial, and that supp f̂ 1 ⊂B1. We also note that

‖PB f 1‖Fs,p
q (Td ) =

∥∥∥∥∥
∥∥∥∥(

2s jP∆d
j
PB f 1(x)

)
j∈N

∥∥∥∥
lq(N)

∥∥∥∥∥
Lp(Td )

=
∥∥∥∥∥
∥∥∥∥(

2s jPB jP∆d
j
f (x)

)
j∈N

∥∥∥∥
lq(N)

∥∥∥∥∥
Lp(Td )

≤ C

∥∥∥∥∥
∥∥∥∥(

2s jP∆d
j
f (x)

)
j∈N

∥∥∥∥
lq(N)

∥∥∥∥∥
Lp(Td )

= C‖ f ‖Fs,p
q (Td ),

the above inequality being a consequence of Theorem 4.9. It follows that it suffices to prove Proposition 3.1 when f is
replaced by PB f 1. Therefore, we assume, in the sequel, that f is a trigonometric polynomial such that supp f̂ ⊂B.

Following the strategy in [5], we divide the proof of Proposition 3.1 into five steps.

Step 1. Estimates for the naive solution of (1.1). When supp f̂ ⊂B, an exact solution of divX= f is given by X= (F,0, . . . ,0),
where

F = ∑
n∈B

1
ın1

f̂ (n)eın·x. (3.9)

The field Y1 will be constructed by modifying X.
The purpose of Step 1 is to collect some estimates involving F and the projections of f and F, defined by

f j := ∑
n∈B j

f̂ (n)eın·x =PB j f =P∆d
j
f , F j := ∑

n∈B j

1
ın1

f̂ (n)eın·x =PB j F =P∆d
j
F. (3.10)

More specifically, we will establish the following

Lemma 3.3 We have
‖F‖Fs+1,p

q (Td ) ≤ C(s, p, q)‖ f ‖Fs,p
q (Td ), (3.11)∥∥F j

∥∥
L∞(Td ) ≤ C(s, p, q)

∥∥ f j
∥∥

Fs,p
q (Td ) , (3.12)∥∥∇F j

∥∥
L∞(Td ) ≤ C(s, p, q)2 j ∥∥ f j

∥∥
Fs,p

q (Td ) , (3.13)

and
‖ f j‖Fs,p

q (Td ) ≤ C(s, p, q)‖ f ‖Fs,p
q (Td ). (3.14)

Step 2. Construction of a good function H j dominating |F j |. Let ε = 2−` with ` ∈ N to be determined later. For j > ` we
define k( j) := 1/ε= 2` and we decompose B j into disjoint vertical strips B j,r, r ∈ J1,k( j)K. More specifically, each B j,r is of the
form

B j,r =
(
Ja j,r,b j,r −1K×Zd−1

)
∩B j , with b j,r −a j,r = ε2 j−1 := l( j).

Following [5], we set

G j(x)= ∑
1≤r≤1/ε

∣∣∣∣∣ ∑
n∈B j,r

1
n1

f̂ (n)eın·x
∣∣∣∣∣ (3.15)

and
H j(x)= 3dG j ∗ (Fε2 j ⊗F2 j ⊗·· ·⊗F2 j ). (3.16)

Here and after, we denote by FN the Fejér kernel given by

FN (x) := ∑
|n|≤N

N −|n|
N

eınx = 1
4Nπ

(sin Nx)2

(sin(x/2))2
. (3.17)
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We set, for all (i1, ..., id) ∈Nd ,
Fi1 ⊗ . . .⊗Fid (x1, . . . , xd) := Fi1 (x1) . . .Fid (xd).

We clearly have, for all x ∈Td ,
|F j(x)| ≤G j(x) (3.18)

and also
supp Ĥ j ⊂ [|n| ≤ 2 j −1]. (3.19)

A slightly more involved estimate, taken from [5], is that, for all x ∈Td ,

G j(x)≤ H j(x); (3.20)

this follows from Corollary 8.5 in the appendix.
Up to now, the functions G j and H j have been defined only for j > `. When j ≤ ` (that is, when ε2 j−1 < 1), we do not split B j .
Instead, we let

a j,1 = 2 j−1, b j,1 = 2 j , G j = |F j | (3.21)

and define H j via
H j = 3dG j ∗ (F2 j ⊗F2 j ⊗·· ·⊗F2 j ). (3.22)

In this case, we set k( j)= 1 and l( j)= b j,1−a j,1 = 2 j−1. It will follow form the proof of (3.20) that estimates (3.18), (3.21) and
(3.22) remain valid.
The main purpose of Step 2 is to establish the following estimates satisfied by G j and H j .

Lemma 3.4 We have

∑
1≤r≤k( j)

∥∥∥∥∥x 7→ ∑
n∈B j,r

f̂ (n)eın·x
∥∥∥∥∥

p

Lp(Td )

≤ C(p)‖ f j‖p
Lp(Td )

≤ C(p)2−s jp‖ f ‖p
Fs,p

q (Td )
, (3.23)

‖G j‖L∞(Td ) ≤ C(s, p, q)k( j)1−2/p ∥∥ f j
∥∥

Fs,p
q (Td ) , (3.24)

and
‖∇G j‖L∞(Td ) ≤ C(s, p, q)2 jk( j)1−2/p‖ f j‖Fs,p

q (Td ). (3.25)

An immediate consequence of (3.14), (3.16), (3.24) and of ‖FN‖L1(T) = 1 is∥∥H j
∥∥

L∞(Td ) ≤ C(s, p, q)k( j)1−2/p‖ f j‖Fs,p
q (Td ) ≤ C(s, p, q)k( j)1−2/p‖ f ‖Fs,p

q (Td ). (3.26)

Similarly, we have

‖∇H j‖L∞(Td ) ≤ 3d‖∇G j‖L∞(Td ) ≤ C(s, p, q)2 jk( j)1−2/p‖ f j‖Fs,p
q (Td ) ≤ C(s, p, q)2 jk( j)1−2/p‖ f ‖Fs,p

q (Td ). (3.27)

Step 3. Construction of Y1. Following [5], we let

Y1 := ∑
j≥0

F j
∏
k> j

(1−Hk).

Set
K j := ∑

k< j
Fk

∏
k<m< j

(1−Hm) if j > 0, K0 := 0.

The next result will be an immediate consequence of Lemma 3.4.

Lemma 3.5 One has
Y1 =

∑
j≥0

F j −
∑
j≥0

H jK j (3.28)

and
∂1Y1 =

∑
j≥0

f j −
∑
j≥0

∂1(H jK j). (3.29)

Assume furthermore that k( j)1−2/p‖ f ‖Fs,p
q (Td ) ≤ η0 for all j ∈N, where η0 > 0 is a constant which will be determined in the

proof. Then, for all x ∈Td ,
|Y1(x)| ≤ 1, (3.30)∣∣K j(x)

∣∣≤ 1, ∀ j ∈N (3.31)

and
0≤ ∣∣F j(x)

∣∣≤G j(x)≤ H j(x)≤ 1, ∀ j ∈N. (3.32)

In particular, Lemma 3.5 implies the L∞ estimate in (3.1).

Step 4. Proof of (3.2). The proof relies on



6 Pierre Bousquet et al.

Lemma 3.6 There exist δ0 > 0, α> 0 and C = C(s, p, q)> 0 such that, if ‖ f ‖Fs,p
q (Td ) ≤ δ0, then∥∥∥∥∥∑

j≥0
∂1(H jK j)

∥∥∥∥∥
Fs,p

q (Td )

≤ C‖ f ‖1+α
Fs,p

q (Td )
. (3.33)

Step 5. Proof of (3.1) completed: estimate of ‖∇Y1‖Fs,p
q (Td ). This is achieved via the following

Lemma 3.7 Let η0 be as in Lemma 3.6. Then there exists a constant δ0 > such that, if

‖ f ‖Fs,p
q (Td ) ≤min

(
ε1−2/pη0,δ0

)
, (3.34)

then ‖∇Y1‖Fs,p
q (Td ) ≤ 1.

It is easy to see that Proposition 3.1 is a consequence of the five above steps. ä

4 Kernels and multipliers

We will make use of the following classical kernels defined on T:

1. The Fejèr kernel FN , given by (3.17).

2. The de la Vallée Poussin kernel VN = 2F2N −FN .

If ϕ :Zd →C and f is a trigonometric polynomial on Td , we let

Tϕ( f )(x) := ∑
n∈Zd

ϕ(n) f̂ (n)eın·x, x ∈Td .

Similarly, given, for any j ∈ N, a function ϕ j : Zd → C and a trigonometric polynomial f j , we set ϕ = (ϕ j) j∈N, respectively
f = ( f j) j∈N, and define Tϕ by the formula

f 7→
x 7→

( ∑
n∈Zd

ϕ j(n) f̂ j(n)eın·x
)

j∈N

 . (4.1)

More generally, the above formulae make sense if the trigonometric polynomial f has coefficients in a vector space over C.

We start by recalling a classical estimate on Fourier multipliers.

Theorem 4.1 [23, Section I.6.2] Let k ∈D′(Td). Assume that

1. ϕ := k̂ ∈ l∞(Zd).
2. k ∈ L1

loc
(
Td \{0}

)
.

Then for each 1< p <∞ there exists Cp > 0 such that∣∣∣∣Tϕ f
∣∣∣∣

Lp(Td ) ≤ CpB(ϕ) || f ||Lp(Td ) , ∀ f ∈P (Td).

Here,

B(ϕ) :=max

{∣∣∣∣ϕ∣∣∣∣
l∞(Zd ) , sup

x∈Td

∫
|x−y|≥2|x|

|k(y− x)−k(y)| d y

}
.

The next result that we quote is a vector-valued version of Theorem 4.1; see [1, Theorem 2]. In [1], Theorem 4.2 is stated
in Rd , but the proof is easily adapted to Td .

Theorem 4.2 [1, Theorem 2] Let A,B be Banach spaces and let k ∈ L1(Td ,L (A,B)). Define T : Lp(Td , A) → Lp(Td ,B)
through the formula

T f (x)= k∗ f (x)=
∫

k(x− y) f (y)d y, ∀ f ∈ Lp(Td , A). (4.2)

Fix 1< p0 <∞ and let

M ≥
∫
|y−x|≥2|x|

‖k(y− x)−k(y)‖L (A,B) d y, ∀x ∈Td . (4.3)

Then, for 1 < p <∞, the norm ‖T‖Lp→Lp of T as a linear continuous operator from Lp(Td , A) into Lp(Td ,B) is controlled by
a quantity depending solely on M, on p and on ‖T‖Lp0→Lp0 , but not on ‖k‖L1(Td ,L (A,B)).

