
HAL Id: hal-00639197
https://hal.science/hal-00639197

Submitted on 8 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Differential SOAP Multicasting
Joe Tekli, Ernesto Damiani, Richard Chbeir

To cite this version:
Joe Tekli, Ernesto Damiani, Richard Chbeir. Differential SOAP Multicasting. IEEE Interna-
tional Conference on Web Services, ICWS 2011, Jul 2011, Washington, DC, United States. pp.1-8,
�10.1109/ICWS.2011.51�. �hal-00639197�

https://hal.science/hal-00639197
https://hal.archives-ouvertes.fr

Differential SOAP Multicasting*

Joe Tekli#, Ernesto Damiani
Department of Information Technology,

Università Degli Studi Di Milano, Crema, 65 – 26013, Italy
{joe.tekli, Ernesto.damiani}@unimi.it

Richard Chbeir
LE2I Laboratory UMR-CNRS

University of Bourgogne, 21011 Dijon, France
richard.chbeir@u-bourgogne.fr

Abstract— SOAP has been widely adopted as a simple, robust and
extensible XML-based protocol for the exchange of messages
among web services. Unfortunately, SOAP communications have
two major performance-related drawbacks: i) verbosity, related to
XML, that leads to increased network traffic, and ii) high
computational burden of XML parsing and processing, that leads
to high latency. In this paper, we address these two issues and
introduce a novel framework for Differential SOAP Multicasting
(DSM). The main idea consists in identifying the common pattern
and differences between SOAP messages, modeled as trees, so as
to multicast similar messages together. Our method is based on
the well known concept of Tree Edit Distance, built upon a novel
filter-differencing architecture to reduce message aggregation
time, identifying only those messages which are relevant (i.e.,
similar enough) for similarity evaluation. In addition, our
technique exploits a dedicated differencing output format
specifically designed to carry the minimum amount of diff
information, in the multicast message, so as to minimize the
multicast message size, and therefore reducing the network traffic.
The battery of simulation experiments conducted to evaluate our
approach shows the relevance of our method in comparison with
traditional and dedicated multicasting techniques.

Keywords: SOAP, XML, Message Multicasting, Differential
Processing, SOAP Performance, Web Service Communications.

I. INTRODUCTION

Web Services (WS) have emerged as a technology that enables
machine-to-machine interaction within distributed,
heterogeneous computing environments. WS differ from
traditional software integration frameworks, such as CORBA
[35], DCOM [17] and Java RMI [41], in that they utilize well-
established and open Web protocols, chiefly XML [5].

WS rely on two standard XML schemata: WSDL (Web
Service Description Language) [10] supporting the machine-
readable description of a service’s interface, and SOAP
(Simple Object Access Protocol) [49] dictating the messages’
format. Bindings to existing protocols (e.g., HTTP, FTP,
SMTP…) have been provided for SOAP messages’
negotiation and transmission.

While carrying most XML’s advantages, WS technology
has inherited a major XML drawback, verbosity, which
strongly affects its performance. Indeed, SOAP message
exchanges are quite elaborate; the client program has to build
the skeleton of the XML message, put the right values in it
(serialization), and then send it to the remote service. In turn,
the service parses the message, digging out the data it needs
(de-serialization), and then goes through the same procedure to

generate an XML reply. No wonder, then, that SOAP message
processing produces considerable network traffic and causes
higher latency than competing technologies [20, 42]. High
latency becomes even more critical when handling large
volumes of SOAP-based communications such as with
emerging e-science [16] and e-business [39] applications.

In this context, similarity and differential encoding have
been often proposed to enhance SOAP performance, aiming to
i) reduce processing time (in parsing [28, 43, 46], serialization
[2, 15], and de-serialization [1, 42]), and to ii) reduce network
traffic via compression [48] and multicasting [3, 36, 37].
Similarity-based performance enhancement is based on the
observation that SOAP exchanges often involve highly similar
messages since those created by the same implementation
usually have the same structure, and those sent from a server
to multiple clients tend to show similarities in structure and
content (e.g., stock quote services [37], online booking and
meteorological broadcast services [3], etc.). In this paper, we
focus on SOAP multicasting, as a technique to save network
bandwidth by delivering SOAP messages to a group of
destinations simultaneously [51].

To our knowledge, the only approach to SOAP
multicasting was described in [37], where the authors
introduce SMP (Similarity-based Multicasting Protocol),
identifying, indexing and routing similar SOAP messages
together (cf. Section II). SMP’s main contribution consists in
grouping and transmitting together similar SOAP messages, in
comparison with identical-only message aggregation of
traditional network-layer (e.g., IP) multicasting [51]. SMP’s
SOAP message aggregation process consists of two steps: i)
quantifying the resemblance between SOAP messages using a
heuristic XML-based similarity measure [27], and ii)
identifying the common part (intersection) and distinctive
parts between the most similar messages, to be grouped
together in one aggregate multicast message. Nonetheless,
careful analysis of [37] led us to pinpoint certain aspects which
limit both the effectiveness and efficiency of SMP
multicasting. On one hand, while SMP considers the common
and distinctive parts of SOAP messages in multicast message
encoding, it does not always generate minimum sized
aggregate messages (and thus does not guaranty optimal
multicast network traffic) since SMP disregards similarities
between the SOAP messages’ distinctive parts (which are
repeated multiple times in the aggregate message regardless of
their resemblances), as we will see in the motivating examples
(Section III.A). On the other hand, the two phase process of i)
computing SOAP similarity and ii) identifying message
common/distinct parts, induces additional processing
overhead, i.e., higher response time, which could be alleviated
if both tasks could be integrated together.

* Work supported in part by a Fondazione Cariplo.
The author is currently a visiting researcher with the Department of
 Computer Science, University of Sao Paulo, Brazil, supported by the
 Research Support Foundation of the State of Sao Paulo (FAPESP).

In this paper, we propose an improved SOAP multicasting
method to address the limitations of SMP [37]. In summary,
we introduce a framework for Differential SOAP Multicasting
(DSM), improving multicasting effectiveness (minimizing
network traffic) and efficiency (minimizing processing
overhead). Our framework is founded on the well known
concept of Tree Edit Distance [4, 6] for comparing and
differencing structured XML-based data (which is the case of
SOAP messages). DSM is built upon a filter-differencing
similarity evaluation architecture, inspired by filter-refinement
approaches used in query processing [18, 22]. This allows to
identify only those SOAP messages which are relevant (i.e.,
similar enough) for exact tree edit computations, avoiding
computing similarity when it is not necessary1. In short, our
method allows:
− Encoding the differences between SOAP messages to be

multicast, including only their distinctive parts, so as to
minimize aggregate message size, and thus network traffic,

− Integrating both SOAP similarity computation and
message aggregation in one single tree edit distance
measure, enhanced via a dedicated filter-differencing
technique, so as to reduce multicast processing overhead.

