Joe Tekli #
email: joe.tekli@unimi.it

Ernesto Damiani
email: ernesto.damiani@unimi.it

Richard Chbeir
email: richard.chbeir@u-bourgogne.fr

Differential SOAP Multicasting *

Keywords: SOAP, XML, Message Multicasting, Differential Processing, SOAP Performance, Web Service Communications

SOAP has been widely adopted as a simple, robust and extensible XML-based protocol for the exchange of messages among web services. Unfortunately, SOAP communications have two major performance-related drawbacks: i) verbosity, related to XML, that leads to increased network traffic, and ii) high computational burden of XML parsing and processing, that leads to high latency. In this paper, we address these two issues and introduce a novel framework for Differential SOAP Multicasting (DSM). The main idea consists in identifying the common pattern and differences between SOAP messages, modeled as trees, so as to multicast similar messages together. Our method is based on the well known concept of Tree Edit Distance, built upon a novel filter-differencing architecture to reduce message aggregation time, identifying only those messages which are relevant (i.e., similar enough) for similarity evaluation. In addition, our technique exploits a dedicated differencing output format specifically designed to carry the minimum amount of diff information, in the multicast message, so as to minimize the multicast message size, and therefore reducing the network traffic. The battery of simulation experiments conducted to evaluate our approach shows the relevance of our method in comparison with traditional and dedicated multicasting techniques.

I. INTRODUCTION

Web Services (WS) have emerged as a technology that enables machine-to-machine interaction within distributed, heterogeneous computing environments. WS differ from traditional software integration frameworks, such as CORBA [START_REF]The Common Object Request Broker: Architecture and Specification[END_REF], DCOM [START_REF] Horstmann | DCOM Architecture[END_REF] and Java RMI [START_REF] Sun | Java Remote Message Invocation (RMI)[END_REF], in that they utilize wellestablished and open Web protocols, chiefly XML [START_REF] Bray | Extensible Markup Language (XML) 1.0 -5th Edition[END_REF].

WS rely on two standard XML schemata: WSDL (Web Service Description Language) [START_REF] Chinnici | Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language[END_REF] supporting the machinereadable description of a service's interface, and SOAP (Simple Object Access Protocol) [START_REF]SOAP Version 1.2[END_REF] dictating the messages' format. Bindings to existing protocols (e.g., HTTP, FTP, SMTP…) have been provided for SOAP messages' negotiation and transmission.

While carrying most XML's advantages, WS technology has inherited a major XML drawback, verbosity, which strongly affects its performance. Indeed, SOAP message exchanges are quite elaborate; the client program has to build the skeleton of the XML message, put the right values in it (serialization), and then send it to the remote service. In turn, the service parses the message, digging out the data it needs (de-serialization), and then goes through the same procedure to generate an XML reply. No wonder, then, that SOAP message processing produces considerable network traffic and causes higher latency than competing technologies [START_REF] Kohlhoff | Evaluating SOAP for High Performance Business Applications: Real-Time Trading Systems[END_REF][START_REF] Suzumura | Optimizing Web Services Performance by Differential Deserialization IEEE Conference on Web Services[END_REF]. High latency becomes even more critical when handling large volumes of SOAP-based communications such as with emerging e-science [START_REF] Gannon | On Building Parallel and Grid Applications: Component Technology and Distributed Services[END_REF] and e-business [START_REF] Singh | A Metadata Catalog Service for Data Intensive Applications[END_REF] applications.

In this context, similarity and differential encoding have been often proposed to enhance SOAP performance, aiming to i) reduce processing time (in parsing [START_REF] Makino | Improving WS-Security Performance with a Template-Based Approach[END_REF][START_REF] Takeuchi | A Differential-Analysis Approach for Improving SOAP Processing Performance[END_REF][START_REF] Teraguchi | Optimized Web Services Security Performance with Differential Parsing[END_REF], serialization [START_REF] Abu-Ghazaleh | Differential Serialization for Optimized SOAP Performance[END_REF][START_REF] Devaram | SOAP Optimization via Parameterized Client-Side Caching[END_REF], and de-serialization [START_REF] Abu-Ghazaleh | Differential Deserialization for Optimized SOAP Performance[END_REF][START_REF] Suzumura | Optimizing Web Services Performance by Differential Deserialization IEEE Conference on Web Services[END_REF]), and to ii) reduce network traffic via compression [START_REF] Werner | WSDL-Driven SOAP Compression[END_REF] and multicasting [START_REF] Azzini | Extending the Similarity-Based XML Multicast Approach with Digital Signatures[END_REF][START_REF] Phan | Minimal Traffic-Constrained Similarity-Based SOAP Multicast Routing Protocol[END_REF][START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF]. Similarity-based performance enhancement is based on the observation that SOAP exchanges often involve highly similar messages since those created by the same implementation usually have the same structure, and those sent from a server to multiple clients tend to show similarities in structure and content (e.g., stock quote services [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF], online booking and meteorological broadcast services [START_REF] Azzini | Extending the Similarity-Based XML Multicast Approach with Digital Signatures[END_REF], etc.). In this paper, we focus on SOAP multicasting, as a technique to save network bandwidth by delivering SOAP messages to a group of destinations simultaneously [START_REF] Zhang | Host Multicast: A Framework for Delivering Multicast to End Users[END_REF].

