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UPPER BOUNDS FOR THE DENSITY OF SOLUTIONS OF

STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY

FRACTIONAL BROWNIAN MOTIONS

FABRICE BAUDOIN, CHENG OUYANG, AND SAMY TINDEL

Abstract. In this paper we study upper bounds for the density of solution of stochastic
differential equations driven by a fractional Brownian motion with Hurst parameter
H > 1/3. We show that under some geometric conditions, in the regular case H > 1/2,
the density of the solution satisfy the log-Sobolev inequality, the Gaussian concentration
inequality and admits an upper Gaussian bound. In the rough case H > 1/3 and under
the same geometric conditions, we show that the density of the solution is smooth and
admits an upper sub-Gaussian bound.
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1. Introduction

Let B = (B1, . . . , Bd) be a d dimensional fractional Brownian motion (fBm in the
sequel) defined on a complete probability space (Ω,F ,P), with Hurst parameter H ∈

First author supported in part by NSF Grant DMS 0907326. Third author partially supported by the
(French) ANR grant ECRU.
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2 F. BAUDOIN, C. OUYANG, AND S. TINDEL

(0, 1). Recall that it means that B is a centered Gaussian process indexed by R+, whose
coordinates are independent and satisfy

(1) E

[

(

Bj
t − Bj

s

)2
]

= |t− s|2H , for s, t ∈ R+.

In particular, by considering the family {BH ; H ∈ (0, 1)}, one obtains some Gaussian
processes with any prescribed Hölder regularity, while fulfilling some intuitive scaling
properties. This converts fBm into the most natural generalization of Brownian motion
to this day.

We are concerned here with the following class of equations driven by B:

(2) Xx
t = x+

∫ t

0

V0(X
x
s )ds+

d
∑

i=1

∫ t

0

Vi(X
x
s )dB

i
s,

where x is a generic initial condition and {Vi; 0 ≤ i ≤ d} is a collection of smooth vector
fields of Rd. Owing to the fact that fBm is a natural generalization of Brownian motion,
this kind of model is often used by practitioners in different contexts, among which we
would like to highlight recent sophisticated models in Biophysics [20, 29, 30].

As far as mathematical results are concerned, equation (2) is now a fairly well under-
stood object: existence and uniqueness results are obtained for H > 1

2
thanks to Young

integral type tools [32, 27], while rough paths methods [13, 22] are required for 1
4
< H < 1

2
.

Numerical schemes can be implemented for this kind of systems [11, 13], and a notion of
ergodicity is also available [16, 17]. Finally, the law of Xx

t has been analyzed by means of
semi-group type methods [1, 24] and its density has also been investigated in [2, 7, 19, 28].

In spite of these advances, concentrations results and Gaussian bounds for the solution
to (2) are scarce: we are only aware of the large deviation results [23] in this line of
investigation. The current article is thus an attempt to make a step in this direction, by
analyzing a special but nontrivial situation.

Indeed, we consider here equation (2) driven by a fBm with Hurst parameter H ∈
(1
3
, 1), and we suppose that our vector fields V0, . . . , Vd fulfill either of the following non-

degeneracy and antisymmetric hypothesis:

Hypothesis 1.1. The vector fields V0, . . . , Vd are C∞-bounded, and V1, . . . , Vd satisfy

(i) For every x ∈ R
d, the vectors V1(x), · · · , Vd(x) form a basis of Rd.

(ii) There exist smooth and bounded functions ωk
ij such that:

(3) [Vi, Vj] =

d
∑

k=1

ωk
ijVk, and ωk

ij = −ωj
ik.

The second assumption (ii) is of geometric nature and actually means that the Levi-
Civita connection associated with the Riemannian structure given by the vector fields Vi’s
is

∇XY =
1

2
[X, Y ].

In a Lie group structure, this is equivalent to the fact that the Lie algebra is of compact
type, or in other words that the adjoint representation is unitary. Such geometric assump-
tion already appeared in the work [3] where it was used to prove a small-time asymptotics
of the density.
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Hypothesis 1.2. The Hypothesis 1.1 is satisfied and moreover, the vector fields V1, ..., Vd

form moreover a uniform elliptic system. That is

|vTV V Tv| ≥ λ|v|2, for all v ∈ R
d.

Here V = (V i
j )i,j=1,...,d and λ is a positive constant.