We next derive some consequences of Theorem 4.2. To start with, we consider the case where
i. d = 1.
ii. A = B = lq (N), with 1< q <+∞.
iii. The operator T f acts, on a sequence f = ( f j) j∈N of functions in L1(T), through the formula

T f (x)=
(
FN j ∗ f j(x)

)
j∈N . (4.4)

More specifically, we will be interested in the case where

N j = 2k j for some integer k j ≥ 0, ∀ j ∈N. (4.5)
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Lemma 4.3 Let 1< p <∞ and 1< q <∞. Then T defined by (4.4) and (4.5) is continuous from Lp(T; lq(N)) into Lp(T; lq(N)).
In addition, we have ∥∥∥∥∥∥∥∥(

FN j ∗ f j

)
j∈N

∥∥∥∥
lq(N)

∥∥∥∥
Lp(T)

≤ C(p, q)
∥∥∥∥∥∥(

f j
)

j∈N
∥∥∥

lq(N)

∥∥∥
Lp(T)

, (4.6)

with C(p, q) independent of k j .

Proof By a standard limiting procedure, it suffices to prove (4.6) (with bounds independent of J ∈ N) for the truncated
operator, still denoted T, defined on Lp (

T, lq (
J0, JK

))
with values into Lp (

T, lq (
J0, JK

))
through the formula

T f (x)=
(
FN j ∗ f j(x)

)
j∈J0,JK

, ∀ f j ∈ Lp(T,C), j ∈ J0, JK.

For this purpose, it suffices to check that the assumptions of Theorem 4.2 are satisfied with p0 = q, and that the norm
‖T‖Lq→Lq as well as the right-hand side of (4.3) have upper bounds independent of k j and J.

Let us start by computing ‖T‖Lq→Lq . For each j, we have∫
T
|FN j ∗ f j |q(x)dx ≤

∫
T
| f j |q(x)dx,

since
∥∥∥FN j

∥∥∥
L1(T)

= 1. By taking the sum over j in the above inequality, we find that ‖T‖Lq→Lq ≤ 1.

We next obtain a uniform estimate for the right-hand side of (4.3). We have

‖k(y− x)−k(y)‖L (lq(N),lq(N)) = sup
j

|FN j (y− x)−FN j (y)| ≤∑
k
|F2k (y− x)−F2k (y)|. (4.7)

In view of (4.7), it suffices to establish the estimate

∑
k

∫
|y−x|≥2|x|

|F2k (y− x)−F2k (y)|d y≤ C, ∀x ∈T. (4.8)

In order to prove (4.8), we rely, on the one hand, on Bernstein’s integral inequality [9, Theorem D.2.1], which yields∫
T
|FN (y− x)−FN (y)|d y≤ CN|x|. (4.9)

On the other hand, we have FN (y)≤ C
N y2 , and therefore

∫
|x−y|≥2|x|

|FN (y− x)−FN (y)|dy≤ C
N

∫
|y|≥|x|

d y
y2 ≤ C

N|x| . (4.10)

Let x ∈T\{0}. If |x| ≥ 1, then (4.10) implies that

∑
k

∫
|x−y|≥2|x|

|F2k (y− x)−F2k (y)|d y≤ C
∑
k

1
2k|x| ≤ C, (4.11)

guaranteeing the validity of (4.8) for such x.
Assume next that |x| < 1. Let k0 ∈N be such that 2−k0−1 ≤ |x| < 2−k0 . Thanks to (4.9) and (4.10), we have

∑
k

∫
|x−y|≥2|x|

|F2k (y− x)−F2k (y)|d y= ∑
k≤k0

. . .+ ∑
k>k0

. . .≤ C|x| ∑
k≤k0

2k + C
|x|

∑
k>k0

1
2k ≤ C,

which proves (4.8). This completes the proof of the lemma. ä

Lemma 4.3 combined with a Fubini type argument7 leads to

Lemma 4.4 Let 1< p <∞ and 1< q <∞. Let

T
((

f j
)

j∈N
)
=

((
F2k1, j ⊗ . . .⊗F2kd, j

)
∗ f j

)
j∈N , ∀ f j ∈P (Td), ∀ j ∈N.

Then ∥∥∥∥∥∥T
((

f j
)

j∈N
)∥∥∥

lq(N)

∥∥∥
Lp(Td )

≤ C(p, q)
∥∥∥∥∥∥(

f j
)

j∈N
∥∥∥

lq(N)

∥∥∥
Lp(Td )

, (4.12)

with C(p, q) independent of k1, j , . . . ,kd, j .

Let us also recall the scalar and the vector-valued Marcinkiewicz Theorem on Fourier multipliers:

Theorem 4.5 Let ϕ :Z→C and 1< p <∞.

7 A similar argument is detailed in the proof of Corollary 4.6.
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1. [9, Theorem 8.2.1] The operator Tϕ, initially defined for trigonometric polynomials f ∈ P (Td), can be extended to an
Lp-bounded operator satisfying

‖Tϕ f ‖Lp(T) ≤ C(p)A(ϕ)‖ f ‖Lp(T), (4.13)

provided

A(ϕ) :=max

‖ϕ‖l∞(Z), sup
j

∑
n∈∆1

j

|ϕ(n+1)−ϕ(n)|
<∞.

2. [25, Proposition 2] Let X be a Banach space satisfying the UMD property. Then the conclusion of item 1. holds for X -valued
maps. More specifically, if A(ϕ)<∞, then the operator

f 7→ Tϕ( f )= ∑
n∈Z

ϕ(n) f̂ (n)eınx,

initially defined for trigonometric polynomials f with coefficients in X , f ∈ P (T, X ), can be extended to a linear operator
on Lp(T, X ) satisfying (4.13).

For a discussion on the UMD property, see [11]. Some results related to item 2. above and the UMD property can be found,
e.g., in [10]. Of importance for us is that the space lq(N), with 1< q <∞, has the UMD property.

We will also need the following d-dimensional version of Theorem 4.5:

Corollary 4.6 Let 1 < p <∞. Let X be a Banach space with the UMD property, ϕ j : Z→ C,1 ≤ j ≤ d and ϕ = ϕ1 ⊗ . . .⊗ϕd .
Then

‖Tϕ f ‖Lp(Td ,X ) ≤ C(p, X )A(ϕ1) . . . A(ϕd)‖ f ‖Lp(Td ,X ), ∀ f ∈P (Td),

where

A(ϕl) :=max

‖ϕl‖l∞(Z),sup
j

∑
n∈∆1

j

|ϕl(n+1)−ϕl(n)|
 .

Proof If g :Td → X , we denote by g∗x′ the map x1 7→ g(x1, x′). Observe that

Tϕ f (x)= Tϕ1 ((Tψ f )∗x′ )(x1),

where ψ(n1,n2, . . . ,nd)=ϕ2(n2) . . .ϕd(nd). Theorem 4.5 and the Fubini theorem imply

‖Tϕ f ‖p
Lp(Td ,X )

=
∫
Td−1

‖Tϕ1 ((Tψ f )∗x′ )‖p
Lp(T,X ) dx′ . A(ϕ1)p

∫
Td−1

‖(Tψ f )∗x′‖p
Lp(T,X ) dx′

= A(ϕ1)p‖Tψ f ‖p
Lp(Td ,X )

. . . . . A(ϕ1)p . . . A(ϕd)p‖ f ‖p
Lp(Td ,X )

. ä

Here and in what follows, . stands for ≤ C, with appropriate C.
We will often rely on the following special case of Corollary 4.6.

Corollary 4.7 Let X be a Banach space with the UMD property and let 1< p <∞.

Let f ∈P (Td , X ) be such that supp f̂ ⊂
d∏

j=1
Ja j ,b jK.

Let ϕ j :Z→R, j ∈ J1,dK, be monotonic in the sets [n j > 0] and [n j < 0]. Set ϕ=ϕ1 ⊗ . . .⊗ϕd . Then

‖Tϕ f ‖Lp(Td ,X ) ≤ C(p, X )‖ϕ1‖l∞(Ja1,b1K) . . .‖ϕd‖l∞(Jad ,bdK)‖ f ‖Lp(Td ,X ). (4.14)

Proof Apply Corollary 4.6 to the functions ϕ j1Ja j ,b jK. ä

Vector-valued Fourier multiplier are valid beyond multipliers ϕ of the form ϕ1 ⊗ ...⊗ϕd . Here is a special case we will
rely on in the sequel. The next result is a straightforward consequence of [25, Proposition 2].

Lemma 4.8 Let 1< p <∞ and 1< q <∞. Let (P j) j∈N be a sequence of trigonometric polynomials. Then∥∥∥∥∥
∥∥∥∥(
∂1P∆d

j
(P j)

)
j∈N

∥∥∥∥
lq(N)

∥∥∥∥∥
Lp(Td )

≤ C(p, q)
∥∥∥∥∥∥∥∥(

2 jP∆d
j
(P j)

)∥∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

. (4.15)

We will also make use of the following vector-valued version of the Riesz inequality.

Theorem 4.9 [19,3] Let 1 < p <∞ and 1 < q <∞. Let (I j) j be an arbitrary sequence of intervals in Zd . For all j ∈ N, let
f j ∈P (Td). Then ∥∥∥∥∥∥∥∥(

PI j f j

)
j∈N

∥∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

≤ C(p, q)
∥∥∥∥∥∥(

f j
)

j∈N
∥∥∥

lq(N)

∥∥∥
Lp(Td )

.

Here, C(p, q) is independent of the choice of the intervals.
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5 An inequality of Rubio de Francia and applications

We start by recalling the following one-sided estimate due to Rubio de Francia [20].

Theorem 5.1 [20] Let 2≤ p <∞. Let (I j) be an arbitrary sequence of pairwise disjoint intervals in Z. Then∥∥∥∥∥∥∥∥(
PI j f

)
j∈N

∥∥∥∥
l2(N)

∥∥∥∥
Lp(T)

≤ C(p)‖ f ‖Lp(T) , ∀ f ∈P (T).

Here, C(p) is independent of the choice of the disjoint intervals.

In the remaining part of this section, we establish two consequences of Theorem 5.1 (Corollaries 5.3 and 5.5). These
results will play a crucial role in the proof of Theorem 1.1.