The remainder of this paper is organized as follows.
Section II reviews the background in SOAP processing.
Section III presents the overview of our approach. Our
Differential SOAP Multicasting method (DSM) is developed
in Section IV. Simulation experiments are described in Section
V. Section VI concludes the paper.

II. BACKGROUND
Several studies have been proposed in the context of SOAP
performance enhancement [2, 37, 42, 46, 48], and can be
grouped following the kind of SOAP processing they perform.

The authors in [2] address SOAP message serialization,
i.e., converting in-memory data types into XML. They identify
the main performance bottleneck as that of transforming in-
memory data of numeric types into the corresponding ASCII-
based XML representation. The authors introduce dedicated
indexing tables to track changes between in-memory data and
their serialized representations, so as to only serialize the
changes to the previously sent message. A comparable
approach is introduced in [15], where the authors address
client-side SOAP message caching. In [1, 42], the authors
target SOAP de-serialization which can be viewed as the
inverse function of serialization, i.e., converting XML
messages to in-memory application objects. The authors in
[42] propose an automaton-based solution creating a link
between the defined automaton and the application object. The
automaton processes incoming messages, and if matched,
returns the linked application object to the SOAP engine after
partially de-serializing only the regions that differ from the
past messages. In [1], the authors propose to periodically

1 In addition, we define an XML-based differential output format, SDL

(Simple Diff Language), designed to carry the minimum information (in
the aggregate multicast message) necessary to regenerate original SOAP
messages at multicast end-point. However, due to space limitations and
for clarity of presentation, we omit the presentation of SDL here and
refer the reader to a dedicated paper (details are provided in [45]).

checkpoint the state of the de-serializer, and compute
checksums for portions of incoming SOAP messages, in order
to de-serialize only those portions which are different. A few
studies have proposed dedicated SOAP parsers, in comparison
with generic DOM [50] and SAX [31] XML parsers, taking
into account the particularities of SOAP messages in order to
improve performance. Early approaches, e.g., XSOAP [40],
limit the validation scope to those elements specific to SOAP
so as to gain in validation time. Recent methods [28, 43, 46]
focus on differential parsing, exploiting the similarities
between SOAP messages. They make use of predefined
templates modeled via dedicated automatons, memorizing the
basic structures of the SOAP messages (based on the
corresponding WSDL [43], or the messages themselves [28,
46]) and only process those parts of the messages which
correspond to variable parts in the templates.

In addition to processing efficiency, a major drawback of
using SOAP resides in its demand for bandwidth, critical in
various domains such as mobile computing [37] and sensor
networks [48]. This problem has been investigated on two
levels: i) SOAP compression [48], to reduce message size
prior to transmission, and ii) SOAP multicasting [36, 37], to
optimize SOAP network traffic. Existing XML compression
methods, e.g., [9, 25], could be utilized with SOAP, yet might
not always be appropriate since SOAP messages are of
relatively smaller sizes, and might yield compression coding
tables which require more space than the original SOAP
messages themselves [48]. Following this observation, the
authors in [48] propose a differential SOAP compression
approach, exploiting the WSDL schema definition to generate
a SOAP message skeleton describing the structures of
corresponding SOAP messages. Consequently, only the
differences between the SOAP message and the predefined
skeleton are transmitted. Another way to reduce SOAP
network bandwidth is to perform multicasting, transmitting the
same information destined to multiple clients once, instead of
sending multiple replicas [51]. As outlined above, the
Similarity-based SOAP Multicasting Protocol (SMP) proposed
in [37] groups and transmits together similar SOAP messages,
in comparison with identical-only message aggregation with
traditional (IP) multicasting [51]. An aggregate SMP message
consists of two parts: the common part section containing
common values of the messages, and the distinctive part
section containing the different parts of each message. The
SMP message is then encapsulated within the body of a classic
SOAP message, which header encompasses the address of the
next router along the path to all intended recipients. The
authors exploit a heuristic similarity measure [27] to quantify
the resemblance between SOAP messages, in order to identify
the most similar candidates for aggregation and multicasting.
Message aggregation (identifying common/distinctive parts) is
undertaken in a subsequent dedicated process. In [36], the
authors propose an enhanced similarity-based routing protocol,
transmitting messages following paths such as there are more
shared links between similar messages, to further reduce
network traffic. SOAP multicasting has also been recently
investigated in the context of SOAP security policy evaluation
[3, 13], applying security rules only on distinct parts of the
multicast message to improve policy evaluation performance.

To sum up, automaton-based techniques to SOAP
message comparison (mainly used with parsing and de-
serialization) [28, 43, 46] focus on messages which strictly
correspond to predefined templates. They do not produce a
similarity value to quantify the resemblance between SOAP
messages, but rather a Boolean result identifying whether the
message is valid or not w.r.t. (with respect to) the predefined
template. Other approaches [1, 37] usually sacrifice some
quality (i.e., comparison accuracy) to gain in performance,
such as the error-prone checksum-based measure [1] (exploited
for SOAP de-serialization), and the heuristic SMP similarity
measure [37] (used for SOAP multicasting). Moreover, neither
method allows seamless SOAP message aggregation.

III. OVERVIEW OF THE APPROACH

In this paper, we address the tasks of similarity evaluation and
differential encoding of SOAP messages, to perform SOAP
multicasting. As stated previously, SMP [37] aggregates
SOAP messages by identifying their common and distinctive
parts. Yet, it disregards certain similarities, mainly between
the messages’ distinctive parts, repeated multiple times in the
aggregate message regardless of their resemblances.

A. Motivating Example

To motivate the need for a new approach, let us consider the
dummy SOAP messages Mi, i=1…6 in Fig. 1. In this example,
we abstract messages to basic character strings for the sake of
simplicity. Fig. 1.a shows the expected aggregation result,
using SMP. One can see that element ‘e’, which is contained
in messages M3, M4, M5 and M6, is repeated four times in the
SMP message distinctive section, so as to regenerate the
original SOAP messages, such as: Mi = Common + Di.

a. SMP [37]. b. Our approach.
Fig. 1. Motivating example to SOAP message aggregation.