When H > 1
2
, under Hypothesis 1.1 our main result can be loosely summarized as

follows (see Theorem 3.14 for a precise statement):

Theorem 1.3. Fix H > 1
2
. Let Xx be the solution to equation (2), and suppose As-

sumption 1.1 is satisfied. Then for any t ∈ R
∗
+, the random variable Xx

t admits a smooth

density pX(t, ·). Furthermore, there exist 3 positive constants c
(1)
t , c

(2)
t , c

(3)
t,x such that

pX(t, y) ≤ c
(1)
t exp

(

−c
(3)
t

(

|y| − c
(2)
t,x

)2
)

,

for any y ∈ R
d.

We don’t claim any optimality in the quantities c
(1)
t , c

(2)
t and c

(3)
t,x above (whose exact

definitions are postponed to Section 3.3). Nevertheless, this is (to the best of our knowl-
edge) the first Gaussian type bound available for solutions of differential equations driven
by fBm.

Let us say a few words about the strategy we have followed in order to prove Theo-
rem 1.3. It is mostly based on stochastic analysis tools, and particularly on a general
integration by parts formula giving an exact expression for the density pX(t, ·) in terms
of Malliavin derivatives in the non-degenerate case we are dealing with. In this context,
it is crucial to bound the first Malliavin derivative of Xx

t (called DXx
t in the sequel) effi-

ciently. This is where our asymmetry hypothesis on the vector fields V1, . . . , Vn enter into
the picture, and we shall see (at Theorem 3.2) how asymmetry properties yield an easy
deterministic bound on DXx

t . This result enables to get concentration results for the law
of Xx

t , and is the key to our density bounds as well.
As another interesting consequences of the deterministic bound on DXx

t , we also obtain
Log-Sobolev inequality and Poincaré inequality for the law of Xt.

Once the picture for the smooth case (when H > 1
2
) becomes clear, we are able to

extend some of our results described above to the irregular case when 1
3
< H < 1

2
. In

particular, we are able to prove

Theorem 1.4. Fix H ∈ (1
3
, 1
2
). Assume Hypothesis 1.2. Let Xx be the solution to

equation (2) and γXt the Malliavin matrix of Xx
t , t > 0. We have | det γXt |−1 ∈ L∞(P).

The random variable Xx
t admits a smooth density pX(t, ·) and for any δ < H there exist

2 positive constants c
(1)
t , c

(2)
t such that

(4) pX(t, y) ≤ c
(1)
t exp

(

−c
(2)
t |y|δ

)

,

for all y ∈ R
d.

The existence of a density for solutions to stochastic differential equations of the form (2)
under Hörmander’s condition has been obtained by Cass and Friz [6] for any 1

4
< H < 1

2
.
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While finishing the current article, an important step towards the study of regular densities
in the rough case 1

4
< H < 1

2
has been accomplished in [8], where integrability estimates

for the Jacobian of equation (2) are established. Nevertheless, as of today, besides the
result of P. Driscoll [12], when H < 1

2
, to the best of our knowledge, Hypothesis 1.2 is a

first wide class of examples where we have an affirmative answer for the smoothness of
the density. Our bound on the inverse of the Malliavin matrix together with polynomial
bounds on the Hölder norm of the Malliavin derivative allows then to obtain the sub-
Gaussian upper bound (4).

Notations: Throughout this paper, unless otherwise specified we use | · | for Euclidean
norms and ‖ · ‖Lp for the Lp norm with respect to the underlying probability measure P.

Consider a finite-dimensional vector space V . The space of V -valued Hölder continuous
functions defined on [0, 1], with Hölder continuity exponent γ ∈ (0, 1), will be denoted by
Cγ(V ), or just Cγ when this does not yield any ambiguity. For a function g ∈ Cγ(V ) and
0 ≤ s < t ≤ 1, we shall consider the semi-norms

(5) ‖g‖s,t,γ = sup
s≤u<v≤t

|gv − gu|V
|v − u|γ ,

The semi-norm ‖g‖0,1,γ will simply be denoted by ‖g‖γ.

2. Stochastic calculus for fractional Brownian motion

For some fixed H ∈ (1
3
, 1), we consider (Ω,F ,P) the canonical probability space associ-

ated with the fractional Brownian motion (in short fBm) with Hurst parameter H . That
is, Ω = C0([0, 1]) is the Banach space of continuous functions vanishing at 0 equipped
with the supremum norm, F is the Borel sigma-algebra and P is the unique probability
measure on Ω such that the canonical process B = {Bt = (B1

t , . . . , B
d
t ), t ∈ [0, 1]} is a

fractional Brownian motion with Hurst parameter H . In this context, let us recall that
B is a d-dimensional centered Gaussian process, whose covariance structure is induced by
equation (1). This can be equivalently stated as

R (t, s) := E
[

Bj
s B

j
t

]

=
1

2

(

s2H + t2H − |t− s|2H
)

, for s, t ∈ [0, 1] and j = 1, . . . , d.