Lemma 5.2 Let 2 ≤ q ≤ p <∞. Consider, in each dyadic set ∆1
j , a family of k( j) pairwise disjoint intervals I j,r, r ∈ J1,k( j)K.

Then there exists C(p, q) such that∥∥∥∥∥
∥∥∥∥∥
(∑

r

∣∣∣PI j,r f
∣∣∣)

j∈N

∥∥∥∥∥
lq(N)

∥∥∥∥∥
Lp(T)

≤ C(p, q)
∥∥∥∥∥∥∥∥(

(k( j))1/2P∆1
j
f
)

j∈N

∥∥∥∥
lq(N)

∥∥∥∥
Lp(T)

, ∀ f ∈P (T). (5.1)

Though we will apply the above lemma with k( j) as in Step 2 of the proof of Proposition 3.1 and to the equal length intervals
considered there, we emphasize the fact that here k( j) and the intervals are arbitrary.

Proof By the Cauchy-Schwarz inequality, we have, for all j ∈N,

∑
r

∣∣∣PI j,r f
∣∣∣≤ (k( j))1/2

(∑
r

∣∣∣PI j,r f
∣∣∣2)1/2

. (5.2)

In view of (5.2), (5.1) will follow from the estimate∥∥∥∥∥∥
∥∥∥∥∥
((∑

r

∣∣∣PI j,r f
∣∣∣2)1/2

)
j∈N

∥∥∥∥∥
lq(N)

∥∥∥∥∥∥
Lp(T)

.

∥∥∥∥∥∥∥∥(
P∆1

j
f
)

j∈N

∥∥∥∥
lq(N)

∥∥∥∥
Lp(T)

(5.3)

applied to the function
∑

(k( j))1/2P∆1
j
f .

In turn, estimate (5.3) will be obtained by interpolation, starting from the limiting cases q = 2 and q = p.

i. Proof of (5.3) when q = 2. When q = 2, (5.3) amounts to∥∥∥∥∥∥∥∥(
PI j,r f

)
j∈N,r∈J1,k( j)K

∥∥∥∥
l2

∥∥∥∥
Lp(T)

.

∥∥∥∥∥∥∥∥(
P∆1

j
f
)

j∈N

∥∥∥∥
l2(N)

∥∥∥∥
Lp(T)

. (5.4)

By Theorem 5.1, the left hand side of (5.4) can be estimated by ‖ f ‖Lp(T). By the square function theorem, the right hand
side of (5.4) is equivalent to ‖ f ‖Lp(T). This proves (5.3) for q = 2.

ii. Proof of (5.3) when q = p. In this case, (5.3) is equivalent to

∑
j≥0

∫
T

(∑
r
|PI j,r f |2

)p/2
.

∑
j≥0

∫
T
|P∆1

j
f |p.

The above estimate follows from ∫
T

(∑
r
|PI j,r f |2

)p/2
. ‖P∆1

j
f ‖p

Lp(T), ∀ j ≥ 0,

which in turn is a consequence of Theorem 5.1 applied to P∆1
j
f .

iii. Proof of (5.3) when 2< q < p. Let us consider the Banach space

X p,q :=
{
( f j) j∈N ∈ Lp(T, lq(N)); supp f̂ j ⊂∆1

j ,∀ j ∈N
}

.

Define the linear map
X p,q 3 ( f j) j∈N

T7−→
((

u j,r
)
r∈J1,k( j)K

)
j∈N ,

where

u j,r =
{
PI j,r f j , if r ∈ J1,k( j)K
0, otherwise

.

Up to now, we have proved (5.3) for q = 2 and q = p. Equivalently, we have proved that T is continuous from X p,2 into
Lp(T, l2(N, l2(N))) and from X p,p into Lp(T, lp(N, l2(N))), with norms controlled by a constant.

Assume for a while that, if q and θ satisfy
1
q
= 1−θ

2
+ θ

p
, then

X p,q w (X p,2, X p,p)θ. (5.5)
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We continue as follows: we have (l2(N, l2(N)), lp(N, l2(N)))θ = lq(N, l2(N)), which implies

(Lp(T, l2(N, l2(N))),Lp(T, lp(N, l2(N))))θ = Lp(T, lq(N, l2(N))).

Note that the interpolation results used in this part of the proof can be found in [2, Theorem 5.1.2]. By complex interpolation,
T is continuous from (X p,2, X p,p)θ into Lp(T, lq(N, l2(N)). In view of (5.5), T maps continuously X p,q into Lp(T, lq(N, l2(N))).
This is precisely (4.8) and the conclusion of Lemma 5.2.
Let us now prove (5.5). By Theorem 4.9, the projection map

Lp(T, lq(N)) 3 ( f j) j∈N
π7−→

(
P∆1

j
f j

)
j∈N

∈ X p,q

is well-defined and continuous. Clearly, π is onto and the continuous embedding J : X p,q → Lp(lq) is a right inverse of π.
By complex interpolation, π is continuous from the space (Lp(T, l2(N)),Lp(T, lp(N)))θ into the space (X p,2, X p,p)θ, and the
continuous embedding J : (X p,2, X p,p)θ → (Lp(T, l2(N)),Lp(T, lp(N)))θ is a right inverse of π. Using the equality

(Lp(T, l2(N)),Lp(T, lp(N)))θ = Lp(T, lq(N)),

we find that (5.5) holds. ä
The Fubini theorem combined with Lemma 5.2 leads to the following

Corollary 5.3 Let 2≤ q ≤ p <∞. Consider, in each dyadic set ∆1
j , a family of k( j) pairwise disjoint intervals I j,r, r ∈ J1,k( j)K.

Then there exists C(p, q) such that, for each f ∈P (Td), we have∥∥∥∥∥
∥∥∥∥∥
(∑

r

∣∣∣PI j,r×Zd−1 f
∣∣∣)

j∈N

∥∥∥∥∥
lq(N)

∥∥∥∥∥
Lp(Td )

≤ C(p, q)
∥∥∥∥∥∥∥∥(

(k( j))1/2P∆1
j×Zd−1 f

)
j∈N

∥∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

. (5.6)

In contrast with the hypotheses of Lemma 5.2, in the next result the intervals I j,r are not arbitrary.

Lemma 5.4 Assume that 2 ≤ q ≤ p < ∞. Consider, in each dyadic set ∆1
j , a family of k( j) pairwise disjoint intervals I j,r,

r ∈ J1,k( j)K, all of same cardinal l( j)= 2m( j), with m( j) ∈N. Then there exists C(p, q) such that∥∥∥∥∥
∥∥∥∥∥
(∑

r

∣∣∣PI j,r f
∣∣∣′)

j∈N

∥∥∥∥∥
lq(N)

∥∥∥∥∥
Lp(T)

≤ C(p, q)
∥∥∥∥∥∥∥∥(

(k( j))1/2l( j)P∆1
j
f
)

j∈N

∥∥∥∥
lq(N)

∥∥∥∥
Lp(T)

, ∀ f ∈P (T). (5.7)

Proof Arguing as at the beginning of the proof of Lemma 5.2, it suffices to establish the estimate∥∥∥∥∥∥
∥∥∥∥∥
((∑

r

(∣∣∣PI j,r f
∣∣∣′)2)1/2

)
j∈N

∥∥∥∥∥
lq(N)

∥∥∥∥∥∥
Lp(T)

.

∥∥∥∥∥∥∥∥(
l( j)P∆1

j
f
)

j∈N

∥∥∥∥
lq(N)

∥∥∥∥
Lp(T)

, ∀ f ∈P (T). (5.8)

We write I j,r = Ja j,r,b j,r −1K, where b j,r −a j,r = l( j)= 2m( j). We rely on the key inequality∣∣∣∣∣∣PI j,r f
∣∣∣′∣∣∣≤ l( j)

∣∣∣Fl( j) ∗ (e−ıa j,r xPI j,r f )
∣∣∣ , (5.9)

whose proof is postponed to the appendix; see Lemma 8.6. Taking (5.9) for granted, we obtain (5.8) provided the following
inequality holds: ∥∥∥∥∥∥

∥∥∥∥∥
((∑

r

∣∣∣Fl( j) ∗ (e−ıa j,r xPI j,r f )
∣∣∣2)1/2

)
j∈N

∥∥∥∥∥
lq(N)

∥∥∥∥∥∥
Lp(T)

.

∥∥∥∥∥∥∥∥(
P∆1

j
f
)

j∈N

∥∥∥∥
lq(N)

∥∥∥∥
Lp(T)

. (5.10)

Indeed, (5.8) follows by applying (5.10) to
∑

l( j)P∆1
j
f and using (5.9).

We now turn to (5.10). It suffices to establish the validity of this estimate in the limiting cases q = 2 and q = p. Indeed, if
this is proved then we are in position to repeat the interpolation argument used in the proof of Lemma 5.2.8

i. Proof of (5.10) when q = 2. We have to prove the inequality∥∥∥∥∥∥∥∥(
Fl( j) ∗ (e−ıa j,r xPI j,r f )

)
j∈N,r∈J1,k( j)K

∥∥∥∥
l2(N)

∥∥∥∥
Lp(T)

.

∥∥∥∥∥∥∥∥(
P∆1

j
f
)

j∈N

∥∥∥∥
l2(N)

∥∥∥∥
Lp(T)

.

This is obtained as follows: we have∥∥∥∥∥∥∥∥(
Fl( j) ∗ (e−ıa j,r xPI j,r f )

)
j∈N,r∈J1,k( j)K

∥∥∥∥
l2(N)

∥∥∥∥
Lp(T)

(a)
.

∥∥∥∥∥∥∥∥(
e−ıa j,r xPI j,r f

)
j∈N,r∈J1,k( j)K

∥∥∥∥
l2(N)

∥∥∥∥
Lp(T)

(b)
.

∥∥∥∥∥∥∥∥(
P∆1

j
f
)

j∈N

∥∥∥∥
l2(N)

∥∥∥∥
Lp(T)

.

Here,

(a) is a consequence of Lemma 4.3.
(b) follows from Theorem 5.1 and the square function theorem (2.2).

8 Interpolation is applied to the operator f 7→
((
Fl( j) ∗ (e−ıa j,r x

PI j,r f )
)
r∈J1,k( j)K

)
j∈N

.
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ii. Proof of (5.10) when q = p. In this case, the left-hand side of (5.10), denoted by A, is estimated as follows

A =
∥∥∥∥∥∥
(∥∥∥∥∥

(∑
r

∣∣∣Fl( j) ∗ (e−ıa j,r xPI j,r f )
∣∣∣2)1/2

∥∥∥∥∥
Lp(T)

)
j∈N

∥∥∥∥∥∥
lp(N)

(a)
.