However, we argue that such repetitions of identical or
similar elements can be eliminated so as to minimize the
aggregate message size. To do so, we need to identify the most
similar and frequent pattern among SOAP messages (instead
of identifying the intersection such as with SMP), and
consequently only encode the differences (diffs) between each
message and the pattern. Hence, only the minimum amount of
information necessary to regenerate the original SOAP
messages is encapsulated in the aggregate message,
eliminating redundancies as shown in Fig. 1.b.

B. Underlying Technique

In order to attain our effectiveness (minimizing aggregate
message size, and thus network traffic) and efficiency
(reducing processing overhead) goals, we exploit the well

known concept of tree edit distance (TED) [4, 52] (also known
as tree differencing), SOAP messages being modeled as
Ordered Labeled Trees [50]. A great advantage of using tree
edit distance is that along the similarity value, a diff is
generated (i.e., edit script, or delta) providing a record of the
exact differences, in terms of transformation operations,
between the compared trees. This is central to achieve full
integration of SOAP similarity evaluation and message
aggregation (as opposed to the complex two-step
similarity/aggregation process of SMP [37]). In addition, TED
methods have been widely used to compare XML-based data
[7, 12, 34], and have been proven optimal w.r.t. less accurate
(error-prone or heuristic) methods [6]. This is of paramount
importance to accurately identify the most common pattern
minimizing the diffs among the SOAP messages being
aggregated, and thus minimize overall aggregate message size.

C. Outline of our Proposal

In short, we introduce a framework for Differential SOAP
Multicasting (DSM), consisting of two main modules (Fig. 2):
Message Multicasting (MMDSM), and Message Reconstruction
(MRDSM). Briefly, our multicasting module starts by
transforming SOAP messages into their DOM [50] tree
representations. SOAP trees are processed for similarity
evaluation and aggregation at once, via an integrated tree edit
distance measure, to produce multicast DSM messages. Then,
our message reconstruction module rebuilds the original
SOAP messages. Note that each DSM multicast message
consists of a message pattern and various diffs, describing the
differences between the unicast SOAP messages and the
multicast message pattern. The pattern comes down to the
SOAP message sharing the maximum similarities to all others
being processed in the same multicast, i.e., the message
inducing the smallest diffs. Thus, message reconstruction
consists in patching the pattern of the multicast message, with
the diff corresponding to the SOAP message to be regenerated.

Fig. 2. Outline of our approach2.

DSM builds on the groundwork of the SMP protocol [37],
in exploiting the message formatting, indexing and routing
facilities provided by SMP.

IV. SOAP MESSAGE MULTICASTING

Our main idea consists in comparing SOAP messages in a
pair-wise manner, generating and composing diffs accordingly.
A single DSM multicast message is generated for each group
of SOAP messages such that their similarities are above a given
threshold. Here, a user-defined similarity threshold ThreshSim
and time frame TPool are exploited. When the new outgoing

2 SOAP response message processing is similar to request processing, yet the

response is generated at the server side, and transmitted toward the client.

 DSM
 message

MMDSM (SOAP Message Multicasting)

TED similarity
aggregation

SMP
Multicast
routing

MRDSM
(SOAP Message
Reconstruction)

Diff patching

SOAP tree
representation

A
pp

lic
at

io
n

 se
rv

er

C
lie

nt

 c
om

po
ne

nt

Serialization

Generating SOAP
(request) message

De-serialization Parsing

Analyzing SOAP
(request) message

Security
Policy

Evaluation

Buffer management

Client side

Server side

M1= a b c

M2= a b d

M3= a b e

M4= a b e

M5= a b e

M6= a b e

a b

c

Aggregate msg

Diffs

D1

D2

e

e
de

Most similar &
frequent pattern

Note that e is only a pointer to the
actual element e in the pattern.

Common Pattern

M1= a b c

M2= a b d

M3= a b e

M4= a b e

M5= a b e

M6= a b e

a b

c d e e e e

SMP msg

Distinctive section

Common section

D1 D2 D3 D4 D5 D6

Intersection

SOAP message does not satisfy the predefined threshold
ThreshSim w.r.t. all messages in the buffer, it is allocated a new
buffer pool, for a period of TPool time, and constitutes the seed
of a new DSM multicast message. When the outgoing message
satisfies the similarity threshold, it is appended to the pool
corresponding to the in-buffer message with which it shares
maximum similarity. Thus, when the TPool expires for each
buffer pool, the latter’s buffer space is released and the
corresponding multicast DSM message is sent over the wire.
The activity diagram of our SOAP multicasting module is
depicted in Fig. 3. It consists of three components: i) SOAP
Tree Representation, ii) SOAP Tree Similarity Evaluation and
Differencing, and iii) SOAP Buffer Management.

Fig. 3. Simplified activity diagram describing our SOAP message

multicasting module, MMDSM.

A. SOAP Tree Representation

Definitio 1 – SOAP Message Tree: It is a rooted tree S
which nodes ni ∈ S represent SOAP message elements,
ordered and labeled following the corresponding message.
Element values mark the nodes of their containing elements ●

Consider an air travel
booking service, and the
SOAP response message
in Fig. 4 as an answer to a
booking confirmation req-
uest. Here, we only show
the contents enclosed in
the SOAP message body,
and disregard meta-data in
the header. The corres-
ponding tree representation
is shown in Fig. 5.

 <soap:Envelope xmlns:xsd= “…”>
 <soap:Header> … </soap:Header>
 <soap:body>
 <BookingConfirmationResp>
 <FlightBooking>
 <FlightInfo>
 <FlightNum>AZ211</FlightNum>.
 <SourceHub>Milano</SourceHub>
 <DestHub>Paris</DestHub>
 </FlightInfo>
 <ClientInfo>
 <Name>Paula Olivetti</Name>
 <PhoneNum>+39 3206813826</PhoneNum>
 <CCNum>4511 2326 1121 3432</CCNum>
 </ClientInfo>
 </FlightBooking>
 </BookingConfirmationResp>
 </soap:body>
 </soap:Envelope>

Fig. 4. Sample SOAP message.

Fig. 5. Sample SOAP message tree representation.

Note that for tree node identifiers in the SOAP message

tree representation, we follow [37] in using a depth/order
Dewey numbering system for trees, which allows to
effectively pinpoint the exact location of each node in the
SOAP tree (central in consequently encoding the diffs).