To our knowledge, the only approach to SOAP multicasting was described in [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF], where the authors introduce SMP (Similarity-based Multicasting Protocol), identifying, indexing and routing similar SOAP messages together (cf. Section II). SMP's main contribution consists in grouping and transmitting together similar SOAP messages, in comparison with identical-only message aggregation of traditional network-layer (e.g., IP) multicasting [START_REF] Zhang | Host Multicast: A Framework for Delivering Multicast to End Users[END_REF]. SMP's SOAP message aggregation process consists of two steps: i) quantifying the resemblance between SOAP messages using a heuristic XML-based similarity measure [START_REF] Ma | Content and Structure Based Approach for XML Similarity[END_REF], and ii) identifying the common part (intersection) and distinctive parts between the most similar messages, to be grouped together in one aggregate multicast message. Nonetheless, careful analysis of [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF] led us to pinpoint certain aspects which limit both the effectiveness and efficiency of SMP multicasting. On one hand, while SMP considers the common and distinctive parts of SOAP messages in multicast message encoding, it does not always generate minimum sized aggregate messages (and thus does not guaranty optimal multicast network traffic) since SMP disregards similarities between the SOAP messages' distinctive parts (which are repeated multiple times in the aggregate message regardless of their resemblances), as we will see in the motivating examples (Section III.A). On the other hand, the two phase process of i) computing SOAP similarity and ii) identifying message common/distinct parts, induces additional processing overhead, i.e., higher response time, which could be alleviated if both tasks could be integrated together.

In this paper, we propose an improved SOAP multicasting method to address the limitations of SMP [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF]. In summary, we introduce a framework for Differential SOAP Multicasting (DSM), improving multicasting effectiveness (minimizing network traffic) and efficiency (minimizing processing overhead). Our framework is founded on the well known concept of Tree Edit Distance [START_REF] Bille | A Survey on Tree Edit Distance and Related Problems[END_REF][START_REF] Buttler | A Short Survey of Document Structure Similarity Algorithms[END_REF] for comparing and differencing structured XML-based data (which is the case of SOAP messages). DSM is built upon a filter-differencing similarity evaluation architecture, inspired by filter-refinement approaches used in query processing [START_REF] Kailing | Efficient Similarity Search for Hierarchical Data in Large Databases[END_REF][START_REF] Korn | Fast and Effective Retrieval of Medical Tumor Shapes[END_REF]. This allows to identify only those SOAP messages which are relevant (i.e., similar enough) for exact tree edit computations, avoiding computing similarity when it is not necessary 1 . In short, our method allows:

-Encoding the differences between SOAP messages to be multicast, including only their distinctive parts, so as to minimize aggregate message size, and thus network traffic, -Integrating both SOAP similarity computation and message aggregation in one single tree edit distance measure, enhanced via a dedicated filter-differencing technique, so as to reduce multicast processing overhead.

The remainder of this paper is organized as follows. Section II reviews the background in SOAP processing. Section III presents the overview of our approach. Our Differential SOAP Multicasting method (DSM) is developed in Section IV. Simulation experiments are described in Section V. Section VI concludes the paper.

II. BACKGROUND

Several studies have been proposed in the context of SOAP performance enhancement [START_REF] Abu-Ghazaleh | Differential Serialization for Optimized SOAP Performance[END_REF][START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF][START_REF] Suzumura | Optimizing Web Services Performance by Differential Deserialization IEEE Conference on Web Services[END_REF][START_REF] Teraguchi | Optimized Web Services Security Performance with Differential Parsing[END_REF][START_REF] Werner | WSDL-Driven SOAP Compression[END_REF], and can be grouped following the kind of SOAP processing they perform.

The authors in [START_REF] Abu-Ghazaleh | Differential Serialization for Optimized SOAP Performance[END_REF] address SOAP message serialization, i.e., converting in-memory data types into XML. They identify the main performance bottleneck as that of transforming inmemory data of numeric types into the corresponding ASCIIbased XML representation. The authors introduce dedicated indexing tables to track changes between in-memory data and their serialized representations, so as to only serialize the changes to the previously sent message. A comparable approach is introduced in [START_REF] Devaram | SOAP Optimization via Parameterized Client-Side Caching[END_REF], where the authors address client-side SOAP message caching. In [START_REF] Abu-Ghazaleh | Differential Deserialization for Optimized SOAP Performance[END_REF][START_REF] Suzumura | Optimizing Web Services Performance by Differential Deserialization IEEE Conference on Web Services[END_REF], the authors target SOAP de-serialization which can be viewed as the inverse function of serialization, i.e., converting XML messages to in-memory application objects. The authors in [START_REF] Suzumura | Optimizing Web Services Performance by Differential Deserialization IEEE Conference on Web Services[END_REF] propose an automaton-based solution creating a link between the defined automaton and the application object. The automaton processes incoming messages, and if matched, returns the linked application object to the SOAP engine after partially de-serializing only the regions that differ from the past messages. In [START_REF] Abu-Ghazaleh | Differential Deserialization for Optimized SOAP Performance[END_REF], the authors propose to periodically checkpoint the state of the de-serializer, and compute checksums for portions of incoming SOAP messages, in order to de-serialize only those portions which are different. A few studies have proposed dedicated SOAP parsers, in comparison with generic DOM [START_REF]The Document Object Model[END_REF] and SAX [START_REF] Megginson | The Simple API for XML[END_REF] XML parsers, taking into account the particularities of SOAP messages in order to improve performance. Early approaches, e.g., XSOAP [START_REF] Slominski | [END_REF], limit the validation scope to those elements specific to SOAP so as to gain in validation time. Recent methods [START_REF] Makino | Improving WS-Security Performance with a Template-Based Approach[END_REF][START_REF] Takeuchi | A Differential-Analysis Approach for Improving SOAP Processing Performance[END_REF][START_REF] Teraguchi | Optimized Web Services Security Performance with Differential Parsing[END_REF] focus on differential parsing, exploiting the similarities between SOAP messages. They make use of predefined templates modeled via dedicated automatons, memorizing the basic structures of the SOAP messages (based on the corresponding WSDL [START_REF] Takeuchi | A Differential-Analysis Approach for Improving SOAP Processing Performance[END_REF], or the messages themselves [START_REF] Makino | Improving WS-Security Performance with a Template-Based Approach[END_REF][START_REF] Teraguchi | Optimized Web Services Security Performance with Differential Parsing[END_REF]) and only process those parts of the messages which correspond to variable parts in the templates.