∥∥∥∥∥∥
(∥∥∥∥∥

(∑
r

∣∣∣e−ıa j,r xPI j,r f
∣∣∣2)1/2

∥∥∥∥∥
Lp(T)

)
j∈N

∥∥∥∥∥∥
lp(N)

=
∥∥∥∥∥∥
(∥∥∥∥∥

(∑
r

∣∣∣PI j,r f
∣∣∣2)1/2

∥∥∥∥∥
Lp(T)

)
j∈N

∥∥∥∥∥∥
lp(N)

(b)
.

∥∥∥∥∥∥∥∥(
P∆1

j
f
)

j∈N

∥∥∥∥
Lp(T)

∥∥∥∥
lp(N)

=
∥∥∥∥∥∥∥∥(

P∆1
j
f
)

j∈N

∥∥∥∥
lp(N)

∥∥∥∥
Lp(T)

;

items (a) and (b) are justified as above. ä

Corollary 5.5 Assume that 2 ≤ q ≤ p <∞. Consider, in each dyadic set ∆1
j , a family of k( j) pairwise disjoint intervals I j,r,

r ∈ J1,k( j)K, all of same cardinal l( j)= 2m( j), with m( j) ∈N. Then there exists C(p, q) such that, for each f ∈P (Td), we have∥∥∥∥∥
∥∥∥∥∥
(∑

r
∂1

∣∣∣PI j,r×Zd−1 f
∣∣∣)

j∈N

∥∥∥∥∥
lq(N)

∥∥∥∥∥
Lp(Td )

≤ C(p, q)
∥∥∥∥∥∥∥∥(

(k( j))1/2l( j)P∆1
j×Zd−1 f

)
j∈N

∥∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

. (5.11)

Remark 5.6 The proof of Lemma 5.4 also yields the following more general result. Assume that 2 ≤ q ≤ p <∞. Consider,
in each dyadic set ∆1

j , a family of k( j) pairwise disjoint intervals I j,r, r ∈ J1,k( j)K, each of cardinal l( j, r) = 2m( j,r), with
m( j, r) ∈N. Then there exists C(p, q) such that∥∥∥∥∥

∥∥∥∥∥
(∑

r

∣∣∣PI j,r f
∣∣∣′)

j∈N

∥∥∥∥∥
lq(N)

∥∥∥∥∥
Lp(T)

≤ C(p, q)

∥∥∥∥∥
∥∥∥∥∥
(
(k( j))1/2 ∑

r
l( j, r)PI j,r f

)
j∈N

∥∥∥∥∥
lq(N)

∥∥∥∥∥
Lp(T)

, ∀ f ∈P (T). (5.12)

6 Proof of Proposition 3.1

Proof of Lemma 3.3.

i. Proof of (3.11). Recall that supp f̂ ⊂B. Since in B j we have 2 j−1 ≤ n1 < 2 j , we find that

(
2(s+1) jF j

)
j∈N = Tϕ

((
2s j f j

)
j∈N

)
. (6.1)

Here, ϕ is the scalar function (acting on vector-valued functions) ϕ=ϕ1 ⊗ . . .⊗ϕd , where ϕ1(n1) = 2 j

ın1
if 2 j−1 ≤ n1 < 2 j ,

0 otherwise and ϕk ≡ 1 for k ∈ J2,dK. By combining (6.1) with Corollary 4.6, we find that

‖F‖Fs+1,p
q

=
∥∥∥∥∥∥∥∥(

2(s+1) jF j

)
j∈N

∥∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

=
∥∥∥∥∥∥∥∥Tϕ

(
2s j f j

)
j∈N

∥∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

.

∥∥∥∥∥∥∥∥(
2s j f j

)
j∈N

∥∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

= ‖ f ‖Fs,p
q

.

ii. Proof of (3.12). Since P∆d
k
(F j)= δ jkF j and P∆d

k
( f j)= δ jk f j , we have

‖F j‖Fs,p
q (Td ) = 2s j‖F j‖Lp(Td ) and ‖ f j‖Fs,p

q (Td ) = 2s j‖ f j‖Lp(Td ). (6.2)

Corollary 4.7 applied to ϕ1(n1)= 1
ın1

if n1 ≥ 1 and ϕ1(n1)= 0 otherwise and ϕk ≡ 1 for k ∈ J2,dK implies that

‖F j‖Lp(Td ) . 2− j‖ f j‖Lp(Td ). (6.3)

Lemma 8.2 in the appendix combined with (1.2) and (6.3) yields∥∥F j
∥∥

L∞(Td ) . 2 jd/p ∥∥F j
∥∥

Lp(Td ) . 2 j(d/p−1) ∥∥ f j
∥∥

Lp(Td ) =
∥∥ f j

∥∥
Fs,p

q (Td ) . (6.4)

iii. Proof of (3.13). Lemma 8.2 combined with (6.4) gives

‖∇F j‖L∞(Td ) . 2 j‖F j‖L∞(Td ) . 2 j ∥∥ f j
∥∥

Fs,p
q (Td ) .

iv. Proof of (3.14). Since f j =P∆d
j
f , we have

‖ f ‖p
Fs,p

q (Td )
=

∫
Td

(∑
k

2skq|P∆d
k

f |q
)p/q

≥ 2s jp
∫
Td

|P∆d
j
f |p = 2s jp

∫
Td

| f j |p = ‖ f j‖p
Fs,p

q (Td )
.ä

Proof of Lemma 3.4.
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i. Proof of (3.23). Using the fact that B j,r =
(
Ja j,r,b j,r −1K×Zd−1)∩B j for all 1≤ r ≤ k( j), we obtain that

I := ∑
1≤r≤k( j)

∥∥∥∥∥x 7→ ∑
n∈B j,r

f̂ j(n)eın·x
∥∥∥∥∥

p

Lp(Td )

satisfies

I = ∑
1≤r≤k( j)

∫
Td−1

∫
T

∣∣∣∣∣ ∑
n1∈Ja j,r ,b j,r−1K

à( f j)∗x′ (n1)eın1x1

∣∣∣∣∣
p

dx1 dx′

(a)≤
∫
Td−1

∫
T

( ∑
1≤r≤k( j)

∣∣∣∣∣ ∑
n1∈Ja j,r ,b j,r−1K

à( f j)∗x′ (n1)eın1x1

∣∣∣∣∣
2)p/2

dx1 dx′
(b)
.

∫
Td−1

∫
T
|( f j)∗x′ |p dx1 dx′ = ‖ f j‖p

Lp(Td )
.

Here,

(a) is a consequence of
∑ |ar|p ≤ (∑ |ar|2

)p/2
, valid when p ≥ 2.

(b) follows from Theorem 5.1 applied to I1
r = Ja j,r,b j,r −1K and f = ( f j)∗x′ .

This completes the proof of (3.23).

ii. Proof of (3.24). When j ≤ l, this is just (3.12). If j > l, by Hölder’s inequality we have

∥∥G j
∥∥

L∞(Td ) ≤ k( j)1/p′
 ∑

1≤r≤k( j)

∥∥∥∥∥x 7→ ∑
n∈B j,r

1
n1

f̂ j(n)eın·x
∥∥∥∥∥

p

L∞(Td )

1/p

. (6.5)

Corollary 4.7 applied to ϕ1(n1)= 1
n1

when n1 ≥ 1, 0 otherwise, and ϕ j ≡ 1 for j ∈ J2,dK implies that

∥∥∥∥∥x 7→ ∑
n∈B j,r

1
n1

f̂ j(n)eın·x
∥∥∥∥∥

Lp(Td )

. 2− j

∥∥∥∥∥x 7→ ∑
n∈B j,r

f̂ j(n)eın·x
∥∥∥∥∥

Lp(Td )

. (6.6)

Corollary 8.3 applied to x 7→ ∑
n∈B j,r

1
n1

f̂ j(n)eın·x and combined with (1.2), (6.2), (6.5), (6.6) and (3.23) yields

‖G j‖L∞(Td ) . k( j)1/p′
 ∑

1≤r≤k( j)

(
2 j(d−1)/p(l( j))1/p

)p
∥∥∥∥∥x 7→ ∑

n∈B j,r

1
n1

f̂ j(n)eın·x
∥∥∥∥∥

p

Lp(Td )

1/p

. k( j)1/p′
l( j)1/p2 j(d−1)/p2− j

 ∑
1≤r≤k( j)

∥∥∥∥∥x 7→ ∑
n∈B j,r

f̂ j(n)eın·x
∥∥∥∥∥

p

Lp(Td )

1/p

. k( j)1−2/p2s j

 ∑
1≤r≤k( j)

∥∥∥∥∥x 7→ ∑
n∈B j,r

f̂ j(n)eın·x
∥∥∥∥∥

p

Lp(Td )

1/p

. k( j)1−2/p2s j‖ f j‖Lp(Td ) = k( j)1−2/p‖ f j‖Fs,p
q (Td ).

In the third inequality, we used the fact that k( j)l( j)= 2 j−1.

iii. Proof of (3.25). The proof is similar to the one of (3.24). When j ≤ l, (3.25) is a consequence of (3.13). When j > l, we start
from the inequality

|∂kG j(x)| ≤ ∑
1≤r≤k( j)

∣∣∣∣∣ ∑
n∈B j,r

nk

n1
f̂ (n)eın·x

∣∣∣∣∣ .

We continue as in the proof of (3.24). The only noticeable difference is that, in the proof, estimate (6.6) is replaced with∥∥∥∥∥x 7→ ∑
n∈B j,r

nk

n1
f̂ j(n)eın·x

∥∥∥∥∥
Lp(Td )

.

