
HAL Id: hal-00639293
https://hal.science/hal-00639293

Submitted on 8 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ProbDB: Efficient Execution of Aggregate Queries over
Probabilistic Data

Guillaume Verger, Reza Akbarinia, Patrick Valduriez

To cite this version:
Guillaume Verger, Reza Akbarinia, Patrick Valduriez. ProbDB: Efficient Execution of Aggregate
Queries over Probabilistic Data. BDA: Bases de Données Avancées, 2011, Rabat, Morocco. �hal-
00639293�

https://hal.science/hal-00639293
https://hal.archives-ouvertes.fr

ProbDB: Efficient Execution of Aggregate Queries

over Probabilistic Data

 Guillaume Verger1, Reza Akbarinia2, Patrick Valduriez2,

 INRIA and LIRMM, Montpellier, France
 1

Verger@lirmm.fr,
 2

FirstName.LastName@inria.fr

Abstract

Les requêtes d’agrégats sont essentielles dans de nombreuses applications qui gèrent des

données incertaines. Cependant, calculer de manière efficace ces requêtes est généralement

difficile. Dans cette démonstration nous présentons ProbDB, un système de gestion de bases

de données probabilistes. Nous montrons en particulier l’efficacité de ProbDB lors du calcul

de requêtes avec agrégats tels que SUM et COUNT. L’application sur laquelle notre

démonstration se repose est une application médicale, et elle montre la rapidité avec laquelle

ProbDB répond aux requêtes d’agrégats probabilistes.

1. Introduction

In the context of probabilistic databases [1], aggregate (or aggr for short) queries, in particular

SUM and COUNT queries, are crucial for many applications that need to deal with uncertain

data. Let us give a motivating example from the medical applications domain.

Example 1: Remote health monitoring. Consider a medical center that monitors key

biological parameters of remote patients at their homes, e.g. using sensors in their bodies. The

sensors periodically send to the center the patients’ health data, e.g. blood pressure, hydration

levels, thermal signals, etc. For high availability, there are two or more sensors for each

biological parameter. However, the data sent by sensors may be uncertain, and the sensors

that monitor the same parameter may send inconsistent values. There are approaches to

estimate a confidence value for the data sent by each sensor, e.g. based on their precision [1].

According to the data sent by the sensors, the medical application computes the number of

required human resources, e.g. nurses, and equipments for each patient. One important query

in this application is “return the sum of required nurses”.

We are interested in the queries that return all possible aggregate values and their

probabilities. This kind of query, which we call ALL_AGR (also known as aggregate

probability distribution) is very important for our underlying applications, e.g. for the above

medical applications. For example by using ALL_ASUM (all possible sum results and their

probabilities) we can generate the aggregate probability distribution of attribute summation

which is needed for decision makings, e.g. how many nurses are needed to cover all

emergency patients with a probability higher than 99%.

A naïve algorithm for evaluating ALL_AGR queries is to enumerate all possible worlds, i.e.

all possible database instances, compute sum in each world, and return the possible sum

values and their aggregated probability. However, this algorithm is exponential in the number

of uncertain tuples.

In this demonstration, we present ProbDB, a probabilistic database system for managing

probabilistic data. In particular, we show the efficiency of ProbDB for processing aggregate

queries such as SUM and COUNT. Our demonstration application is the remote health

monitoring application described in Example 1. We run our prototype over a predefined

dataset (which can be modified online) of this application, and show how fast it answers to

aggregate queries. The user can modify the queries and data to visually see the effect on the

probability distribution function.

The rest of the paper is organized as follows. In Section 2, we present some technical basis of

our prototype, e.g. the probabilistic data models and some intuitions about our algorithms. In

Section 3, we describe our ProbDB prototype. In Section 4 we present the application

scenarios that will be shown to users during our demonstration. Section 5 concludes.

2. Technical Basis

In this section, we first introduce the two probabilistic data models that ProbDB supports.

Then, we give the intuition about our SUM and COUNT query processing in ProbDB (for

more details see [2]).

