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Abstract 

Les requêtes d’agrégats sont essentielles dans de nombreuses applications qui gèrent des 

données incertaines. Cependant, calculer de manière efficace ces requêtes est généralement 

difficile. Dans cette démonstration nous présentons ProbDB, un système de gestion de bases 

de données probabilistes. Nous montrons en particulier l’efficacité de ProbDB lors du calcul 

de requêtes avec agrégats tels que SUM et COUNT. L’application sur laquelle notre 

démonstration se repose est une application médicale, et elle montre la rapidité avec laquelle 

ProbDB répond aux requêtes d’agrégats probabilistes. 

1. Introduction 

In the context of probabilistic databases [1], aggregate (or aggr for short) queries, in particular 

SUM and COUNT queries, are crucial for many applications that need to deal with uncertain 

data. Let us give a motivating example from the medical applications domain. 

Example 1: Remote health monitoring. Consider a medical center that monitors key 

biological parameters of remote patients at their homes, e.g. using sensors in their bodies. The 

sensors periodically send to the center the patients’ health data, e.g. blood pressure, hydration 

levels, thermal signals, etc. For high availability, there are two or more sensors for each 

biological parameter. However, the data sent by sensors may be uncertain, and the sensors 

that monitor the same parameter may send inconsistent values. There are approaches to 

estimate a confidence value for the data sent by each sensor, e.g. based on their precision [1]. 

According to the data sent by the sensors, the medical application computes the number of 

required human resources, e.g. nurses, and equipments for each patient. One important query 

in this application is “return the sum of required nurses”. 

We are interested in the queries that return all possible aggregate values and their 

probabilities. This kind of query, which we call ALL_AGR (also known as aggregate 

probability distribution) is very important for our underlying applications, e.g. for the above 

medical applications. For example by using ALL_ASUM (all possible sum results and their 

probabilities) we can generate the aggregate probability distribution of attribute summation 

which is needed for decision makings, e.g. how many nurses are needed to cover all 

emergency patients with a probability higher than 99%. 

A naïve algorithm for evaluating ALL_AGR queries is to enumerate all possible worlds, i.e. 

all possible database instances, compute sum in each world, and return the possible sum 

values and their aggregated probability. However, this algorithm is exponential in the number 

of uncertain tuples. 

In this demonstration, we present ProbDB, a probabilistic database system for managing 

probabilistic data. In particular, we show the efficiency of ProbDB for processing aggregate 

queries such as SUM and COUNT. Our demonstration application is the remote health 

monitoring application described in Example 1. We run our prototype over a predefined 

dataset (which can be modified online) of this application, and show how fast it answers to 



aggregate queries. The user can modify the queries and data to visually see the effect on the 

probability distribution function.  

The rest of the paper is organized as follows. In Section 2, we present some technical basis of 

our prototype, e.g. the probabilistic data models and some intuitions about our algorithms. In 

Section 3, we describe our ProbDB prototype. In Section 4 we present the application 

scenarios that will be shown to users during our demonstration. Section 5 concludes. 

2. Technical Basis 

In this section, we first introduce the two probabilistic data models that ProbDB supports. 

Then, we give the intuition about our SUM and COUNT query processing in ProbDB (for 

more details see [2]). 

2.1 Supported Probabilistic Models 

In ProbDB, two probabilistic data models, which are frequently used in probabilistic 

databases, are supported: tuple-level and attribute-level models. They are defined as follows. 

Tuple-level model. In this model, each uncertain table T has an attribute that indicates the 

membership probability (also called existence probability) of each tuple in T, i.e. the 

probability that the tuple appears in a possible world. In this paper, the membership 

probability of a tuple ti is denoted by p(ti).  

Attribute-level model. In this model, each tuple ti has at least one uncertain attribute, e.g. α, 

and the value of α in ti is chosen by a random variable X. Depending on the probability 

density function (pdf) of X, the values of α in ti may be m values vi,1, …, vi,m with probabilities 

pi,1, …, pi,m respectively Note that for each tuple we may have a different pdf. 

2.2 Algorithmic Basis 

In ProbDB, almost all aggregate functions are processed using recursive algorithms. Below, 

we give the intuition about the ALL_SUM algorithm that is in charge of executing SUM 

queries. It is also used for answering COUNT queries. For more details, the reader is referred 

to [2]. 

Let t1,…, tn be the tuples of the given database which is under the tuple-level model. Let DB
j
 

be a database involving the tuples t1,…, tj, and W
j
 be the set of all possible worlds in DB

j
. Let 

ps(i, j) be the probability of having sum = i in DB
j
. We develop a recursive approach for 

computing ps(i, j). 

2.2.1 Base 

Let us consider DB
1
, i.e. the database that involves only the tuple t1. Let p(t1) be the 

membership probability of t1, and val(t1) be the aggr value of t1. In DB
1
, there are two 

possible worlds: 1) w1={}, in which t1 does not exist, so its probability is (1- p(t1)); 2) 

w2={t1}, in which t1 exists, so the probability is p(t1). In w1, we have sum=0, and in w2 we 

have sum=val(t1). If val(t1) = 0, then always we have sum=0 because in both w1 and w2 sum 

is zero.  

2.2.2 Recursion Step 

Now consider DB
n-1

, i.e. a database involving the tuples t1, …, tn-1. Let W
n-1

 be the set of 

possible worlds for DB
n-1

, i.e. set of possible instances for DB
n-1

. Let ps(i, n-1) be the 

probability of having sum=i in DB
n-1

, i.e. the aggregated probability of the DB
n-1 

worlds in 

which we have sum=i. Now, we construct DB
n
 by adding tn to DB

n-1
. Notice that the set of 



DB
n
 possible worlds, denoted by W

n
, are constructed by adding or not adding the tuple tn to 

each world of W
n-1

. Thus, in W
n
, there are two types of worlds: 1) the worlds that do not 

contain tn, denoted as W
n

1; 2) the worlds that contain tn, denoted as W
n

2.  