In addition to processing efficiency, a major drawback of using SOAP resides in its demand for bandwidth, critical in various domains such as mobile computing [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF] and sensor networks [START_REF] Werner | WSDL-Driven SOAP Compression[END_REF]. This problem has been investigated on two levels: i) SOAP compression [START_REF] Werner | WSDL-Driven SOAP Compression[END_REF], to reduce message size prior to transmission, and ii) SOAP multicasting [START_REF] Phan | Minimal Traffic-Constrained Similarity-Based SOAP Multicast Routing Protocol[END_REF][START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF], to optimize SOAP network traffic. Existing XML compression methods, e.g., [START_REF] Cheney | Compressing XML with Multiplexed Hierarchical PPM Models[END_REF][START_REF] Liefke | XMill: An Efficient Compressor for XML Data[END_REF], could be utilized with SOAP, yet might not always be appropriate since SOAP messages are of relatively smaller sizes, and might yield compression coding tables which require more space than the original SOAP messages themselves [START_REF] Werner | WSDL-Driven SOAP Compression[END_REF]. Following this observation, the authors in [START_REF] Werner | WSDL-Driven SOAP Compression[END_REF] propose a differential SOAP compression approach, exploiting the WSDL schema definition to generate a SOAP message skeleton describing the structures of corresponding SOAP messages. Consequently, only the differences between the SOAP message and the predefined skeleton are transmitted. Another way to reduce SOAP network bandwidth is to perform multicasting, transmitting the same information destined to multiple clients once, instead of sending multiple replicas [START_REF] Zhang | Host Multicast: A Framework for Delivering Multicast to End Users[END_REF]. As outlined above, the Similarity-based SOAP Multicasting Protocol (SMP) proposed in [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF] groups and transmits together similar SOAP messages, in comparison with identical-only message aggregation with traditional (IP) multicasting [START_REF] Zhang | Host Multicast: A Framework for Delivering Multicast to End Users[END_REF]. An aggregate SMP message consists of two parts: the common part section containing common values of the messages, and the distinctive part section containing the different parts of each message. The SMP message is then encapsulated within the body of a classic SOAP message, which header encompasses the address of the next router along the path to all intended recipients. The authors exploit a heuristic similarity measure [START_REF] Ma | Content and Structure Based Approach for XML Similarity[END_REF] to quantify the resemblance between SOAP messages, in order to identify the most similar candidates for aggregation and multicasting. Message aggregation (identifying common/distinctive parts) is undertaken in a subsequent dedicated process. In [START_REF] Phan | Minimal Traffic-Constrained Similarity-Based SOAP Multicast Routing Protocol[END_REF], the authors propose an enhanced similarity-based routing protocol, transmitting messages following paths such as there are more shared links between similar messages, to further reduce network traffic. SOAP multicasting has also been recently investigated in the context of SOAP security policy evaluation [START_REF] Azzini | Extending the Similarity-Based XML Multicast Approach with Digital Signatures[END_REF][START_REF] Damiani | Efficient SOAP Message Exchange and Evaluation Through XML Similarity[END_REF], applying security rules only on distinct parts of the multicast message to improve policy evaluation performance.

To sum up, automaton-based techniques to SOAP message comparison (mainly used with parsing and deserialization) [START_REF] Makino | Improving WS-Security Performance with a Template-Based Approach[END_REF][START_REF] Takeuchi | A Differential-Analysis Approach for Improving SOAP Processing Performance[END_REF][START_REF] Teraguchi | Optimized Web Services Security Performance with Differential Parsing[END_REF] focus on messages which strictly correspond to predefined templates. They do not produce a similarity value to quantify the resemblance between SOAP messages, but rather a Boolean result identifying whether the message is valid or not w.r.t. (with respect to) the predefined template. Other approaches [START_REF] Abu-Ghazaleh | Differential Deserialization for Optimized SOAP Performance[END_REF][START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF] usually sacrifice some quality (i.e., comparison accuracy) to gain in performance, such as the error-prone checksum-based measure [START_REF] Abu-Ghazaleh | Differential Deserialization for Optimized SOAP Performance[END_REF] (exploited for SOAP de-serialization), and the heuristic SMP similarity measure [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF] (used for SOAP multicasting). Moreover, neither method allows seamless SOAP message aggregation.

III. OVERVIEW OF THE APPROACH

In this paper, we address the tasks of similarity evaluation and differential encoding of SOAP messages, to perform SOAP multicasting. As stated previously, SMP [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF] aggregates SOAP messages by identifying their common and distinctive parts. Yet, it disregards certain similarities, mainly between the messages' distinctive parts, repeated multiple times in the aggregate message regardless of their resemblances.

A. Motivating Example

To motivate the need for a new approach, let us consider the dummy SOAP messages M i , i=1…6 in Fig. 1. In this example, we abstract messages to basic character strings for the sake of simplicity. Fig. 1.a shows the expected aggregation result, using SMP. One can see that element 'e', which is contained in messages M 3 , M 4 , M 5 and M 6 , is repeated four times in the SMP message distinctive section, so as to regenerate the original SOAP messages, such as:

M i = Common + D i .
a. SMP [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF].

b. Our approach.

Fig. 1. Motivating example to SOAP message aggregation.

However, we argue that such repetitions of identical or similar elements can be eliminated so as to minimize the aggregate message size. To do so, we need to identify the most similar and frequent pattern among SOAP messages (instead of identifying the intersection such as with SMP), and consequently only encode the differences (diffs) between each message and the pattern. Hence, only the minimum amount of information necessary to regenerate the original SOAP messages is encapsulated in the aggregate message, eliminating redundancies as shown in Fig. 1.b.