2.1 Supported Probabilistic Models

In ProbDB, two probabilistic data models, which are frequently used in probabilistic

databases, are supported: tuple-level and attribute-level models. They are defined as follows.

Tuple-level model. In this model, each uncertain table T has an attribute that indicates the

membership probability (also called existence probability) of each tuple in T, i.e. the

probability that the tuple appears in a possible world. In this paper, the membership

probability of a tuple ti is denoted by p(ti).

Attribute-level model. In this model, each tuple ti has at least one uncertain attribute, e.g. α,

and the value of α in ti is chosen by a random variable X. Depending on the probability

density function (pdf) of X, the values of α in ti may be m values vi,1, …, vi,m with probabilities

pi,1, …, pi,m respectively Note that for each tuple we may have a different pdf.

2.2 Algorithmic Basis

In ProbDB, almost all aggregate functions are processed using recursive algorithms. Below,

we give the intuition about the ALL_SUM algorithm that is in charge of executing SUM

queries. It is also used for answering COUNT queries. For more details, the reader is referred

to [2].

Let t1,…, tn be the tuples of the given database which is under the tuple-level model. Let DB
j

be a database involving the tuples t1,…, tj, and W
j
 be the set of all possible worlds in DB

j
. Let

ps(i, j) be the probability of having sum = i in DB
j
. We develop a recursive approach for

computing ps(i, j).

2.2.1 Base

Let us consider DB
1
, i.e. the database that involves only the tuple t1. Let p(t1) be the

membership probability of t1, and val(t1) be the aggr value of t1. In DB
1
, there are two

possible worlds: 1) w1={}, in which t1 does not exist, so its probability is (1- p(t1)); 2)

w2={t1}, in which t1 exists, so the probability is p(t1). In w1, we have sum=0, and in w2 we

have sum=val(t1). If val(t1) = 0, then always we have sum=0 because in both w1 and w2 sum

is zero.

2.2.2 Recursion Step

Now consider DB
n-1

, i.e. a database involving the tuples t1, …, tn-1. Let W
n-1

 be the set of

possible worlds for DB
n-1

, i.e. set of possible instances for DB
n-1

. Let ps(i, n-1) be the

probability of having sum=i in DB
n-1

, i.e. the aggregated probability of the DB
n-1

worlds in

which we have sum=i. Now, we construct DB
n
 by adding tn to DB

n-1
. Notice that the set of

DB
n
 possible worlds, denoted by W

n
, are constructed by adding or not adding the tuple tn to

each world of W
n-1

. Thus, in W
n
, there are two types of worlds: 1) the worlds that do not

contain tn, denoted as W
n

1; 2) the worlds that contain tn, denoted as W
n

2.

For each world w∈ W
n

1, we have the same world in DB
n-1

,

say w'. Let p(w) and p(w') be the

probability of worlds w and w'. The probability of w, i.e. p(w), is equal to p(w')×(1 – p(tn)),

because tn does not exist in w even though it is involved in the database. Thus, in W
n

1 the sum

values are the same as in DB
n-1

, but the probability of sum=i in W
n

1 is equal to the probability

of having sum=i in DB
n-1

 multiplied by the probability of non-existence of tn. In other words,

we have:

In W
n

1: (probability of sum=i) = ps(i, n-1)×(1 – p(tn)) (1)

Let us now consider W
n

2. The worlds involved in W
n

2 are constructed by adding tn to each

world of DB
n-1

. Thus, for each sum value equal to i in DB
n-1

 we have a sum value equal to (i

+ val(tn)) in W
n

2, where val(tn) is the aggr value of tn. The probability of sum= i + val(tn) in

W
n

2 is equal to the probability of sum=i in DB
n-1

 multiplied by the membership probability of

tn. In other words, we have:

In W
n

2: (probability of sum=i) = ps(i - val(tn),n-1)×p(tn) (2)

Let ps(i, n) be the probability of sum=i in DB
n
. This probability is equal to the probability of

sum=i in W
n

1 plus the probability of sum=i in W
n

2. Thus, by using the Equations 1 and 2, and

using the base of the recursion, we obtain the following recursive definition for the

probability of sum=i in DB
n
, i.e. ps(i, n) :

Based on the above recursive definition, we developed efficient algorithms for processing

SUM and COUNT queries (see [2]).