B. SOAP Tree Similarity and Differencing Evaluation

In short, we propose a two step filter-differencing similarity
evaluation approach (cf. Fig. 3), inspired by filter-refinement
architectures in query processing [18, 22, 24]. The main idea is
to first run a filter step, exploiting a fast approximation
(SimFilter) of our main edit distance measure (SimTED) to
compare the outgoing SOAP tree (Sout) to all those kept in the
SOAP buffer. The filtering step identifies the set of SOAP
trees in the buffer which are most similar (following SimFilter)
to the outgoing tree Sout. Formally:

 Filter = { S Buffer | SimFilter(Sout, S) ≥ ThreshSim

 S’ Buffer, SimFilter(Sout, S) ≥ SimFilter(Sout, S’) } (1)

Consequently, the differencing phase consists in
conducting similarity evaluation (SimTED) and diff generation
to compare Sout with its most similar counterparts S Filter,
identified in the filtering step.

1) Filter Similarity Measure
Three main conditions have to be satisfied for the filter step to
be efficient [18, 24]: i) the filter measure has to be
considerably easier to compute than the main similarity
measure, ii) a substantial part of the SOAP buffer messages
has to be filtered out, and iii) the completeness of the filter
phase, w.r.t. the main similarity evaluation phase, has to be
verified. While the first two criteria are intuitive, completeness
in this context is less straightforward. It underlines that the
filter step must not allow any false drop outs. In other words,
all SOAP trees in the buffer (S Buffer), which are deemed
similar to Sout w.r.t. the main similarity measure SimTED, should
be included in the filter candidate set (S Filter).

Definitio 2 – Upper Bound Function: Let Ω be a set of
objects, a similarity function Sim’ is an upper bound of
function Sim, if for any two objects p, q ∈ Ω , Sim’(p, q) ≥
Sim (p, q) [14] ●

Definitio 3 – Filter Completeness: Given a similarity

measure SimTED, and a filter characterized by similarity
measure SimFilter, the filter is said to be complete w.r.t. SimTED
if SimFilter is an upper bound of SimTED [18] ●

With an upper bound similarity measure, it is possible to

safely filter out all buffer SOAP trees which have a filter
similarity SimFilter less than the minimum acceptable similarity
degree, i.e., ThreshSim (cf. Formula (1)). In other words, our
filter eliminates all candidate SOAP trees which are outside
the maximum relevant similarity range, for the message
aggregation and multicasting operation at hand.

Various TED-related filter similarity functions have been
proposed in the context of structure query processing [18, 24].
These range over very coarse functions comparing the number
of edges in both structures being compared [24], to more
complex measures exploiting special histograms to describe
the structural features of the data (distribution of the number of
leaf nodes, distinct node labels…) [18]. Since existing filter
methods seem either too coarse [24] or somewhat complex
[18], we propose three simple filter functions to specifically

BookingConfirnationResp

FlightBooking

FlightInfo

FlightNum SourceHub DestHub

AZ211 Milano Paris

0

1

2.1

3.1 3.2 3.3

+39 3206813826

ClientInfo

Name CCNumPhoneNum

Paula
Olivetti

4511 2326
1121 3432

2.2

3.4 3.5 3.6

Filter
Outgoing

SOAP msg
Sout {S}Filter

TED Measure

Sim
TED & D

iff

If SimFilter ≥ ThreshSim

Else Else

{S}Buffer

If SimTED ≥ ThreshSim

Create new DSM
buffer pool

New Sout buffer pool

Add Sout to buffer

SOAP Tree Similarity and Differencing

SOAP Buffer Management

TPool

SOAP
Tree Representation

ThreshSim

Sout

SOAP buffer
Diff Graphs

capture the main characteristics of SOAP message trees: node
edges (parent-child relations) and node order to describe
SOAP structure, and node values to describe SOAP message
contents. Our filters are based on the vector space model
widely used in information retrieval [30], which performance
has been accredited in a variety of applications [38].

Definitio 4 – Node Edge Vector Space: Given two
SOAP trees Si and Sj, we define corresponding parent-child
vectors Vi and Vj in a space which dimensions represent, each,
a single edge er ∈ (Si×Si) (Sj×Sj), such as 1 < r < E where E
is the number of distinct parent-child relations in Si and Sj. The
value of a coordinate w

i
(e) in Vi stands for the number of

occurrences of edge er in tree Si ●

Consequently, we exploit the Manhattan distance [23] to
compute the node edge filter function Simn-edge, since it is
consistent with Definitions 1 and 2, in providing a lower
bound for our main TED similarity measure (the detailed
mathematical proof is provided in [45]).

()
1 2r rV V

1
n-edge 1 2

1 2

(e) (e)
1
2

| | + | |

w w
1

| - |
Sim S , S -

S S

E

r [0, 1]== ∈
∑ uur uur

(2)

Likewise, we exploit formulas, based on the Manhattan
distance, to compute both the node order and node value filter
functions: Simn-order and Simn-value, each w.r.t. its corresponding
vector space defined hereunder.

Definitio 5 – Node Order Vector Space: Given two
SOAP trees Si and Sj, we define the node order vectors Vi and
Vj in a space whose dimensions represent, each, the Dewey
index [37] (cf. Section IV.A) associated to a single node nr ∈
Si Sj, such as 1 < r < I where I is the number of distinct
node index values in Si and Sj. Vector coordinates are binary,
indicating whether a node of the designated Dewey index
exists or not for a given dimension nr ●

Definitio 6 – Node Value Vector Space: Given two
SOAP trees Si and Sj, we define node value vectors Vi and Vj
in a space whose dimensions represent, each, a distinct node
value associated to a node nr Si Sj, such as 1< r <Vl where
Vl is the number of distinct node values in Si and Sj. Vector
coordinates designate the occurrences of each node value ●

Consider the SOAP trees in Fig. 6. The corresponding
filter vector representations are depicted in Fig. 7.

Fig. 6. Sample SOAP sub-trees.

 e1 e2 e3
V1 1 1 1
V2 1 1 0

 0 1.1 1.2 1.3
V1 1 1 1 1
V2 1 1 1 0

 P. Olivetti +39 320… …
V1 1 1 …
V2 0 0 …

a. Node edge vectors b. Node order vectors c. Node value vectors
Fig. 7. SOAP tree filter vector representations.