For each world w∈ W
n

1, we have the same world in DB
n-1

,
 
say w'. Let p(w) and p(w') be the 

probability of worlds w and w'. The probability of w, i.e. p(w), is equal to p(w')×(1 – p(tn)), 

because tn does not exist in w even though it is involved in the database. Thus, in W
n

1 the sum 

values are the same as in DB
n-1

, but the probability of sum=i in W
n

1 is equal to the probability 

of having sum=i in DB
n-1

 multiplied by the probability of non-existence of tn. In other words, 

we have: 

In W
n

1: (probability of sum=i) = ps(i, n-1)×(1 – p(tn))            (1) 

Let us now consider W
n

2. The worlds involved in W
n

2 are constructed by adding tn to each 

world of DB
n-1

. Thus, for each sum value equal to i in DB
n-1

 we have a sum value equal to (i 

+ val(tn)) in W
n

2, where val(tn) is the aggr value of tn. The probability of sum= i + val(tn) in 

W
n

2 is equal to the probability of sum=i in DB
n-1

 multiplied by the membership probability of 

tn. In other words, we have: 

In W
n

2: (probability of sum=i) = ps(i - val(tn),n-1)×p(tn)                                                       (2) 

Let ps(i, n) be the probability of sum=i in DB
n
. This probability is equal to the probability of 

sum=i in W
n

1 plus the probability of sum=i in W
n

2. Thus, by using the Equations 1 and 2, and 

using the base of the recursion, we obtain the following recursive definition for the 

probability of sum=i in DB
n
, i.e. ps(i, n) : 

 

Based on the above recursive definition, we developed efficient algorithms for processing 

SUM and COUNT queries (see [2]). 

3. Prototype 

ProbDB is built on top of a classical Database Management System (DBMS). It adds 

probabilistic capabilities to the DBMS that are transparent to the user. Instead of directly 

modifying the DBMS and adding "native" primitives to it, we have chosen to implement 

ProbDB on top of the DBMS, and thus to be able to change the underlying DBMS with a 

slight programming effort. In its current version, the prototype is built atop PosgreSQL, but 

could easily be adapted to work on a MySQL database for instance. 

When the user sends a query to ProbDB, the query is analyzed and probabilistic keywords are 

extracted. Then classical (non probabilistic) sub-queries are sent to the DBMS that process 

them and returns intermediate results. Then, probabilistic functions are applied to the 

intermediate results, and the final results are returned to the user. 

ProbDB is composed of the following components (see the architecture in Figure 1): 

ps(i,n) =

ps(i,n!1)" (1! p(tn )) + ps(i! val(tn ), n!1)" p(tn ) if n >1

1! p(t
1
) if n =1 and i = 0 and val(t

1
) # 0

p(t
1
) if n =1 and i = val(t

1
) and val(t

1
) # 0

1 if n =1 and i = val(t
1
)= 0 (4)

0 otherwise
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Query parser: it is responsible for 

separating the probabilistic parts of the 

query from the ordinary ones. Let Q be the 

query given by the user. The parser divides 

Q to two parts: 1) Q' : the subquery that 

can be evaluated by a deterministic 

DBMS ; 2) Q" : the parts of the query that 

need special probabilistic algorithms for 

being evaluated. 

Query reformulator: this component 

reformulates the subquery Q' to a query 

that can be executed by the underlying 

deterministic DBMS over the data stored 

in the database. It needs the metadata of 

the probabilistic tables in order to translate 

each relation of Q' into one or more 

probabilistic relations in the database. 

Deterministic DBMS: this is an ordinary 

(deterministic) relational database 

management system that given the 

reformulated Q', executes it over the 

probabilistic tables, and returns the results 

to the component that evaluates the 

probabilistic parts of the query.  

Probabilistic evaluator. The inputs of this component are the intermediate data generated by 

the DBMS and the query Q". According to the probabilistic expressions in Q", the component 

chooses the appropriate algorithms and runs them over the intermediate results, and returns 

the final results to the user. 

In ProbDB, we designed and implemented a user friendly graphical interface that allows the 

user to easily manipulate the data that are in attribute-level probabilistic model, query them 

and see the results of the queries visually (see Figure 2).  

4. Application Scenarios 

In our demonstration, we consider the data generated by the medical application described in 

Example 1. We use the relations designed for this application, and show the data manipulation 

and query processing facilities provided by ProbDB for the application. Particularly, we focus 

on the followings: 

Metadata management. We show how ProbDB converts the data presented in a probabilistic 

attribute-level model to tables in a relational model. We show what happens in background 

when probabilistic data are inserted to the database. Figure 2 shows the interface for editing 

the probabilistic data in the database. 

 

Figure 1: Architecture of ProbDB 

 



 

 

Fast query processing. In this scenario, we demonstrate how fast the probabilistic aggregate 

queries are processed in ProbDB. The user issues aggregate queries over the probabilistic 

health database, ProbDB returns quickly the aggregate results and their probabilities, and 

show them in a graphical user interface. In addition, the user can see in a diagram the 

cumulative distribution function (CDF) of the aggregate results returned by the system. This 

output is shown in Figure 3. The user can change the parameters of his/her query to see the 

impact on CDF. Using the CDF, we can answer queries such as how many nurses are needed 

to cover all emergency patients with a probability higher than 99%.  
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Figure 2: Editing patient's details 

Figure 3: Results of the query 