∥∥∥∥∥x 7→ ∑
n∈B j,r

f̂ j(n)eın·x
∥∥∥∥∥

Lp(Td )

. (6.7)

In turn, (6.7) with k 6= 1 follows from Corollary 4.7 applied to ϕ1(n1)= 1
n1

, ϕk(nk)= nk, ϕm(nm)≡ 1 for m 6= 1,k. ä

Proof of Lemma 3.5.

i. Proof of (3.28) and (3.29). Clearly, (3.29) is a consequence of (3.28). By straightforward induction on m ≥ 0, we find that

m∑
j=0

F j
∏

j<k≤m
(1−Hk)=

m∑
j=0

F j −
m∑

j=0
H jK j . (6.8)

Noting that the sum in (3.28) contains only a finite number of nonzero terms, we find that (3.28) is a consequence of (6.8).
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ii. Proof of (3.30), (3.31) and (3.32). Inequality (3.32) follows immediately from (3.20) and (3.26) provided η0 is sufficiently
small.
In order to establish (3.30), we start from (3.20), which implies that |F j | ≤ H j . This yields

|Y1| ≤
∑

j
H j

∏
k> j

(1−Hk), (6.9)

with 0≤ Hk ≤ 1. Estimate (3.30) is a consequence of (6.9) and of the inequality∑
j

a j
∏
k> j

(1−ak)≤ 1, valid if a j ∈ [0,1], ∀ j ≥ 0.

The proof of (3.31) is similar to the one of (3.30). ä
Proof of Lemma 3.6. In what follows, we use the convention Hm = Km = 0 when m < 0.

In view of (3.19), we have supp K̂ j ⊂ [|n| ≤ 2 j −2]. Using again (3.19), we have supp �H jK j ⊂ [|n| ≤ 2 j+1 −3]. Thus∑
j≥0

∂1(H jK j)=
∑
j≥0

∑
0≤m≤ j+1

P∆d
m

(∂1(H jK j))=
∑

m≥0

∑
j≥0
P∆d

m
(∂1(Hm+ j−1Km+ j−1)).

Hence, ∥∥∥∥∥∑
j≥0

∂1(H jK j)

∥∥∥∥∥
Fs,p

q (Td )

≤ ∑
j≥0

∥∥∥∥∥ ∑
m≥0

P∆d
m

(∂1(Hm+ j−1Km+ j−1))

∥∥∥∥∥
Fs,p

q (Td )

≡ ∑
j≥0

S j . (6.10)

Note that
S j =

∥∥∥∥∥∥∥(
2smP∆d

m
(∂1(Hm+ j−1Km+ j−1))

)
m∈N

∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

. (6.11)

We are going to estimate the sum in (6.10) by an interpolation technique: we will establish two estimates involving S j
(estimates (6.13) and (6.20) below) and use the most convenient one according to the values of j.
These two estimates will rely on: ∥∥∥∥∥∥∥(

2(s+1)mHm

)
m∈N

∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

. ε−1/2‖ f ‖Fs,p
q

. (6.12)

Let us prove (6.12):∥∥∥∥∥∥∥(
2(s+1)mHm

)
m∈N

∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

(a)
.

∥∥∥∥∥∥∥(
2(s+1)mGm

)
m∈N

∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

(b)
.

∥∥∥∥∥∥∥(
2(s+1)mk(m)1/2Fm

)
m∈N

∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

≤ ε−1/2
∥∥∥∥∥∥∥(

2(s+1)mFm

)
m∈N

∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

≤ ε−1/2‖F‖Fs+1,p
q

(c)
. ε−1/2‖ f ‖Fs,p

q
.

The above estimates are obtained as follows:

(a) is obtained by combining Lemma 4.4 with (3.16) and (3.22).
(b) is a consequence of Corollary 5.3 applied to the function

∑
m

2(s+1)mFm+ j−1.

(c) relies on (3.11).

This ends the proof of (6.12).

i. First estimate of S j . Starting from (6.11), we obtain successively

S j
(a)
.

∥∥∥∥∥∥∥(
2(s+1)mP∆d

m
(Hm+ j−1Km+ j−1)

)
m∈N

∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

(b)
.

∥∥∥∥∥∥∥(
2(s+1)mHm+ j−1Km+ j−1

)
m∈N

∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

(c)≤
∥∥∥∥∥∥∥(

2(s+1)mHm+ j−1

)
m∈N

∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

(d)
. ε−1/22−(s+1) j‖ f ‖Fs,p

q
.

The above estimates are obtained as follows:

(a) follows from Lemma 4.8.
(b) is a consequence of Theorem 4.9.
(c) relies on (3.31).
(d) relies on (6.12).

We established our first estimate:
S j . ε−1/22−(s+1) j‖ f ‖Fs,p

q
. (6.13)

ii. Second estimate of S j . Using (6.11) and Theorem 4.9, we find that

S j .
∥∥∥∥∥(

2sm∂1(Hm+ j−1Km+ j−1)
)
m∈N

∥∥
lq(N)

∥∥∥
Lp(Td )

≤
∥∥∥∥∥(

2smKm+ j−1∂1Hm+ j−1
)
m∈N

∥∥
lq(N)

∥∥∥
Lp(Td )

+
∥∥∥∥∥(

2smHm+ j−1∂1Km+ j−1
)
m∈N

∥∥
lq(N)

∥∥∥
Lp(Td )

. 2−s j
∥∥∥∥∥(

2smKm∂1Hm
)
m∈N

∥∥
lq(N)

∥∥∥
Lp(Td )

+2−s j
∥∥∥∥∥(

2smHm∂1Km
)
m∈N

∥∥
lq(N)

∥∥∥
Lp(Td )

≡ 2−s j (T j +U j
)
.

(6.14)
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We proceed by estimating T j and U j separately.

iii. Estimate of T j . Let l ∈N be such that ε= 2−l . Using (3.21) and the definition of K j as well as (3.31) and (3.18), we find

T j ≤
∥∥∥∥∥(

2smKm∂1Hm
)
m≤l

∥∥
lq

∥∥∥
Lp(Td )

+
∥∥∥∥∥(

2smKm∂1Hm
)
m>l

∥∥
lq

∥∥∥
Lp(Td )

≤
∥∥∥∥∥
∥∥∥∥∥
(
2sm

∣∣∣∣∣ m∑
k=1

Gk

∣∣∣∣∣∂1Hm

)
m≤l

∥∥∥∥∥
lq

∥∥∥∥∥
Lp(Td )

+
∥∥∥∥∥(

2sm∂1Hm
)
m>l

∥∥
lq

∥∥∥
Lp(Td )

(a)
. l‖ f ‖Fs,p

q (Td )

∥∥∥∥∥(
2sm∂1Hm

)
m≤l

∥∥
lq

∥∥∥
Lp(Td )

+
∥∥∥∥∥(

2sm∂1Hm
)
m>l

∥∥
lq

∥∥∥
Lp(Td )

.

(6.15)

Inequality (a) follows from the fact that, when m ≤ l, we have∣∣∣∣∣m−1∑
k=1

Gk

∣∣∣∣∣ .
m−1∑
k=1

‖ fk‖Fs,p
q (Td ) . l‖ f ‖Fs,p

q (Td ); (6.16)

here, we rely on (3.24) and (3.14).
For I = J0, lK or I = Jl+1,∞J, we have

∥∥∥∥∥(
2sm∂1Hm

)
m∈I

∥∥
lq(N)

∥∥∥
Lp(Td )

(a)
.

∥∥∥∥∥(
2sm∂1Gm

)
m∈I

∥∥
lq(N)

∥∥∥
Lp(Td )

(b)
.

∥∥∥∥∥∥∥(
2smk(m)1/2l(m)Fm

)
m∈I

∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

. (6.17)

The above estimates are obtained as follows:

(a) follows from Lemma 4.4.
(b) is a consequence of Corollary 5.5 applied to

∑
m 2smFm.

Let us recall that, when I = J0, lK, we have k(m) = 1 and l(m) = 2m−1 for any m ∈ I. On the other hand, in the case where
I = Jl+1,∞J, we have k(m) = ε−1 = 2l and l(m) = ε2m−1 = 2m−l−1. By combining this with (6.15), (6.17), (3.11) and with the
definition of Fm, we obtain

T j .
(
− lnε‖ f ‖Fs,p

q (Td ) +ε1/2
)
‖ f ‖Fs,p

q (Td ) . (6.18)

iv. Estimate of U j . We start by estimating

|∂1Km|
(a)
.

∑
n<m

(‖∇Fn‖L∞(Td ) +‖∇Hn‖L∞(Td )
) (b)
.

∑
n<m

(
2n(1+d/p) ‖Fn‖Lp(Td ) +2nk(n)1−2/p ‖ fn‖Fs,p

q (Td )

)
(c)
.

∑
n<m

k(n)1−2/p2n ‖ fn‖Fs,p
q (Td )

(d)
. ε2/p−12m ‖ f ‖Fs,p

q (Td ) .

Here are the explanations:

(a) follows from the definition of Km and (3.32).
(b) is a consequence of Lemma 8.2 and (3.27).
(c) relies on (6.2) and (6.3).
(d) is a consequence of the fact that k(m)≤ ε−1 for any m ≥ 1.

In view of the definition of U j , this implies that

U j . ε2/p−1 ‖ f ‖Fs,p
q (Td )

∥∥∥∥∥∥∥(
2(s+1)mHm

)
m∈N

∥∥∥
lq(N)

∥∥∥∥
Lp(Td )

.ε2/p−3/2 ‖ f ‖2
Fs,p

q (Td ) , (6.19)

where the second inequality follows from (6.12). By combining (6.18) and (6.19), we obtain the second estimate of S j :

S j . 2−s j
(
(− lnε+ε2/p−3/2)‖ f ‖Fs,p

q (Td ) +ε1/2
)
‖ f ‖Fs,p

q (Td ) . (6.20)

v. Optimization. In view of (6.10), we have for every τ≥ 1∥∥∥∥∥∑
j≥0

∂1(H jK j)

∥∥∥∥∥
Fs,p

q (Td )

≤ ∑
j≥τ

S j +
∑
j<τ

S j . (6.21)

In the first sum, we use the first estimate of S j , while in the second sum we use the second estimate. This gives∥∥∥∥∥∑
j≥0

∂1(H jK j)

∥∥∥∥∥
Fs,p

q (Td )

. max(τ,2−sτ)
(
(− lnε+ε2/p−3/2)‖ f ‖Fs,p

q (Td ) +ε1/2
)
×‖ f ‖Fs,p

q (Td ) +ε−1/22−(s+1)τ‖ f ‖Fs,p
q

. max(τ,2−sτ)
(
ε2/p−3/2 ‖ f ‖Fs,p

q (Td ) +ε1/2
)
‖ f ‖Fs,p

q (Td ) +ε−1/22−(s+1)τ‖ f ‖Fs,p
q (Td )

= δ
[
max(τ,2−sτ)

(
ε2/p−3/2δ+ε1/2

)
+ε−1/22−(s+1)τ

]
,

(6.22)
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with δ := ‖ f ‖Fs,p
q (Td ). We now choose l (and thus ε): we let l be the integer part of

−p lnδ
2(p+1)ln2

. Hence
1
2
δp/(2p−2) < ε= 2−l ≤

δp/(2p−2).
The next step consists in choosing the integer τ. Assume first that s ≥ 0. Then we define and τ as the integer part of

l
s+1

,
and an elementary computation gives∥∥∥∥∥∑

j≥0
∂1(H jK j)

∥∥∥∥∥
Fs,p

q (Td )

. ‖ f ‖1+p/(4p−4)
Fs,p

q (Td )

(
1− ln‖ f ‖Fs,p

q (Td )

)
.