Note that a classic solution to the problem of combining
different filters is to apply them independently, and then
intersect the resulting candidate sets [18]. With such an
approach, separate index structures for the different filters
have to be maintained and for each filtering task, a time-
consuming intersection step is necessary. In addition, all filters
functions would be equally weighted regardless of their
relative importance. To overcome those disadvantages, we
follow a different approach, combining the filter functions in
one integrated SimFilter measure, weighting each function based
on its discriminative power over the SOAP tree candidate set.
We do so by computing the variance for each filter function
over all SOAP trees within the candidate set, and normalizing
each function accordingly. This brings filter similarities
according to different features (parent-child relations, node
order and node values) in a similar range, and assigns a larger
weight to features that are a good discriminator for the specific
set of candidate SOAP trees at hand. Formally:

() () () ()2
Filter 1 2 1 221

1
1Sim S , S S , S f f

h f F
h F

Sim [0, 1]
∈

∈

−∇
−∇= ∈

∑ ∑ (3)

where F={n-edge, n-order, n-value} is the set of component
filters, Simf (S1, S2) is the similarity function between SOAP
trees S1 and S2 for a given filter component f F, and f

2 is the
variance over all SOAP trees according to the f-th filter
function within the SOAP tree candidate set.

Note that the combined filter measure SimFilter is

consistent with Definitions 1 and 2, since each of its
component filter functions is an upper bound of our main TED
measure (cf. [45] for mathematical proof).

2) Tree Edit Distance Similarity Measure

In our SOAP multicasting approach, we exploit a variation of
the classic tree edit distance developed by Chawathe in [7].
Hereunder the basic definition of tree edit distance [7, 52]:

Definitio 7 – Tree Edit Distance: The edit distance
between two trees A and B is defined as the minimum cost of
all edit scripts (diffs) that transform A to B, TED(A,
B)=Min{CostDiff(A, B)} ●

Definitio 8 – Edit Script - Diff: It is a sequence of edit

operations Diff =p op1, op2, …, opkf , transforming one tree
into another. The cost of an edit script is defined as the sum of
the costs of its operations: CostDiff = | |

i

Diff
Opi=1

Cost∑ ●

We chose Chawathe’s algorithm [7] since: i) it has been
considered as a reference point for various XML related
comparison studies [12, 34], ii) it is among the fastest and least
complex TED algorithms available [44], and iii) it guarantees
correct results (minimal diffs) in comparison with existing
works, e.g., [8, 11], which utilize various heuristics to gain in
performance. Chawathe’s algorithm [7] exploits three basic
edit operations: node insertion, node deletion and node update,
disregarding more complex operations such as move node,
insert sub-tree…, so as to increase efficiency. In our current
approach, we intuitively assign identical unit costs to each
operation (CostIns=CostDel=CostUpd=1). Note that the

+39 3206813826

ClientInfo

Name CCNum PhoneNum

Paula
Olivetti

4511 2326
1121 3432

0

1.1 1.2 1.3

+33 622225555

ClientInfo

Name PhoneNum

0

1.1 1.2

SOAP sub-tree T1

Pierre
Besson

e1 e3 e2
e1 e2

SOAP sub-tree T2

∈

investigation of alternative cost models (e.g., considering the
semantic relatedness of SOAP labels/values given a reference
semantic network [32]) will be addressed in a upcoming study.

Hence, given two SOAP trees S1 and S2, we compute their
similarity based on the tree edit distance function:

1 2
TED 1 2

1 2

Sim 1
TED(S , S)(S , S)
| S | | S |

[0,1]−= ∈
+

(4)

It is to be noted that the classical edit distance similarity
formulation, 1

1 TED
, decreases with the difference between the

trees being compared, but does not consider their common
parts. Therefore, we utilize the similarity function in Formula
(4) in order to capture both the commonalities and the
differences between the SOAP trees being compared, so as to
increase with commonality and decrease with difference [26].
This is central to identifying the most common pattern among
the entities being compared, in order to enable effective SOAP
tree aggregation (as discussed in Section III.A).

Let us consider a simplified example based on string edit
distance, with S1 = ‘a’, S2 = ‘axyz’, S3 = ‘abcd’, and S4 =
‘abcdxyz’. Using the classic edit distance formulation, we
obtain Sim(S1, S2) = Sim(S3, S4) since both doublets differ in
‘xyz’. Yet, one can realize that string S3 and S4 are more
similar than S1 and S2, since the latter have 4 characters in
common, while the former only share one character. Such
commonalities are effectively detected using Formula (4).

Consider the sample SOAP trees in Fig. 6. TED(A, B)=3,
Diff(A, B) consisting of three operations: i) updating the value
of node name, ii) updating the value of PhoneNum, and iii)
deleting node CCNum. Consequently, the result of SOAP tree
similarity evaluation and differencing is exploited in building
aggregate multicast messages to be sent over the wire.

C. SOAP Buffer Management

1) SOAP Diff Graph Representation

In order to effectively multicast buffered SOAP trees, we
represent the latter as a graph-like structure, named SOAP Diff
Graph (SDG), connecting SOAP messages (graph nodes) via
corresponding diffs (graph edges) (Fig. 8). The buffer consists
of multiple SDG graphs corresponding to the different buffer
pools, each underlining a prospective DSM multicast message.

Fig. 8. An Example of SOAP buffer management.

As described previously, TED computations for similarity
evaluation and diff generation are carried out for each new
outgoing SOAP message Sout, w.r.t. its most similar
counterparts in the buffer (i.e., the SOAP tree candidates

identified via the Filter component). Consequently, the filter
candidate Si maximizing the main similarity measure
SimTED(Sout, Si) is selected. If SimTED(Sout, Si) ≥ ThreshSim, then
Sout would be appended to the corresponding SDG graph,
connected to Si via their common diff. Otherwise, if Sim(Sout,
Si) drops below ThreshSim, it is allocated a new buffer pool, and
constitutes the first node in a new SDG graph. When the buffer
pool time frame TPool expires, the corresponding SDG is
encapsulated in a DSM multicast message and is transmitted
over the network. A simple example is depicted in Fig. 8 to
show how an outgoing SOAP message tree S5, is appended to
a SOAP buffer pool SDG.

2) DSM Multicast Message

Encapsulating the SDG graph into a DSM multicast message
requires identifying the multicast message pattern Spattern,
which is the most similar and frequent pattern in all messages,
minimizing the different parts, i.e., the diffs. In other words, it
consists in minimizing the multicast message size. Formally:

i
pattern i i i jS SDG j

S = S verifying | S | | (S ,S) |SDG Min Diff
∀ ∈

⎧ ⎫
∈ +⎨ ⎬

⎩ ⎭
∑

(5)

where |Si| and |Diff(Si, Sj)| denote the cardinalities (the number
of nodes) of the SOAP tree Si and the diff linking Si and Sj.