B. Underlying Technique

In order to attain our effectiveness (minimizing aggregate message size, and thus network traffic) and efficiency (reducing processing overhead) goals, we exploit the well known concept of tree edit distance (TED) [START_REF] Bille | A Survey on Tree Edit Distance and Related Problems[END_REF][START_REF] Zhang | Simple Fast Algorithms for the Editing Distance between Trees and Related Problems[END_REF] (also known as tree differencing), SOAP messages being modeled as Ordered Labeled Trees [START_REF]The Document Object Model[END_REF]. A great advantage of using tree edit distance is that along the similarity value, a diff is generated (i.e., edit script, or delta) providing a record of the exact differences, in terms of transformation operations, between the compared trees. This is central to achieve full integration of SOAP similarity evaluation and message aggregation (as opposed to the complex two-step similarity/aggregation process of SMP [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF]). In addition, TED methods have been widely used to compare XML-based data [START_REF] Chawathe | Comparing Hierarchical Data in External Memory[END_REF][START_REF] Dalamagas | A Methodology for Clustering XML Documents by Structure[END_REF][START_REF] Nierman | Evaluating structural similarity in XML documents[END_REF], and have been proven optimal w.r.t. less accurate (error-prone or heuristic) methods [START_REF] Buttler | A Short Survey of Document Structure Similarity Algorithms[END_REF]. This is of paramount importance to accurately identify the most common pattern minimizing the diffs among the SOAP messages being aggregated, and thus minimize overall aggregate message size.

C. Outline of our Proposal

In short, we introduce a framework for Differential SOAP Multicasting (DSM), consisting of two main modules (Fig. 2): Message Multicasting (MM DSM), and Message Reconstruction (MR DSM). Briefly, our multicasting module starts by transforming SOAP messages into their DOM [START_REF]The Document Object Model[END_REF] tree representations. SOAP trees are processed for similarity evaluation and aggregation at once, via an integrated tree edit distance measure, to produce multicast DSM messages. Then, our message reconstruction module rebuilds the original SOAP messages. Note that each DSM multicast message consists of a message pattern and various diffs, describing the differences between the unicast SOAP messages and the multicast message pattern. The pattern comes down to the SOAP message sharing the maximum similarities to all others being processed in the same multicast, i.e., the message inducing the smallest diffs. Thus, message reconstruction consists in patching the pattern of the multicast message, with the diff corresponding to the SOAP message to be regenerated. DSM builds on the groundwork of the SMP protocol [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF], in exploiting the message formatting, indexing and routing facilities provided by SMP.

IV. SOAP MESSAGE MULTICASTING

Our main idea consists in comparing SOAP messages in a pair-wise manner, generating and composing diffs accordingly. A single DSM multicast message is generated for each group of SOAP messages such that their similarities are above a given threshold. Here, a user-defined similarity threshold Thresh Sim and time frame T Pool are exploited. When the new outgoing 2 SOAP response message processing is similar to request processing, yet the response is generated at the server side, and transmitted toward the client. Intersection SOAP message does not satisfy the predefined threshold Thresh Sim w.r.t. all messages in the buffer, it is allocated a new buffer pool, for a period of T Pool time, and constitutes the seed of a new DSM multicast message. When the outgoing message satisfies the similarity threshold, it is appended to the pool corresponding to the in-buffer message with which it shares maximum similarity. Thus, when the T Pool expires for each buffer pool, the latter's buffer space is released and the corresponding multicast DSM message is sent over the wire. The activity diagram of our SOAP multicasting module is depicted in Fig. 3. It consists of three components: i) SOAP Tree Representation, ii) SOAP Tree Similarity Evaluation and Differencing, and iii) SOAP Buffer Management. Note that for tree node identifiers in the SOAP message tree representation, we follow [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF] in using a depth/order Dewey numbering system for trees, which allows to effectively pinpoint the exact location of each node in the SOAP tree (central in consequently encoding the diffs).

A. SOAP Tree Representation

B. SOAP Tree Similarity and Differencing Evaluation

In short, we propose a two step filter-differencing similarity evaluation approach (cf. Fig. 3), inspired by filter-refinement architectures in query processing [START_REF] Kailing | Efficient Similarity Search for Hierarchical Data in Large Databases[END_REF][START_REF] Korn | Fast and Effective Retrieval of Medical Tumor Shapes[END_REF][START_REF] Kriegel | Similarity Search in Structured Data[END_REF]. The main idea is to first run a filter step, exploiting a fast approximation (Sim Filter) of our main edit distance measure (Sim TED) to compare the outgoing SOAP tree (S out) to all those kept in the SOAP buffer. The filtering step identifies the set of SOAP trees in the buffer which are most similar (following Sim Filter) to the outgoing tree S out . Formally:

Filter = { S Buffer | SimFilter(Sout, S) ≥ ThreshSim S' Buffer, Sim Filter (S out , S) ≥ Sim Filter (S out , S') } (1)
Consequently, the differencing phase consists in conducting similarity evaluation (Sim TED) and diff generation to compare S out with its most similar counterparts S Filter, identified in the filtering step.

1) Filter Similarity Measure

Three main conditions have to be satisfied for the filter step to be efficient [START_REF] Kailing | Efficient Similarity Search for Hierarchical Data in Large Databases[END_REF][START_REF] Kriegel | Similarity Search in Structured Data[END_REF]: i) the filter measure has to be considerably easier to compute than the main similarity measure, ii) a substantial part of the SOAP buffer messages has to be filtered out, and iii) the completeness of the filter phase, w.r.t. the main similarity evaluation phase, has to be verified. While the first two criteria are intuitive, completeness in this context is less straightforward. It underlines that the filter step must not allow any false drop outs. In other words, all SOAP trees in the buffer (S Buffer), which are deemed similar to S out w.r.t. the main similarity measure Sim TED , should be included in the filter candidate set (S Filter).