Assume next that −1
2
< s < 0. We then let τ= l and obtain∥∥∥∥∥∑

j≥0
∂1(H jK j)

∥∥∥∥∥
Fs,p

q (Td )

. ‖ f ‖1+(2s+1)p/(4p−4)
Fs,p

q (Td )
.

Taking δ0 sufficiently small, we can thus ensure that (3.33) holds for any

0<α<min
(

p
4p−4

,
(2s+1)p

4p−4

)
and any ‖ f ‖Fs,p

q (Td ) ≤ δ0.

Moreover, the condition k( j)1−2/p ‖ f ‖Fs,p
q (Td ) ≤ η0 is satisfied provided that

ε1−2/p ‖ f ‖Fs,p
q (Td ) ≤ η0. (6.23)

In turn, (6.23) is satisfied for small δ0; this follows from the inequality

ε1−2/p ‖ f ‖Fs,p
q (Td ) ≤ ‖ f ‖(3p−4)/(2p−2)

Fs,p
q (Td )

≤ δ(3p−4)/(2p−2)
0 .

This completes the proof of Lemma 3.6. ä
Proof of Lemma 3.7. We have

‖∇Y1‖Fs,p
q (Td ) ≤

∥∥∥∥∥∑
j
∇F j

∥∥∥∥∥
Fs,p

q (Td )

+
∥∥∥∥∥∑

j
∇(H jK j)

∥∥∥∥∥
Fs,p

q (Td )

:= A+B.

By Lemma 3.6, we have that ∥∥∥∥∥∑
j
∂1(H jK j)

∥∥∥∥∥
Fs,p

q (Td )

. ‖ f ‖Fs,p
q (Td ) ≤

1
2d

provided that ‖ f ‖Fs,p
q

≤ δ0 and δ0 is chosen sufficiently small. A proof similar to the one of (6.13) combined with the choice
of ε leads to ∥∥∥∥∥∑

j
∂m(H jK j)

∥∥∥∥∥
Fs,p

q (Td )

. ε−1/2 ‖ f ‖Fs,p
q (Td ) . δ(3p−4)/(4p−4)

for m ∈ J2,dK. Hence B ≤ 1
2

for small δ0.
In order to estimate A, we prove that ∥∥∥∥∥∑

j
∇F j

∥∥∥∥∥
Fs,p

q (Td )

. ‖ f ‖Fs,p
q (Td ). (6.24)

This is obtained as follows: for m ∈ J1,dK, we have∥∥∥∥∥∑
j
∂mF j

∥∥∥∥∥
Fs,p

q (Td )

=
∥∥∥∥∥∥
(∑

k
2ksq

∣∣∣∣∣P∆d
k

(∑
j
∂mF j

)∣∣∣∣∣
q)1/q

∥∥∥∥∥∥
Lp(Td )

=
∥∥∥∥∥
(∑

k
2ksq|∂mFk|q

)1/q∥∥∥∥∥
Lp(Td )

.

∥∥∥∥∥
(∑

k
2ksq2qk|Fk|q

)1/q∥∥∥∥∥
Lp(Td )

= ‖F‖Fs+1,p
q (Td ) . ‖ f ‖Fs,p

q (Td ) ,

by Lemma 4.8. This implies (6.24).
Finally, we have ‖∇Y1‖Fs,p

q (Td ) ≤ 1, provided ‖ f ‖Fs,p
q (Td ) ≤ δ0 with δ0 sufficiently small. ä

The proof of Proposition 3.1 is complete. ä

7 Inversion of the divergence in domains

Throughout this section, Ω is a smooth bounded domain in Rd . With no loss of generality, we may also assume that Ω is
connected.

For the definition of the space Fs,p
q (Rd) and its basic properties, we refer the reader to [21, Chapter 4]. Let us recall that

Fs,p
q (Ω) is the space of restrictions to Ω of elements in Fs,p

q (Rd).9

9 When s > 0, functions in Fs,p
q (Rd ) are locally integrable, and we deal with restrictions of functions. When s ≤ 0, we deal with restrictions of

distributions.
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We next give a meaning to the condition
∫
Ω

f = 0, when f ∈ Fs,p
q (Ω). When s > 0, any element f ∈ Fs,p

q (Ω) belongs to

Lp(Ω) ⊂ L1(Ω) so that the condition
∫
Ω

f = 0 has an obvious meaning. When s ≤ 0, we have −s < 1/p′ (since (s+1)p = d).

Therefore, we are in position to apply [21, Section 4.6.3, Theorem 1] and obtain that the characteristic function χΩ of Ω is
a multiplier of F−s,p′

q′ (Rd). Equivalently, the extension operator by 0 of maps in F−s,p′
q′ (Ω), which will be denoted by u 7→ Eu

in the sequel, is bounded from F−s,p′
q′ (Ω) into F−s,p′

q′ (Rd). In particular, there exists C > 0 such that for every ϕ ∈ F−s,p′
q′ (Rd)

vanishing outside Ω we have ∥∥ϕ∥∥
F−s,p′

q′ (Rd )
≤ C

∥∥ϕ|Ω
∥∥

F−s,p′
q′ (Ω)

. (7.1)

A consequence of this fact is that
Fs,p

q (Ω)= (F−s,p′
q′ (Ω))′. (7.2)

Indeed, when Ω= Rd this corresponds to [21, Section 2.1.5]. In order to prove (7.2) for a general Ω, let f ∈ Fs,p
q (Ω). For any

extension f̃ ∈ Fs,p
q (Rd) of f and any ϕ ∈ C∞

c (Ω), define 〈 f ,ϕ〉 := 〈 f̃ ,Eϕ〉. This definition does not depend on the choice of f̃ ,

and the linear functional thus defined is continuous on C∞
c (Ω) with respect to the F−s′,p′

q′ (Ω) norm. The density of C∞
c (Ω)

in F−s,p′
q′ (Ω) [21, Theorem 2.4.4.3] allows to extend this linear functional to a continuous linear functional on the whole

F−s,p′
q′ (Ω) space. This proves the inclusion Fs,p

q (Ω)⊂ (F−s,p′
q′ (Ω))′.

Conversely, let g ∈ (F−s,p′
q′ (Ω))′. Thanks to the boundedness of E, F−s,p′

q′ (Ω) can be identified with a subspace of F−s,p′
q′ (Rd).

The Hahn-Banach theorem yields an extension g̃ of g as a bounded linear functional on F−s,p′
q′ (Rd) with the same norm as

g. Thus g̃ ∈ Fs,p
q (Rd) [21, Proposition 2.1.5], which shows that g ∈ Fs,p

q (Ω).
The claim (7.2) is therefore proved. In addition, a closer look to the above arguments shows that the norms of Fs,p

q (Ω) and

(F−s,p′
q′ (Ω))′ are equivalent.

By the above discussion, we may interpret, when s ≤ 0, the condition
∫
Ω

f = 0 as 〈 f ,1〉 = 0, where 〈 , 〉 denotes the pairing

between Fs,p
q (Ω) and F−s,p′

q′ (Ω).

Proof of Theorem 1.3. The proof follows the one of [5, Theorem 2], with several modifications due to the possibly high
regularity of functions in Fs,p

q (whereas, in [5, Theorem 2], we only have f ∈ Lp). We first introduce the following notation:
Q′

r := (−r, r)d−1, Qr :=Q′
r × (0, r) (r > 0) and k := max(0, [s]). Here, [ ] denotes the integer part. When we deal with traces, we

identify Q′
r with Q′

r × {0}.

i. Extension by reflection. Let f ∈ Fs,p
q (Q1). We introduce the invertible Vandermonde matrix A := ((−1/ j)i−1)1≤i, j≤k+1 and let

α= t(α1, . . . ,αk+1) := A−1[t(1, . . . ,1)] ∈Rk+1. (7.3)

If s > 0, we then define, for x = (x′, xd) ∈Q′
1 × (−1,1):

f̃ (x′, xd) :=


f (x′, xd), if xd > 0
k+1∑
i=1

αi f
(
x′,− xd

i

)
, if xd < 0

.

Then f̃ ∈ Fs,p
q (Q′

1 × (−1,1)) and
∥∥ f̃

∥∥
Fs,p

q (Q′
1×(−1,1)) . ‖ f ‖Fs,p

q (Q1). Indeed, this is easily checked when s ∈ N and q = 2 (that is,

when Fs,p
q is the classical Sobolev space W s,p). This special case combined with interpolation implies that these assertions

still hold when s > 0, p > 1 and q > 1.
When s ≤ 0, define f̃ in the following way:

〈 f̃ ,ϕ〉 = 〈 f ,ϕe〉, ∀ϕ ∈ F−s,p′
q′ (Q′

1 × (−1,1)),

where ϕe(x′, xd)=ϕ(x′, xd)+ϕ(x′,−xd). Since the map

e : F−s,p′
q′ (Q′

1 × (−1,1))→ F−s,p′
q′ (Q1), ϕ 7→ϕe,

is continuous, it follows that the map
˜: Fs,p

q (Q1)→ Fs,p
q (Q′

1 × (−1,1)), f 7→ f̃

is also continuous.

ii. Inversion of the divergence in the case of a flat boundary. This is performed in Lemma 7.2.

Lemma 7.1 Let f ∈ Fs,p
q (Q1). Then there exists X ∈ Fs+1,p

q (Q2)∩L∞(Q2) such that div X = f in Q1 and tr Xd = 0 on Q′
1.

Moreover, there exists C > 0 (independent of f ) such that

‖X‖Fs+1,p
q (Q2) +‖X‖L∞(Q2) ≤ C‖ f ‖Fs,p

q (Q1) .
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Proof Let g be a compactly supported Fs,p
q extension of f̃ to (−π,π)d . Extending g by periodicity, we may identify g with

an element of Fs,p
q (Td). We may further assume that

∫
Td

g = 0 and ‖g‖Fs,p
q (Td ) . ‖ f ‖Fs,p

q (Q1). By Theorem 1.1, there exists

Y ∈ Fs+1,p
q (Td)∩L∞(Td) such that div Y= g and

‖Y‖Fs+1,p
q (Td ) +‖Y‖L∞(Td ) ≤ C‖g‖Fs,p

q (Td ) .