This can be performed in linear time w.r.t. the number of
SOAP trees in the SDG graph, and is achieved by pinpointing
the SDG node (i.e., SOAP tree) with the maximum number of
edges (i.e., diffs). The latter, which we identify as SDG
centroid, underlines the SOAP tree requiring the least amount
of transformation operations, i.e., the smallest diffs, in order to
generate all its remaining counterparts in the SDG. In other
words, the SDG centroid minimizes the differential parts in the
encoded DSM message, and consequently the overall multicast
message size. It identifies the SOAP tree with the maximum
amount of commonalities w.r.t. its counterparts.

Consider the SDG graph in Fig. 8. Here, SOAP tree S2 is
selected as SDG centroid, since it is connected to its
counterparts with the maximum number of minimal diffs (SDG
edges). Thus, the corresponding DSM message consists of tree
S2 as the multicast message pattern, and Diff(S1, S2), Diff(S2,
S3), Diff(S2, S4) Diff(S4, S5) as the differential parts
corresponding to each SOAP tree. Recall that our DSM
messages follow the same format as SMP messages [37] w.r.t.
message header, body, indexing and routing addresses.

3) DSM Message Routing

Our routing process is comparable to that of SMP [37] except
that instead of aggregating and splitting common/different
parts of the multicast message, the router patches the DSM
pattern, i.e., SDG centroid, with the corresponding diff so as to
regenerate the original SOAP tree. Consider the example in
Fig. 8, such as each SOAP tree Si is intended for a different
client Ci. The DSM replicas to be sent to each client consist of:
− The pattern S2 and Diff(S1, S2), to regenerate SOAP tree

S1, destined to client C1,
− The pattern S2, destined to client C2,
− S2 and Diff(S2, S3), to regenerate S3, destined to client C3,
− S2 and Diff(S2, S4), to regenerate S4, destined to client C4,
− S2 and Diff(S2, S4)⊕Diff(S4, S5), to regenerate S5, for C5.

Step1: SOAP similarity evaluation.
S4 is selected as most

 similar candidate to S5.

S5

S1

S2

S3

S4

Diff (S1, S2)

Diff (S2, S4)

Diff (S2, S3) S5

S1

S2

S3

S4

S5

Diff (S1, S2)

Diff (S2, S4)

Diff (S2, S3)

Diff (S4, S5)

Step2: SOAP buffer management.
Appending S5 to the SDG.

SOAP buffer pool SDG

New
outgoing

SOAP msg
tree

SOAP buffer pool SDG

The ⊕ symbol designates the diff composition operator,
which underlines the transformation of SOAP tree S2, via two
consecutive diffs, so as to obtain S5. In plain terms, it consists
in transforming S2 into S4 (using Diff(S2, S4)) and then S4 into
S5 (via Diff(S4, S5)) [29].

D. SOAP Message Reconstruction (MRDSM)

When the DSM multicast message reaches the destined end-
point client/server (or end-point router), the original SOAP
message is to be reconstructed, based on the DSM common
pattern and corresponding SOAP message diff, in order to be
processed by the destination service component (Fig. 2). While
tree differencing (i.e., tree edit distance) was used as an
effective means to perform SOAP aggregation, we exploit its
inverse process, tree patching, for message reconstruction.

Definitio 9 – Tree Patching: It is defined as the problem
and action of applying a diff to a tree structure (pattern) T in
order to create a new version of the tree T’, incorporating all
the changes encoded in the diff [21, 33]●

In short, tree patching allows regenerating the original
SOAP message tree at the receiver end, by applying the diff
corresponding to the SOAP message tree, on the common
DSM message pattern. This comes down to executing the edit
operations encoded in the output diff on the DSM pattern.

Note that in order to allow automatic SOAP tree patching,
we defined machine-readable XML-based differential output
format, SDL (Simple Diff Language), to be encoded in the
multicast DSM message, designed to carry the minimum
information necessary to regenerate original SOAP messages
at multicast end-point. All details about SDL can be found in
the technical report provided in [45].

V. EVALUATION

We conducted extensive simulation experiments to test the
performance of our approach, and compare it to SMP,
traditional multicast (aggregating identical messages only),
and unicast. We evaluated two criteria: i) network traffic
(multicast effectiveness), and ii) processing time (efficiency).

A. Network Traffic

We adopted a single sender/receiver scenario, such as the
messages are multicast at the sender end-point, and
reconstructed at the receiver end-point, disregarding
intermediate routers. Hence, network traffic amounts to the
sum of the sizes of all SOAP messages over the client/server
link. As for the test data, two sets of 500 SOAP messages
(each) were generated (of average 4KB per message), based on
the Google web service SOAP request and response WSDLs3,
using an adaptation of IBM’s XML document generator4.

We varied three main parameters and evaluated network
variation accordingly: the amount of Non-Identical Messages
(NIM %) to be sent to the client/server, the amount of pair-
wise modifications (Modifs %) between non-identical
messages (which we tuned via the IBM generator), and the
number of messages considered for multicasting (NbMsg).

3 http://www.w3.org/2004/06/03-google-soap-wsdl.html
4 http://www.alphaworks.ibm.com.

1) Network Traffic when varying NIM % and Modifs %

First, we fixed the total number of SOAP messages to be
multicast, NbMsg = 500, and evaluated network traffic w.r.t.
NIM % and Modifs %. Results in Fig. 9 show that our
approach (DSM) reduces traffic proportionally to the amount
of differences (both NIM % and Modifs %) among messages.
SMP reduces traffic w.r.t. the amount of pair-wise message
modifications (Modif %), regardless of the amount of non-
identical messages (NIM %), and thus produces the same
‘worst case’ results that are obtained via DSM (DSM’s upper
traffic limit) when none of the messages to be multicast are
identical (NIM %=100). That happens because SMP only
considers the intersection between messages when generating
the aggregate multicast, regardless of the largest or most
frequent message pattern. Traditional multicast reduces traffic
w.r.t. the amount of non-identical messages (NIM %), but does
not consider partially similar messages (Modif %) since it only
aggregates identical messages. It produces the ‘worst’ results
obtained using DSM, when messages are completely different
(Modif%=100). The largest traffic is constantly produced via
unicast, since the latter simply transmits messages regardless
of their similarities (regardless of both NIM% and Modifs%).

 NIM % (non-identical messages)

Modif %, for SMP traffic levels5

Fig. 9. Variation of total network traffic w.r.t. the amount of modifications
between messages, for a total of NbM=500 SOAP messages.