Definitio 2 -Upper Bound Function: Let Ω be a set of objects, a similarity function Sim' is an upper bound of function Sim, if for any two objects p, q ∈ Ω , Sim'(p, q) ≥ Sim (p, q) [START_REF] Davey | Introduction to Lattices and Order (2nd Edition)[END_REF] • Definitio 3 -Filter Completeness: Given a similarity measure Sim TED , and a filter characterized by similarity measure Sim Filter , the filter is said to be complete w.r.t. Sim TED if Sim Filter is an upper bound of Sim TED [START_REF] Kailing | Efficient Similarity Search for Hierarchical Data in Large Databases[END_REF] • With an upper bound similarity measure, it is possible to safely filter out all buffer SOAP trees which have a filter similarity Sim Filter less than the minimum acceptable similarity degree, i.e., Thresh Sim (cf. Formula (1)). In other words, our filter eliminates all candidate SOAP trees which are outside the maximum relevant similarity range, for the message aggregation and multicasting operation at hand.

Various TED-related filter similarity functions have been proposed in the context of structure query processing [START_REF] Kailing | Efficient Similarity Search for Hierarchical Data in Large Databases[END_REF][START_REF] Kriegel | Similarity Search in Structured Data[END_REF]. These range over very coarse functions comparing the number of edges in both structures being compared [START_REF] Kriegel | Similarity Search in Structured Data[END_REF], to more complex measures exploiting special histograms to describe the structural features of the data (distribution of the number of leaf nodes, distinct node labels…) [START_REF] Kailing | Efficient Similarity Search for Hierarchical Data in Large Databases[END_REF]. Since existing filter methods seem either too coarse [START_REF] Kriegel | Similarity Search in Structured Data[END_REF] or somewhat complex [START_REF] Kailing | Efficient Similarity Search for Hierarchical Data in Large Databases[END_REF], we propose three simple filter functions to specifically

SOAP buffer

Diff Graphs capture the main characteristics of SOAP message trees: node edges (parent-child relations) and node order to describe SOAP structure, and node values to describe SOAP message contents. Our filters are based on the vector space model widely used in information retrieval [START_REF] Mcgill | Introduction to Modern Information Retrieval[END_REF], which performance has been accredited in a variety of applications [START_REF] Salton | Automatic text processing: the transformation, analysis, and retrieval of information by computer[END_REF].

Definitio 4 -Node Edge Vector Space: Given two SOAP trees S i and S j , we define corresponding parent-child vectors V i and V j in a space which dimensions represent, each, a single edge e r ∈ (S i ×S i) (S j ×S j), such as 1 < r < E where E is the number of distinct parent-child relations in S i and S j . The value of a coordinate w i (e) in V i stands for the number of occurrences of edge e r in tree S i • Consequently, we exploit the Manhattan distance [START_REF] Krause | Taxicab Geometry -An Adventure in Non-Euclidean Geometry[END_REF] to compute the node edge filter function Sim n-edge , since it is consistent with Definitions 1 and 2, in providing a lower bound for our main TED similarity measure (the detailed mathematical proof is provided in [START_REF] Tekli | Differential SOAP Multicasting[END_REF]).

()

1 2 r r V V 1 n-edge 1 2 1 2 (e) (e) 1 2 | | + | | w w 1 | - | Sim S , S - S S E r [0, 1] = = ∈ ∑ uur uur (2)
Likewise, we exploit formulas, based on the Manhattan distance, to compute both the node order and node value filter functions: Sim n-order and Sim n-value , each w.r.t. its corresponding vector space defined hereunder.

Definitio 5 -Node Order Vector Space: Given two SOAP trees S i and S j , we define the node order vectors V i and V j in a space whose dimensions represent, each, the Dewey index [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF] (cf. Section IV.A) associated to a single node n r ∈ S i S j , such as 1 < r < I where I is the number of distinct node index values in S i and S j . Vector coordinates are binary, indicating whether a node of the designated Dewey index exists or not for a given dimension n r • Definitio 6 -Node Value Vector Space: Given two SOAP trees S i and S j , we define node value vectors V i and V j in a space whose dimensions represent, each, a distinct node value associated to a node n r S i S j , such as 1< r <Vl where Vl is the number of distinct node values in S i and S j . Vector coordinates designate the occurrences of each node value • Consider the SOAP trees in Fig. 6. The corresponding filter vector representations are depicted in Fig. 7. Note that a classic solution to the problem of combining different filters is to apply them independently, and then intersect the resulting candidate sets [START_REF] Kailing | Efficient Similarity Search for Hierarchical Data in Large Databases[END_REF]. With such an approach, separate index structures for the different filters have to be maintained and for each filtering task, a timeconsuming intersection step is necessary. In addition, all filters functions would be equally weighted regardless of their relative importance. To overcome those disadvantages, we follow a different approach, combining the filter functions in one integrated Sim Filter measure, weighting each function based on its discriminative power over the SOAP tree candidate set. We do so by computing the variance for each filter function over all SOAP trees within the candidate set, and normalizing each function accordingly. This brings filter similarities according to different features (parent-child relations, node order and node values) in a similar range, and assigns a larger weight to features that are a good discriminator for the specific set of candidate SOAP trees at hand. Formally:

e2 e3 V 1 1 1 1 V2 1 1 0 0 1.1 1.2 1.3 V 1 1 1 1 1 V2 1 1 1 0 P. Olivetti +39 320… … V 1 1 1 … V2 0 0 … a.
() () () () 2 Filter 1 2 1 2 2 1 1 1 Sim S , S S , S f f h f F h F Sim [0, 1] ∈ ∈ -∇ -∇ = ∈ ∑ ∑ (3)
where F={n-edge, n-order, n-value} is the set of component filters, Sim f (S 1 , S 2) is the similarity function between SOAP trees S 1 and S 2 for a given filter component f F, and f 2 is the variance over all SOAP trees according to the f-th filter function within the SOAP tree candidate set.