3. Prototype

ProbDB is built on top of a classical Database Management System (DBMS). It adds

probabilistic capabilities to the DBMS that are transparent to the user. Instead of directly

modifying the DBMS and adding "native" primitives to it, we have chosen to implement

ProbDB on top of the DBMS, and thus to be able to change the underlying DBMS with a

slight programming effort. In its current version, the prototype is built atop PosgreSQL, but

could easily be adapted to work on a MySQL database for instance.

When the user sends a query to ProbDB, the query is analyzed and probabilistic keywords are

extracted. Then classical (non probabilistic) sub-queries are sent to the DBMS that process

them and returns intermediate results. Then, probabilistic functions are applied to the

intermediate results, and the final results are returned to the user.

ProbDB is composed of the following components (see the architecture in Figure 1):

ps(i,n) =

ps(i,n!1)" (1! p(tn)) + ps(i! val(tn), n!1)" p(tn) if n >1

1! p(t
1
) if n =1 and i = 0 and val(t

1
) # 0

p(t
1
) if n =1 and i = val(t

1
) and val(t

1
) # 0

1 if n =1 and i = val(t
1
)= 0 (4)

0 otherwise

$

%

&
&&

'

&
&
&

Query parser: it is responsible for

separating the probabilistic parts of the

query from the ordinary ones. Let Q be the

query given by the user. The parser divides

Q to two parts: 1) Q' : the subquery that

can be evaluated by a deterministic

DBMS ; 2) Q" : the parts of the query that

need special probabilistic algorithms for

being evaluated.

Query reformulator: this component

reformulates the subquery Q' to a query

that can be executed by the underlying

deterministic DBMS over the data stored

in the database. It needs the metadata of

the probabilistic tables in order to translate

each relation of Q' into one or more

probabilistic relations in the database.

Deterministic DBMS: this is an ordinary

(deterministic) relational database

management system that given the

reformulated Q', executes it over the

probabilistic tables, and returns the results

to the component that evaluates the

probabilistic parts of the query.

Probabilistic evaluator. The inputs of this component are the intermediate data generated by

the DBMS and the query Q". According to the probabilistic expressions in Q", the component

chooses the appropriate algorithms and runs them over the intermediate results, and returns

the final results to the user.

In ProbDB, we designed and implemented a user friendly graphical interface that allows the

user to easily manipulate the data that are in attribute-level probabilistic model, query them

and see the results of the queries visually (see Figure 2).

4. Application Scenarios

In our demonstration, we consider the data generated by the medical application described in

Example 1. We use the relations designed for this application, and show the data manipulation

and query processing facilities provided by ProbDB for the application. Particularly, we focus

on the followings:

Metadata management. We show how ProbDB converts the data presented in a probabilistic

attribute-level model to tables in a relational model. We show what happens in background

when probabilistic data are inserted to the database. Figure 2 shows the interface for editing

the probabilistic data in the database.

Figure 1: Architecture of ProbDB

Fast query processing. In this scenario, we demonstrate how fast the probabilistic aggregate

queries are processed in ProbDB. The user issues aggregate queries over the probabilistic

health database, ProbDB returns quickly the aggregate results and their probabilities, and

show them in a graphical user interface. In addition, the user can see in a diagram the

cumulative distribution function (CDF) of the aggregate results returned by the system. This

output is shown in Figure 3. The user can change the parameters of his/her query to see the

impact on CDF. Using the CDF, we can answer queries such as how many nurses are needed

to cover all emergency patients with a probability higher than 99%.

References

[1] A. Gal, M.V. Martinez, G.I. Simari and V. Subrahmanian. Aggregate Query Answering

under Uncertain Schema Mappings. In ICDE Conf., 2009.

[2] R. Akbarinia, P. Valduriez and G. Verger. SUM Query Processing over Probabilistic Data.

Research Report Nº7629, INRIA, France, 2011.

Figure 2: Editing patient's details

Figure 3: Results of the query