2) Varying the number of SOAP messages to be multicast

Fig. 10 depicts network traffic when varying the n# of SOAP
messages considered for multicasting (NbMsg), such as the n#
of non-identical messages (NIM %) varies linearly w.r.t. the
amount of pair-wise message modifications (Modifs%).

a. Modif % = 80. b. Modif % = 40

Fig. 10. Network traffic variation, w.r.t. the total number of SOAP
messages to be multicast, NbMsg.

Results confirm those of the previous experiment (Fig. 9): i)
unicast yields the highest network traffic levels, and remains

5 SMP traffic levels are invariant w.r.t. NIM %, and are thus represented separately.

0
0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25

0 10 20 30 40 50 60 70 80 90 100

To
ta
l t
ra
ff
ic
 (
in
 M

B)

0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
2.25

100 90 80 70 60
50 40 30 20 10

Unicast Traditional Multicast SMP
DSM (Modifs %=10) DSM (Modifs %= 20) DSM (Modifs %= 30)
DSM (Modifs %= 40) DSM (Modifs %= 50) DSM (Modifs %= 60)
DSM (Modifs %= 70) DSM (Modifs %= 80) DSM (Modifs %= 90)
DSM (Modifs %= 100)

0
0.25
0.5
0.75

1
1.25
1.5
1.75

2
2.25

0 100 200 300 400 500

To
ta
l t
ra
ff
ic
 (i
n
M
B)

Number of SOAP messages (NbMsg)

0
0.25
0.5
0.75

1
1.25
1.5
1.75

2
2.25

0 100 200 300 400 500

To
ta
l t
ra
ff
ic
 (i
n
M
B)

Number of SOAP messages (NbMsg)

0

0 100 200 300 400 500

SMP Unicast DSM (NIM% = 20)
DSM (NIM% = 40) DSM (NIM% = 60) DSM (NIM% = 80)
DSM (NIM% = 100)

unwavering w.r.t. the number of identical and/or similar
messages (NIM % and/or Modif %), ii) traditional multicast
only considers identical messages and thus varies w.r.t. NIM %
iii) traffic with SMP varies w.r.t. Modif%, regardless of the
amount of non-identical messages NIM %, while ii) DSM
optimizes traffic w.r.t. both NIM% and Modifs%.

Fig. 11. Network traffic, with NIM%
=20 & Modif %=10.

Fig. 12. Timing results.

A compact representative depiction of network traffic
variation in Fig. 11, based on the graphs in Fig. 10, for fixed
average NIM % and Modifs % values, shows that the traffic
gap between DSM, SMP, traditional multicast, and most
evidently unicast, grows noticeably with the increasing
number of messages. Results show that DSM underlines an
average 20% traffic reduction in comparison with SMP.

B. Processing Time

Timing experiments were carried out on a PC with an Intel
Xeon 2.66 GHz processor with 4GB RAM. Results in Fig. 12
show that our method induces an average 30% reduction in
processing overhead in comparison with SMP. Additional
results similar to those in Fig. 12 are obtained when varying
the total number of SOAP messages being processed. They are
omitted here due to space constraints, but are available in [45].

We are currently conducting experiments to fine-tune
DSM, varying i) SOAP message aggregation similarity
threshold ThreshSim, ii) the number and sizes of multicast
buffer pools, and iii) the buffer pool time frame TPool, to
identify the best input parameter values for different SOAP
multicasting scenarios (w.r.t. the total number of clients,
message variability…). More experimental results can be found
in [45], as well as preliminary results on TPool and ThreshSim.

VI. CONCLUSION

In this paper, we introduced our novel framework for
Differential SOAP Multicasting (DSM). Our method
encompasses a novel filter-differencing architecture,
identifying the common pattern and differences between
SOAP messages, multicasting those messages which are most
similar. Results show that our approach outperforms its
alternative, SMP [37], and minimizes network traffic in
comparison with traditional multicast and unicast. We are
currently investigating the integration of our technique with
optimizations of underlying protocols, e.g. sending SOAP
multicasts over persistent HTTP links on high-latency networks
[19]. We also plan to consider, not only the syntactic
properties of SOAP messages, but also their semantic
similarities, given a semantic reference such as WordNet [32]
or Wikipedia. We also plan to investigate multicasting of
secure SOAP messages, for service security performance [47].

REFERENCES

[1] Abu-Ghazaleh N. and Lewis M.J., Differential Deserialization for Optimized SOAP

Performance. ACM/IEEE Conf. on Supercomputing, 2005, pp. 21-31.
[2] Abu-Ghazaleh N. et al., Differential Serialization for Optimized SOAP Performance. Symp.

on High Perf. Distrib. Computing (HPDC), 2004, 55-64.
[3] Azzini A. et al., Extending the Similarity-Based XML Multicast Approach with Digital

Signatures. ACM Workshop on Secure WS, 2009, 45-52, Chicago.
[4] Bille P., A Survey on Tree Edit Distance and Related Problems. TCS, 2005. 337(1):217-239.
[5] Bray T. et al., Extensible Markup Language (XML) 1.0 - 5th Edition. W3C recommendation,

2008. http://www.w3.org/TR/REC-xml/ [cited Nov. 2010].
[6] Buttler D., A Short Survey of Document Structure Similarity Algorithms. ICOMP'04. pp. 3-9.
[7] Chawathe S., Comparing Hierarchical Data in External Memory. VLDB, 1999. pp. 90-101.
[8] Chawathe S. et al., Change Detection in Hierarchically Structured Information. ACM Inter.

Conf. on Management of Data (SIGMOD), 1996, 26-37. Montreal.
[9] Cheney J., Compressing XML with Multiplexed Hierarchical PPM Models. Proceedings of

the Data Compression Conference (DCC'01), 2001. pp. 163-173.
[10] Chinnici R. et al., Web Services Description Language (WSDL) Version 2.0 Part 1: Core

Language, 2007, http://www.w3.org/TR/wsdl20/ [cited 25 Nov. 2010].
[11] Cobéna G.; Abiteboul S.; and Marian A., Detecting Changes in XML Documents. IEEE Inter.

Conf. on Data Engineering (ICDE'02), 2002. pp. 41-52.
[12] Dalamagas T. et al., A Methodology for Clustering XML Documents by Structure.

Information Systems, 2006. 31(3):187-228.
[13] Damiani E. and Marrara S., Efficient SOAP Message Exchange and Evaluation Through XML

Similarity. ACM Workshop on Secure WS, 2008. pp.29-36.
[14] Davey B. A. and Priestley H. A., Introduction to Lattices and Order (2nd Edition).

Cambridge University Press, pp. 310., 2002.
[15] Devaram K. and Andersen D., SOAP Optimization via Parameterized Client-Side Caching.