Note that the combined filter measure Sim Filter is consistent with Definitions 1 and 2, since each of its component filter functions is an upper bound of our main TED measure (cf. [START_REF] Tekli | Differential SOAP Multicasting[END_REF] for mathematical proof).

2) Tree Edit Distance Similarity Measure

In our SOAP multicasting approach, we exploit a variation of the classic tree edit distance developed by Chawathe in [START_REF] Chawathe | Comparing Hierarchical Data in External Memory[END_REF]. Hereunder the basic definition of tree edit distance [START_REF] Chawathe | Comparing Hierarchical Data in External Memory[END_REF][START_REF] Zhang | Simple Fast Algorithms for the Editing Distance between Trees and Related Problems[END_REF]: We chose Chawathe's algorithm [START_REF] Chawathe | Comparing Hierarchical Data in External Memory[END_REF] since: i) it has been considered as a reference point for various XML related comparison studies [START_REF] Dalamagas | A Methodology for Clustering XML Documents by Structure[END_REF][START_REF] Nierman | Evaluating structural similarity in XML documents[END_REF], ii) it is among the fastest and least complex TED algorithms available [START_REF] Tekli | An Overview of XML Similarity: Background, Current Trends and Future Directions[END_REF], and iii) it guarantees correct results (minimal diffs) in comparison with existing works, e.g., [START_REF] Chawathe | Change Detection in Hierarchically Structured Information[END_REF][START_REF] Cobéna | Detecting Changes in XML Documents[END_REF], which utilize various heuristics to gain in performance. Chawathe's algorithm [START_REF] Chawathe | Comparing Hierarchical Data in External Memory[END_REF] exploits three basic edit operations: node insertion, node deletion and node update, disregarding more complex operations such as move node, insert sub-tree…, so as to increase efficiency. In our current approach, we intuitively assign identical unit costs to each operation (Cost Ins =Cost Del =Cost Upd =1). Note that the SOAP sub-tree T2 ∈ investigation of alternative cost models (e.g., considering the semantic relatedness of SOAP labels/values given a reference semantic network [START_REF] Miller | WordNet: An On-Line Lexical Database[END_REF]) will be addressed in a upcoming study. Hence, given two SOAP trees S 1 and S 2 , we compute their similarity based on the tree edit distance function: , decreases with the difference between the trees being compared, but does not consider their common parts. Therefore, we utilize the similarity function in Formula (4) in order to capture both the commonalities and the differences between the SOAP trees being compared, so as to increase with commonality and decrease with difference [START_REF] Lin | An Information-Theoretic Definition of Similarity[END_REF]. This is central to identifying the most common pattern among the entities being compared, in order to enable effective SOAP tree aggregation (as discussed in Section III.A).

Let us consider a simplified example based on string edit distance, with S 1 = 'a', S 2 = 'axyz', S 3 = 'abcd', and S 4 = 'abcdxyz'. Using the classic edit distance formulation, we obtain Sim(S 1 , S 2) = Sim(S 3 , S 4) since both doublets differ in 'xyz'. Yet, one can realize that string S 3 and S 4 are more similar than S 1 and S 2 , since the latter have 4 characters in common, while the former only share one character. Such commonalities are effectively detected using Formula (4).

Consider the sample SOAP trees in Fig. 6. TED(A, B)=3, Diff(A, B) consisting of three operations: i) updating the value of node name, ii) updating the value of PhoneNum, and iii) deleting node CCNum. Consequently, the result of SOAP tree similarity evaluation and differencing is exploited in building aggregate multicast messages to be sent over the wire.

C. SOAP Buffer Management 1) SOAP Diff Graph Representation

In order to effectively multicast buffered SOAP trees, we represent the latter as a graph-like structure, named SOAP Diff Graph (SDG), connecting SOAP messages (graph nodes) via corresponding diffs (graph edges) (Fig. 8). The buffer consists of multiple SDG graphs corresponding to the different buffer pools, each underlining a prospective DSM multicast message. As described previously, TED computations for similarity evaluation and diff generation are carried out for each new outgoing SOAP message S out , w.r.t. its most similar counterparts in the buffer (i.e., the SOAP tree candidates identified via the Filter component). Consequently, the filter candidate S i maximizing the main similarity measure Sim TED (S out , S i) is selected. If Sim TED (S out , S i) ≥ Thresh Sim , then S out would be appended to the corresponding SDG graph, connected to S i via their common diff. Otherwise, if Sim(S out , S i) drops below Thresh Sim , it is allocated a new buffer pool, and constitutes the first node in a new SDG graph. When the buffer pool time frame T Pool expires, the corresponding SDG is encapsulated in a DSM multicast message and is transmitted over the network. A simple example is depicted in Fig. 8 to show how an outgoing SOAP message tree S 5 , is appended to a SOAP buffer pool SDG.

2) DSM Multicast Message

Encapsulating the SDG graph into a DSM multicast message requires identifying the multicast message pattern S pattern , which is the most similar and frequent pattern in all messages, minimizing the different parts, i.e., the diffs. In other words, it consists in minimizing the multicast message size. Formally:

i pattern i i i j S SDG j S = S verifying | S | | (S ,S) | SDG Min Diff ∀ ∈ ⎧ ⎫ ∈ + ⎨ ⎬ ⎩ ⎭ ∑ (5)
where |S i | and |Diff(S i , S j)| denote the cardinalities (the number of nodes) of the SOAP tree S i and the diff linking S i and S j . This can be performed in linear time w.r.t. the number of SOAP trees in the SDG graph, and is achieved by pinpointing the SDG node (i.e., SOAP tree) with the maximum number of edges (i.e., diffs). The latter, which we identify as SDG centroid, underlines the SOAP tree requiring the least amount of transformation operations, i.e., the smallest diffs, in order to generate all its remaining counterparts in the SDG. In other words, the SDG centroid minimizes the differential parts in the encoded DSM message, and consequently the overall multicast message size. It identifies the SOAP tree with the maximum amount of commonalities w.r.t. its counterparts.