Let

B :=



1 2 · · · k+1 −1
1 α1

1 0 α2
. . .

...

0
...

1 αk+1


,

where α1, ...,αk+1 are given by (7.3). In order to prove that B is non singular, we note that

(
1 0
0 A

)
B =


1 2 · · · k+1 −1

1

A
...
1

 . (7.4)

Therefore, it suffices to prove that the matrix in the right hand side of (7.4) is non singular. Its determinant equals

Λ=−

∣∣∣∣∣∣∣∣∣∣
p−1

1 p−1
2 · · · p−1

k+1 1
p0

1 p0
2 · · · p0

k+1 1
...

...
pk

1 pk
2 · · · pk

k+1 1

∣∣∣∣∣∣∣∣∣∣
=− 1

p1 . . . pk+1
V (p1, . . . , pk+1,1),

where p j = −1/ j, 1 ≤ j ≤ k + 1 and V (p1, . . . , pk+1,1) is the Vandermonde determinant associated with the parameters
{p1, . . . , pk+1,1}. This implies that Λ 6= 0 and B is non singular.
We can thus define t(β j)1≤ j≤k+2 := B−1[t(0,1,0, . . . ,0)]. We then consider for any 1≤ i ≤ d−1,

Xi(x1, . . . , xd) :=
k+1∑
j=1

β jYi

(
x′,

xd

j

)
+βk+2Yi(x′,−xd),

and for i = d,

Xd(x1, . . . , xd) :=
k+1∑
j=1

jβ jYd

(
x′,

xd

j

)
−βk+2Yd(x′,−xd).

It is easy to check that div X= f in Q1, that tr Xd = 0 on Q′
1 and that ‖X‖Fs+1,p

q (Q2) +‖X‖L∞(Q2) . ‖ f ‖Fs,p
q (Q1) . ä

Lemma 7.2 Let f ∈ Fs,p
q (Q1). Then there exists X ∈ Fs+1,p

q (Q2)∩ L∞(Q2) such that div X = f in Q1 and tr X = 0 on Q′
1.

Moreover, there exists C > 0 (independent of f ) such that

‖X‖Fs+1,p
q (Q2) +‖X‖L∞(Q2) ≤ C‖ f ‖Fs,p

q (Q1) .

Proof By Lemma 7.1, there exists Y ∈ Fs+1,p
q (Q4)∩L∞(Q4) such that div Y = f on Q1 and tr Yd = 0 on Q′

1 (with the cor-
responding estimates). For 1 ≤ j ≤ d, we set C j := (−1) j+dY j . Observe that tr Cd = 0 on Q′

1. We claim that there exists
D j ∈ Fs+2,p

q (Q2)∩W1,∞(Q2) such that tr D j = 0 on Q′
2 and

tr
(
∂D j

∂t

)
=C j on Q′

2.

Indeed, let E j := tr |Q′
4
C j ∈ Fs+1−1/p,p

p (Q′
4)∩L∞(Q′

4). Fix some ρ ∈ C∞
c (Rd−1) such that

∫
Rd−1

ρ = 1 and supp ρ ⊂ Q′
1. With the

notation ρt(x′)= 1
td−1 ρ

(
x′

t

)
, set, for x′ ∈Q′

2,

D j(x′, t) :=
{

tE j ∗ρt(x′), if 0< t < 2
0, if t = 0

.

We then have for 1≤ k ≤ d−1
∂D j

∂x′k
(x′, t)= E j ∗

(
∂ρ

∂x′k

)
t

and also
∂D j

∂t
(x′, t)= E j ∗ (ρ+η)t(x′),

where η(y′) :=−(d−1)ρ(y′)−〈∇ρ(y′), y′〉. Clearly, D j ∈W1,∞(Q2) and D j(·,0)= 0. We now use the following result:
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Lemma 7.3 Let L > 0 and R =Rd−1 × (0,L). Let ρ ∈ C∞
c (Rd−1) and σ> 1/p. For any γ ∈ Fσ−1/p,p

p (Rd−1), let

fγ : R →C, R 3 (x′, t) 7→ γ∗ρt(x′) ∈C.

Then the map Fσ−1/p,p
p (Rd−1) 3 γ 7→ fγ ∈ Fσ,p

q (R) is continuous for any q ∈ [2, p].

Proof of Lemma 7.3. Let K(x′, xd) := ρxd (x′). A straightforward computation shows that K̂(ξ′, xd)= ρ̂(xdξ
′), where K̂ denotes

the d −1 dimensional Fourier transform with respect to x′ = (x1, ..., xd−1). Since ρ̂ ∈ S (Rd−1), the kernel K̂ belongs to the
class S0 introduced in [21, Section 3.2.1, Definition 2]. The conclusion of Lemma 7.3 follows therefore from [21, Theorem
3.2.2.3]. ä

Proof of Lemma 7.2 continued. By Lemma 7.3 we have
∂D j

∂x′k
,
∂D j

∂t
∈ Fs+1,p

q (Q2), so that D j ∈ Fs+2,p
q (Q2). We observe that

tr
(
∂D j

∂xk

)
= 0 if k ≤ d−1, tr

(
∂D j

∂xd

)
= E j .

For 1≤ j ≤ d, we then define

Z j := (−1)d+ j ∂D j

∂xd
−δ jd

d∑
i=1

(−1)i+d ∂Di

∂xi
∈ Fs+1,p

q (Q2)∩L∞(Q2).

Finally, let Z := (Z1, . . . ,Zd). The identities div Z = 0 and tr Z = tr Y are straightforward. The vector field X = Y−Z has all
the required properties. ä
iii. Inversion of the divergence in epigraphs. This is achieved in Lemma 7.5.
Let ψ ∈ C∞(Rd−1) and for r > 0,

Ur := {(x′, xd) ∈Q′
r ×R :ψ(x′)< xd <ψ(x′)+1}.

Lemma 7.4 Let k = [s]. There exists ε0 > 0 such that if
∑k+2

i=1

∥∥D iψ
∥∥

L∞(Rd−1) ≤ ε0, then given any f ∈ Fs,p
q (U1), we may find

some X ∈ Fs+1,p
q (U1)∩L∞(U1) satisfying div X= f in U1 and tr X= 0 on {(x′,ψ(x′)) : x′ ∈Q′

1}. Moreover, we may choose X such
that

‖X‖Fs+1,p
q (U1) +‖X‖L∞(U1) ≤ C‖ f ‖Fs,p

q (U1) ,

with C > 0 independent of f .

Proof As in the proof of [5, Lemma 6], for x′ ∈ Q′
1 and 0 < y < 1, set f̃ (x′, y) = f (x′, y+ψ(x′)). When s ≤ 0, this definition has

to be understood as 〈 f̃ ,ϕ〉 := 〈 f ,ϕ◦Ψ−1〉, where Ψ(x′, y) := (x′, y+ψ(x′)). We claim that∥∥ f̃
∥∥

Fs,p
q (Q1) ≤ c‖ f ‖Fs,p

q (U1) . (7.5)

Indeed, when s is an integer (with s ≥−1) and q = 2, we have Fs,p
2 (Ω)=W s,p(Ω), and in this case (7.5) is easily checked using

the definition of Sobolev spaces. By complex interpolation [24, Theorem 2.13] one obtains (7.5) for all s ≥−1 and q = 2. Then
real interpolation yields

∥∥ f̃
∥∥

Bs,p
q (Q1) ≤ c‖ f ‖Bs,p

q (U1) for all s > −1 and all q ∈ R. In particular, (7.5) holds for all s whenever
q = p. Since (7.5) also holds when q = 2, complex interpolation yields (7.5) for all s, p and q ∈ [2, p].

By Step 2, there exist C0 > 0 and X̃ ∈ Fs+1,p
q (Q2)∩L∞(Q2) such that div X̃= f̃ in Q1, tr X̃= 0 on Q′

1 and∥∥X̃∥∥
Fs+1,p

q (Q2) +
∥∥X̃∥∥

L∞(Q2) ≤ C0
∥∥ f̃

∥∥
Fs,p

q (Q1) .

Now, set X(x′, y) := X̃(x′, y−ψ(x′)) and write the components of X̃ as X̃= (X̃′,X̃d). We obtain

div X(x′, xd)− f (x′, xd)=
d−1∑
i=1

∂X̃d

∂x′i
(x′, xd −ψ(x′))

∂ψ

∂x′i
(x′).

Clearly, this X satisfies

‖div X− f ‖Fs,p
q (U1) ≤ C0

d−1∑
i=1

∥∥∥∥∥∂X̃d

∂x′i

∂ψ

∂x′i

∥∥∥∥∥
Fs,p

q (Q1)

.

By [21, Theorem 4.6.2.2] (this requires s >−1/2), we obtain

‖div X− f ‖Fs,p
q (U1) ≤ C1

(∥∥∇ψ∥∥
L∞(Rd−1) +

∥∥∇ψ∥∥
Fs+1,p
∞ (Rd−1)

)
‖ f ‖Fs,p

q (U1) ≤ C2ε0 ‖ f ‖Fs,p
q (U1) , (7.6)

‖X‖Fs+1,p
q (U1) +‖X‖L∞(U1) ≤ C3 ‖ f ‖Fs,p

q (U1) , (7.7)

where the constants Ci, 0≤ i ≤ 3, do not depend on ψ. If we choose ε0 < 1
2C2

, then Lemma 7.5 follows by iterating the above

construction of X (as in the proof of Theorem 1.1) and using (7.6) and (7.7). ä

We next remove the smallness condition on ψ.
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Lemma 7.5 Let ψ ∈ C∞
c (Rd−1). There exists δ> 0 which only depends on d and ψ with the following property: one can find

X ∈ Fs+1,p
q (Uδ)∩L∞(Uδ) satisfying div X = f in Uδ and tr X = 0 on {(x′,ψ(x′)) : x′ ∈ Q′

δ
}. Moreover, there exists C > 0 (which

may depend on ψ but not on f ) such that

‖X‖Fs+1,p
q (Uδ) +‖X‖L∞(Uδ) ≤ C‖ f ‖Fs,p

q (U1) .