IEEE/ACM CCGRID'02 Symposium, 2002. pp.439-312.
[16] Gannon D. et al., On Building Parallel and Grid Applications: Component Technology and

Distributed Services. IEEE CLADE ’04, p. 44, Washington DC.
[17] Horstmann M. and Kirtland M. DCOM Architecture. Microsoft MSDN,

http://msdn.microsoft.com/en-us/library/ms809311.aspx, 1997 [cited Jan. 2011].
[18] Kailing K.; Kriegel H.P.; Schonauer S.; and Seidl T., Efficient Similarity Search for

Hierarchical Data in Large Databases. EDBT'04, 2004. pp. 676-693.
[19] Kangasharju J. et al., Comparing SOAP Performance for Various Encodings, Protocols, and

Connections. IFIP 8th Inter. Conf., PWC'03, 2003, pp. 397-406.
[20] Kohlhoff C. and Steele R., Evaluating SOAP for High Performance Business Applications:

Real-Time Trading Systems. WWW Conf., 2003. Budapest.
[21] Komvoteas K., XML Diff and Patch Tool. MS in Distributed Multimedia and Information

Systems Dissertation, Edinburgh, Heriot-Watt University, 2003.
[22] Korn F.; Sidiropoulos N.; Faloutsos C.; Siegel E. and Protopapas Z., Fast and Effective

Retrieval of Medical Tumor Shapes. I. IEEE TKDE 1998, 10(889:904).
[23] Krause E.F., Taxicab Geometry - An Adventure in Non-Euclidean Geometry. Dover

Publications - NY, 1987. pp. 88.
[24] Kriegel H.P. and Schönauer S., Similarity Search in Structured Data. Inter. Conf. on Data

Warehousing and Know. Discovery (DaWaK), 2003, 309-319.
[25] Liefke H. and Suciu D., XMill: An Efficient Compressor for XML Data. University of

Pennsylvania Technical Report MSCIS-99-26., 2000.
[26] Lin D., An Information-Theoretic Definition of Similarity. Proceedings of the International

Conference on Machine Learning (ICML), 1998. pp. 296-304.
[27] Ma Y. and Chbeir R., Content and Structure Based Approach for XML Similarity. Inter. Conf.

on Computer and Info. Tech. (ICCIT), 2005, 136-140.
[28] Makino S. et al.., Improving WS-Security Performance with a Template-Based Approach.

IEEE International Conference on Web Services (ICWS'05), 2005. pp. 581-588.
[29] Marian A. et al.., Change-Centric Management of Versions in an XML Warehouse. Proc. of

the VLDB Conf., 2001. pp. 581-590.
[30] McGill M., Introduction to Modern Information Retrieval. 1983. McGraw-Hill.
[31] Megginson et al., The Simple API for XML, http://www.megginson.com/SAX/.
[32] Miller G., WordNet: An On-Line Lexical Database. J. of Lexicography, 1990.
[33] Mouat A., XML Diff and Patch Utilities. MS Dissertation, 2002, Heriot-Watt Univ, Sc.
[34] Nierman & Jagadish, Evaluating structural similarity in XML documents. WebDB '02, 61-66.
[35] Object Management Group. The Common Object Request Broker: Architecture and

Specification. Version 3.0.3, http://www.omg.org/technology/, 2004.
[36] Phan K.A. et al., Minimal Traffic-Constrained Similarity-Based SOAP Multicast Routing

Protocol. OTM Confederated Inter. Conf., 2009. LNCS, pp. 558-576.
[37] Phan K.A. et al., Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and

Latency in Web Services. IEEE TSC, 2008. 1:2(88-103).
[38] Salton G., Automatic text processing: the transformation, analysis, and retrieval of

information by computer. Addison-Wesley Longman, Boston, 1989. pp. 530.
[39] Singh G. et al., A Metadata Catalog Service for Data Intensive Applications. ACM/IEEE

Conf. on Supercomputing., 2003, 33, Washington DC
[40] Slominski A. XSOAP. 2004, http://www.extreme.indiana.edu/xgws/xsoap/ [cited Jan. 2011].
[41] Sun. Java Remote Message Invocation (RMI). http://java.sun.com/j2se/1.5.0/rmi/, 2005
[42] Suzumura T. et al., Optimizing Web Services Performance by Differential Deserialization

IEEE Conference on Web Services (ICWS'05), 2005. (1):185- 192.
[43] Takeuchi Y. et al., A Differential-Analysis Approach for Improving SOAP Processing

Performance. IEEE Conf. on e-Tech., e-Com. and e-Service (EEE), 2005, 472-479.
[44] Tekli J.; Chbeir R. and Yétongnon K., An Overview of XML Similarity: Background, Current

Trends and Future Directions. Elsevier Computer Science Review, 2009. 3(3):151-173.
[45] Tekli J.; Damiani E. and Chbeir R., Differential SOAP Multicasting, Technical Report DSM-

TR-10, 2010. http://dbconf.u-bourgogne.fr/DSM-TR-10.pdf.
[46] Teraguchi M. et al., Optimized Web Services Security Performance with Differential Parsing.

International Conference on Service-Oriented Computing (ICSOC'06), 2006. pp. 277-288.
[47] Turkmen F. and Crispo C., Performance evaluation of XACML PDP implementations. ACM

workshop on Secure Web Services (SWS), Alexandria, Virginia, USA., 2008. pp. 37-44.
[48] Werner C. et al., WSDL-Driven SOAP Compression. J. of WS Research, 2005. 2(1):18-35.
[49] WWW Consortium. SOAP Version 1.2, 2007, http://www.w3.org/TR/soap/ [cited Jan. 2011].
[50] WWW Consortium. The Document Object Model. http://www.w3.org/DOM [cited Jan 2011].
[51] Zhang B. et al., Host Multicast: A Framework for Delivering Multicast to End Users. IEEE

Conference on Computer Communications (INFOCOM'02), 2002. pp. 1366-1375.
[52] Zhang K. and Shasha D., Simple Fast Algorithms for the Editing Distance between Trees and

Related Problems. SIAM Journal of Computing, 1989. 18(6):1245-1262.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

Tr
af
fic

 s
iz
e
(in

 M
B)

Number of SOAP messages

Unicast
Trad. Mul.
SMP
DSM

0

2

4

6

8

10

12

0 200 400 600 800 1000

Ti
m
e
(in

 s
ec
on

ds
)

Nb of nodes in each SOAP tree S1 & S2

SMP
DSM
Trad. Mul.
Unicast

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