Consider the SDG graph in Fig. 8. Here, SOAP tree S 2 is selected as SDG centroid, since it is connected to its counterparts with the maximum number of minimal diffs (SDG edges). Thus, the corresponding DSM message consists of tree S 2 as the multicast message pattern, and Diff(S 1 , S 2), Diff(S 2 , S 3), Diff(S 2 , S 4) Diff(S 4 , S 5) as the differential parts corresponding to each SOAP tree. Recall that our DSM messages follow the same format as SMP messages [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF] w.r.t. message header, body, indexing and routing addresses.

3) DSM Message Routing

Our routing process is comparable to that of SMP [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF] except that instead of aggregating and splitting common/different parts of the multicast message, the router patches the DSM pattern, i.e., SDG centroid, with the corresponding diff so as to regenerate the original SOAP tree. Consider the example in Fig. 8, such as each SOAP tree S i is intended for a different client C i . The DSM replicas to be sent to each client consist of:

-The pattern S 2 and Diff(S The ⊕ symbol designates the diff composition operator, which underlines the transformation of SOAP tree S 2 , via two consecutive diffs, so as to obtain S 5 . In plain terms, it consists in transforming S 2 into S 4 (using Diff(S 2 , S 4)) and then S 4 into S 5 (via Diff(S 4 , S 5)) [START_REF]Change-Centric Management of Versions in an XML Warehouse[END_REF].

D. SOAP Message Reconstruction (MR DSM)

When the DSM multicast message reaches the destined endpoint client/server (or end-point router), the original SOAP message is to be reconstructed, based on the DSM common pattern and corresponding SOAP message diff, in order to be processed by the destination service component (Fig. 2). While tree differencing (i.e., tree edit distance) was used as an effective means to perform SOAP aggregation, we exploit its inverse process, tree patching, for message reconstruction.

Definitio 9 -Tree Patching: It is defined as the problem and action of applying a diff to a tree structure (pattern) T in order to create a new version of the tree T', incorporating all the changes encoded in the diff [START_REF] Komvoteas | XML Diff and Patch Tool[END_REF][START_REF] Mouat | XML Diff and Patch Utilities[END_REF]• In short, tree patching allows regenerating the original SOAP message tree at the receiver end, by applying the diff corresponding to the SOAP message tree, on the common DSM message pattern. This comes down to executing the edit operations encoded in the output diff on the DSM pattern.

Note that in order to allow automatic SOAP tree patching, we defined machine-readable XML-based differential output format, SDL (Simple Diff Language), to be encoded in the multicast DSM message, designed to carry the minimum information necessary to regenerate original SOAP messages at multicast end-point. All details about SDL can be found in the technical report provided in [START_REF] Tekli | Differential SOAP Multicasting[END_REF].

V. EVALUATION

We conducted extensive simulation experiments to test the performance of our approach, and compare it to SMP, traditional multicast (aggregating identical messages only), and unicast. We evaluated two criteria: i) network traffic (multicast effectiveness), and ii) processing time (efficiency).

A. Network Traffic

We adopted a single sender/receiver scenario, such as the messages are multicast at the sender end-point, and reconstructed at the receiver end-point, disregarding intermediate routers. Hence, network traffic amounts to the sum of the sizes of all SOAP messages over the client/server link. As for the test data, two sets of 500 SOAP messages (each) were generated (of average 4KB per message), based on the Google web service SOAP request and response WSDLs 3 , using an adaptation of IBM's XML document generator 4 .

We varied three main parameters and evaluated network variation accordingly: the amount of Non-Identical Messages (NIM %) to be sent to the client/server, the amount of pairwise modifications (Modifs %) between non-identical messages (which we tuned via the IBM generator), and the number of messages considered for multicasting (NbMsg).

3 http://www.w3.org/2004/06/03-google-soap-wsdl.html 4 http://www.alphaworks.ibm.com.

1) Network Traffic when varying NIM % and Modifs %

First, we fixed the total number of SOAP messages to be multicast, NbMsg = 500, and evaluated network traffic w.r.t. NIM % and Modifs %. Results in Fig. 9 show that our approach (DSM) reduces traffic proportionally to the amount of differences (both NIM % and Modifs %) among messages. SMP reduces traffic w.r.t. the amount of pair-wise message modifications (Modif %), regardless of the amount of nonidentical messages (NIM %), and thus produces the same 'worst case' results that are obtained via DSM (DSM's upper traffic limit) when none of the messages to be multicast are identical (NIM %=100). That happens because SMP only considers the intersection between messages when generating the aggregate multicast, regardless of the largest or most frequent message pattern. Traditional multicast reduces traffic w.r.t. the amount of non-identical messages (NIM %), but does not consider partially similar messages (Modif %) since it only aggregates identical messages. It produces the 'worst' results obtained using DSM, when messages are completely different (Modif%=100). The largest traffic is constantly produced via unicast, since the latter simply transmits messages regardless of their similarities (regardless of both NIM% and Modifs%).

NIM % (non-identical messages)

Modif %, for SMP traffic levels 5 Fig. 9. Variation of total network traffic w.r.t. the amount of modifications between messages, for a total of NbM=500 SOAP messages.