Proof As in the proof of [5, Lemma 7], define ψδ(x′) :=ψ(δx′) for any δ> 0. We also define fδ(x′, xd)= f (δx′, xd). For small δ,
we have

∑k+2
i=1

∥∥D iψδ

∥∥
L∞(Rd−1) ≤ ε0, where ε0 is given by Lemma 7.4. We apply Lemma 7.4 to ψδ and fδ on U1. This gives a

vector field Xδ ∈ Fs+1,p
q (U1)∩L∞(U1) satisfying div X= fδ on U1 and tr Xδ = 0 on {(x′,ψδ(x′)) : x′ ∈Q′

1} with the corresponding
estimates. We then consider for (x′, xd) ∈Uδ,

X(x′, xd)=
(
δX′

δ

(
x′

δ
, xd

)
,Xd

δ

(
x′

δ
, xd

))
.

We can easily check that X satisfies all the required properties. ä

iv. Proof of Theorem 1.3 completed: inversion of the divergence in general domains.

Lemma 7.6 There exists a map S : Fs,p
q (Ω)→ L∞(Ω)∩Fs+1,p

q (Ω) such that for every f ∈ Fs,p
q (Ω) we have

‖S f ‖Fs+1,p
q (Ω) +‖S f ‖L∞(Ω) ≤ C‖ f ‖Fs,p

q (Ω) ,

‖ f −div S f ‖Fs+1,p
q (Ω) ≤ C‖ f ‖Fs,p

q (Ω) ,

tr S f = 0 on ∂Ω, tr ( f −div S f )= 0 on ∂Ω.

Proof There exist δ > 0 and a finite covering of ∂Ω by open sets {U1, . . . ,Ul} such that for each 1 ≤ i ≤ l, there exists ψi ∈
C∞(Q′

δ
) satisfying

1. Ui ∩Ω is isometric to {(x′, xd) ∈Q′
δ
×R :ψi(x′)< xd <ψi(x′)+δ}.

2. Ui ∩∂Ω is isometric to {(x′, xd) ∈Q′
δ
×R :ψi(x′)= xd}.

We may further assume that δ is sufficiently small for the conclusion of Lemma 7.5 to hold true in each Ui.
We then complete the proof using a partition of unity, as in the proof of [5, Lemma 5]. ä

In order to complete the proof of Theorem 1.3, we apply the following lemma [5, Lemma 8].

Lemma 7.7 Let E, F be two Banach spaces and let T be a bounded linear operator from E into F such that Ker T∗ = {0}.
Assume that there exists a bounded operator S from F to E and a compact operator K from F into itself such that T◦S= I+K .
Then T admits a right inverse.

Proof of Theorem 1.3 completed. We apply the above lemma with

E = {X ∈ Fs+1,p
q (Ω,Rd)∩L∞(Ω,Rd); tr X= 0 on ∂Ω},

F =
{

f ∈ Fs,p
q (Ω) :

∫
Ω

f = 0
}

and T = div. Then T∗ = −∇, defined on F ′ = (Fs,p
q (Ω))′/R. If D ∈ D′(Ω) satisfies ∇D = 0, then D is constant on Ω (here,

we use the connectedness of Ω). This implies that Ker T∗ = {0}. The existence of S follows from Lemma 7.6. To define
K , we consider the compact embedding J : Fs+1,p

q (Ω) → Fs,p
q (Ω). Let K : F → F be the composition of the continuous map

F 3 f 7→ − f + div S f ∈ Fs+1,p
q with J. Then K is compact and satisfies T ◦S= I +K . We complete the proof of Theorem 1.3

via Lemma 7.7. ä

Remark 7.8 1. It is very likely that Theorem 1.3 is true in Lipschitz domains.

2. A similar argument shows that, for all s > 0, all 1< p, q <+∞, for all f ∈ Fs,p
q (Ω) with

∫
Ω

f = 0, there exists Y ∈ Fs+1,p
q (Ω)

such that div Y = f , tr Y = 0 on ∂Ω and ‖Y‖Fs+1,p
q (Ω) . ‖ f ‖Fs,p

q (Ω). This is a particular case of [15, Theorem 1.1]; see also
[7, Theorem 1.1]. However, note that the arguments in [7,15] are of different nature.
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8 Appendix. Some estimates involving trigonometric polynomials

We gather here some elementary results involving trigonometric sums required in the proof of Theorem 1.1; some of
them are well-known.

The first result is essentially due to Bernstein, but seems difficult to find in the literature.

Lemma 8.1 The Fejèr and de la Vallée Poussin kernels satisfy

‖F( j)
N ‖Lp ≤ C j(N +1) j+1−1/p, ‖V( j)

N ‖Lp ≤ C j(N +1) j+1−1/p, ∀ j ∈N, ∀1≤ p ≤∞. (8.1)

Proof The standard Bernstein’s inequality [4, Theorem 11.1.1] asserts that

‖ f ( j)‖L∞(T) ≤ N j‖ f ‖L∞(T), if supp f̂ ⊂ J−N, NK and j ≥ 1. (8.2)

The integral Bernstein inequality [9, Theorem D.2.1] is∫
T
| f (x+a)− f (x)| dx ≤ CN|a|‖ f ‖L1(T), if supp f̂ ⊂ J−N, NK. (8.3)

The next step is to generalize (8.3) to

‖ f (·+a)− f ‖Lp(T) ≤ CN|a|‖ f ‖Lp(T), if supp f̂ ⊂ J−N, NK, ∀1≤ p ≤∞. (8.4)

This is obtained as follows: we have V̂N (n)= 1 if |n| ≤ N. Therefore, we have f ∗VN = f and [ f (·+a)]∗VN = f (·+a), and thus

‖ f (·+a)− f ‖Lp(T) = ‖[ f (·+a)− f ]∗VN‖Lp(T) = ‖ f ∗ [VN (·−a)−VN ]‖Lp(T) ≤ ‖ f ‖Lp(T)‖VN (·−a)−VN‖L1(T) ≤ CN|a|‖ f ‖Lp(T);

here, we used (8.3) (for VN ) and the fact that ‖VN‖L1(T) = ‖2F2N −FN‖L1(T) ≤ 3.
By letting a → 0 in (8.4), we find that

‖ f ′‖Lp(T) ≤ CN‖ f ‖Lp(T), if supp f̂ ⊂ J−N, NK, ∀1≤ p ≤∞. (8.5)

If we iterate (8.5), then we obtain

‖ f ( j)‖Lp(T) ≤ C j N j‖ f ‖Lp(T), if supp f̂ ⊂ J−N, NK, ∀ j ∈N∗, ∀1≤ p ≤∞. (8.6)

On the other hand, we have
‖FN‖L1 = 1, ‖FN‖L∞ ≤ 2N +1,VN = 2F2N −FN ,

so that
‖FN‖Lp ≤ C(N +1)1−1/p, ‖VN‖Lp ≤ C(N +1)1−1/p, ∀1≤ p ≤∞. (8.7)

We conclude by combining (8.6) with (8.7). ä

The next estimates are known as Nikolskii’s inequalities [17]. However, they were known before [17]; see the historical
discussion in [16].

Lemma 8.2 Let 1≤ p ≤ q ≤∞, α= (α1, ...,αd) ∈Nd and (N1, ..., Nd) ∈Nd . Assume that supp f̂ ⊂∏d
j=1J−N j , N jK. Then

‖∂α f ‖Lq(Td ) .
d∏

j=1
(N j +1)α j+1/p−1/q‖ f ‖Lp(Td ). (8.8)

Proof The identity f = f ∗ (VN1 ⊗ . . .⊗VNd ) implies

‖∂α f ‖Lq(Td ) =
∥∥ f ∗ (

∂
α1
1 VN1 ⊗ . . .⊗∂αd

1 VNd

)∥∥
Lq(Td ) ≤ ‖ f ‖Lp(Td )

d∏
j=1

∥∥∥∂α j
1 VN j

∥∥∥
Lr (T)

,

where
1
q
+1= 1

p
+ 1

r
. We conclude via (8.1). ä

Corollary 8.3 Let 1≤ p ≤ q ≤∞. Assume that supp f̂ ⊂∏d
j=1Ja j ,b jK. Then

‖ f ‖Lq(Td ) .
d∏

j=1
(b j −a j +1)1/p−1/q‖ f ‖Lp(Td ). (8.9)

Proof Apply Lemma 8.2 to x 7→ f (x)e−ı(a1x1+...+ad xd ). ä

We next present an estimate involving Fejèr’s kernel FN .

Lemma 8.4 If supp f̂ ⊂ J−N, NK, then we have
| f | ≤ 3 | f |∗FN . (8.10)
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Proof The starting point is again the identity f = f ∗VN , which yields

| f | = | f ∗VN | = | f ∗ (2F2N −FN )| ≤ | f |∗ |2F2N −FN | .

A simple computation shows that F2N ≤ 2FN , so that |2F2N −FN | ≤ 3FN , and the proof of (8.10) is complete. ä

Corollary 8.5 Assume that supp f̂ ⊂
d∏

j=1
Ja j ,a j +N j −1K. Then

| f | ≤ 3d | f |∗ (FN1 ⊗ . . .⊗FNd ). (8.11)

Finally, we present a proof of (5.9).

Lemma 8.6 Let f ∈P (T) be such that supp f̂ ⊂ Ja,b−1K. Then∣∣| f |′∣∣≤ (b−a)
∣∣Fb−a ∗ (e−ıax f )

∣∣ . (8.12)

Proof We have ∣∣| f |′∣∣= ∣∣∣∣∣
∣∣∣∣∣b−1∑
n=a

f̂ (n)eınx

∣∣∣∣∣
′∣∣∣∣∣=

∣∣∣∣∣
∣∣∣∣∣b−1∑
n=a

f̂ (n)eı(n−b)x

∣∣∣∣∣
′∣∣∣∣∣≤

∣∣∣∣∣b−1∑
n=a

f̂ (n)
(
eı(n−b)x

)′∣∣∣∣∣
=

∣∣∣∣∣b−1∑
n=a

(b−n) f̂ (n)eı(n−b)x

∣∣∣∣∣=
∣∣∣∣∣b−1∑
n=a

(b−n) f̂ (n)eı(n−a)x

∣∣∣∣∣= ∣∣(b−a)Fb−a ∗ (e−ıax f )
∣∣ ,

the last equality being easily checked. ä

Acknowledgements We thank Sylvie Monniaux for the proof of Lemma 8.4.
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