2) Varying the number of SOAP messages to be multicast Results confirm those of the previous experiment (Fig. 9): i) unicast yields the highest network traffic levels, and remains 5 SMP traffic levels are invariant w.r.t. NIM %, and are thus represented separately. unwavering w.r.t. the number of identical and/or similar messages (NIM % and/or Modif %), ii) traditional multicast only considers identical messages and thus varies w.r.t. NIM % iii) traffic with SMP varies w.r.t. Modif%, regardless of the amount of non-identical messages NIM %, while ii) DSM optimizes traffic w.r.t. both NIM% and Modifs%. A compact representative depiction of network traffic variation in Fig. 11, based on the graphs in Fig. 10, for fixed average NIM % and Modifs % values, shows that the traffic gap between DSM, SMP, traditional multicast, and most evidently unicast, grows noticeably with the increasing number of messages. Results show that DSM underlines an average 20% traffic reduction in comparison with SMP.

B. Processing Time

Timing experiments were carried out on a PC with an Intel Xeon 2.66 GHz processor with 4GB RAM. Results in Fig. 12 show that our method induces an average 30% reduction in processing overhead in comparison with SMP. Additional results similar to those in Fig. 12 are obtained when varying the total number of SOAP messages being processed. They are omitted here due to space constraints, but are available in [START_REF] Tekli | Differential SOAP Multicasting[END_REF].

We are currently conducting experiments to fine-tune DSM, varying i) SOAP message aggregation similarity threshold Thresh Sim , ii) the number and sizes of multicast buffer pools, and iii) the buffer pool time frame T Pool , to identify the best input parameter values for different SOAP multicasting scenarios (w.r.t. the total number of clients, message variability…). More experimental results can be found in [START_REF] Tekli | Differential SOAP Multicasting[END_REF], as well as preliminary results on T Pool and Thresh Sim .

VI. CONCLUSION

In this paper, we introduced our novel framework for Differential SOAP Multicasting (DSM). Our method encompasses a novel filter-differencing architecture, identifying the common pattern and differences between SOAP messages, multicasting those messages which are most similar. Results show that our approach outperforms its alternative, SMP [START_REF] Phan | Similarity-Based SOAP Multicast Protocol to Reduce Bandwidth and Latency in Web Services[END_REF], and minimizes network traffic in comparison with traditional multicast and unicast. We are currently investigating the integration of our technique with optimizations of underlying protocols, e.g. sending SOAP multicasts over persistent HTTP links on high-latency networks [START_REF] Kangasharju | Comparing SOAP Performance for Various Encodings, Protocols, and Connections[END_REF]. We also plan to consider, not only the syntactic properties of SOAP messages, but also their semantic similarities, given a semantic reference such as WordNet [START_REF] Miller | WordNet: An On-Line Lexical Database[END_REF] or Wikipedia. We also plan to investigate multicasting of secure SOAP messages, for service security performance [START_REF] Turkmen | Performance evaluation of XACML PDP implementations[END_REF].

Fig. 2 .

 2 Fig. 2. Outline of our approach 2 .

 that e is only a pointer to the actual element e in the pattern.

Fig. 3 .

 3 Fig. 3. Simplified activity diagram describing our SOAP message multicasting module, MM DSM .

Fig. 4 .

 4 Fig. 4. Sample SOAP message.

Fig. 5 .

 5 Fig. 5. Sample SOAP message tree representation.

Fig. 6 .

 6 Fig. 6. Sample SOAP sub-trees.

 e1

 Node edge vectors b. Node order vectors c. Node value vectors Fig. 7. SOAP tree filter vector representations.

Definitio 7 -

 7 Tree Edit Distance: The edit distance between two trees A and B is defined as the minimum cost of all edit scripts (diffs) that transform A to B, TED(A, B)=Min{Cost Diff (A, B)} • Definitio 8 -Edit Script -Diff: It is a sequence of edit operations Diff = p op 1 , op 2 , …, op k f , transforming one tree into another. The cost of an edit script is defined as the sum of the costs of its operations: Cost Diff =

 It is to be noted that the classical edit distance similarity formulation,

Fig. 8 .

 8 Fig. 8. An Example of SOAP buffer management.

Fig. 10 40 Fig. 10 .

 104010 Fig.10depicts network traffic when varying the n# of SOAP messages considered for multicasting (NbMsg), such as the n# of non-identical messages (NIM %) varies linearly w.r.t. the amount of pair-wise message modifications (Modifs%).

Fig. 11 .

 11 Fig. 11. Network traffic, with NIM% =20 & Modif %=10.

Fig. 12 .

 12 Fig. 12. Timing results.

 1 , S 2), to regenerate SOAP tree S 1 , destined to client C 1 , -The pattern S 2 , destined to client C 2 , -S 2 and Diff(S 2 , S 3), to regenerate S 3 , destined to client C 3 , -S 2 and Diff(S 2 , S 4), to regenerate S 4 , destined to client C 4 , -S 2 and Diff(S 2 , S 4) ⊕ Diff(S 4 , S 5), to regenerate S 5 , for C 5 .

			S 1		S 1	Diff (S1, S2)
				Diff (S1, S2)		
	S 5	S5	S 2	Diff (S 2 , S 3)	S 2	Diff (S 2 , S 3)
	New		S 3		S3	Diff (S 2 , S 4)
	outgoing SOAP msg		S4	Diff (S 2 , S 4)	S 4	
	tree		SOAP buffer pool SDG	S 5	Diff (S 4 , S 5)
		Step1: SOAP similarity evaluation. S4 is selected as most	SOAP buffer pool SDG
			similar candidate to S 5 .	Step2: SOAP buffer management.
					Appending S 5 to the SDG.

In addition, we define an XML-based differential output format, SDL (Simple Diff Language), designed to carry the minimum information (in the aggregate multicast message) necessary to regenerate original SOAP messages at multicast end-point. However, due to space limitations and for clarity of presentation, we omit the presentation of SDL here and refer the reader to a dedicated paper (details are provided in[START_REF] Tekli | Differential SOAP Multicasting[END_REF]).

* Work supported in part by a Fondazione Cariplo. # The author is currently a visiting researcher with the Department of Computer Science, University of Sao Paulo, Brazil, supported by the Research Support Foundation of the State of Sao Paulo (FAPESP).