In particular it can be shown, by a standard application of Kolmogorov’s criterion, that
B admits a continuous version whose paths are γ-Hölder continuous for any γ < H .

This section is devoted to give the basic elements of stochastic calculus with respect to
B which allow to understand the remainder of the paper.

2.1. Malliavin calculus tools. Gaussian techniques are obviously essential in the anal-
ysis of fBm, and we proceed here to introduce some of them (see [26] for further details):
let E be the space of Rd-valued step functions on [0, 1], and H the closure of E for the
scalar product:

〈(1[0,t1], · · · , 1[0,td]), (1[0,s1], · · · , 1[0,sd])〉H =
d
∑

i=1

R(ti, si).
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We denote by K∗
H the isometry between H and L2([0, 1]). When H > 1

2
it can be shown

that L1/H([0, 1],Rd) ⊂ H, and when 1
3
< H < 1

2
one has

Cγ ⊂ H ⊂ L2([0, 1])

for all γ > 1
2
−H .

Some isometry arguments allow to define the Wiener integral B(h) =
∫ 1

0
〈hs, dBs〉 for

any element h ∈ H, with the additional property E[B(h1)B(h2)] = 〈h1, h2〉H for any
h1, h2 ∈ H. A F -measurable real valued random variable F is then said to be cylindrical
if it can be written, for a given n ≥ 1, as

F = f
(

B(h1), . . . , B(hn)
)

= f
(

∫ 1

0

〈h1
s, dBs〉, . . . ,

∫ 1

0

〈hn
s , dBs〉

)

,

where hi ∈ H and f : Rn → R is a C∞ bounded function with bounded derivatives. The
set of cylindrical random variables is denoted S.

The Malliavin derivative is defined as follows: for F ∈ S, the derivative of F is the R
d

valued stochastic process (DtF )0≤t≤1 given by

DtF =

n
∑

i=1

hi(t)
∂f

∂xi

(

B(h1), . . . , B(hn)
)

.

More generally, we can introduce iterated derivatives. If F ∈ S, we set

D
k
t1,...,tk

F = Dt1 . . .DtkF.

For any p ≥ 1, it can be checked that the operator Dk is closable from S into L
p(Ω;H⊗k).

We denote by D
k,p(H) the closure of the class of cylindrical random variables with respect

to the norm

‖F‖k,p =
(

E (F p) +
k
∑

j=1

E
(∥

∥D
jF
∥

∥

p

H⊗j

)

)
1
p

,

and

D
∞(H) =

⋂

p≥1

⋂

k≥1

D
k,p(H).

2.2. Differential equations driven by fBm. Recall that we consider the following kind
of equation:

(6) Xx
t = x+

∫ t

0

V0(X
x
s )ds+

d
∑

i=1

∫ t

0

Vi(X
x
s )dB

i
s,

where the vector fields V0, . . . , Vn are C∞-bounded.
When equation (6) is driven by a fBm with Hurst parameter H > 1

2
it can be solved,

thanks to a fixed point argument, with the stochastic integral interpreted in the (pathwise)
Young sense (see e.g. [14]). Let us recall that Young’s integral can be defined in the
following way:
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Proposition 2.1. Let f ∈ Cγ, g ∈ Cκ with γ + κ > 1, and 0 ≤ s ≤ t ≤ 1. Then
the integral

∫ t

s
gξdfξ is well-defined as limit of Riemann sums along partitions of [s, t].

Moreover, the following estimation is fulfilled:

(7)

∣

∣

∣

∣

∫ t

s

gξdfξ

∣

∣

∣

∣

≤ C‖f‖γ‖g‖κ|t− s|γ,

where the constant C only depends on γ and κ. A sharper estimate is also available:

(8)

∣

∣

∣

∣

∫ t

s

gξdfξ

∣

∣

∣

∣

≤ |gs| ‖f‖γ|t− s|γ + cγ,κ‖f‖γ‖g‖κ|t− s|γ+κ.

With this definition in mind, we can solve our differential system of interest, and the
following moments bounds are proven in [19]:

Proposition 2.2. (Hu-Nualart) Consider equation (6) driven by a fBm B with Hurst
parameter H > 1

2
. Let us call Xx its unique β-Hölder continuous solution, for any β < H.

Then

(1) When vector fields V are C∞-bounded, we have

sup
t∈[0,T ]

|Xx
t | ≤ |x|+ cV,T‖B‖1/β0,T,β.

(2) If we only assume that vector fields V have linear growth, with ∇V,∇2V , bounded,
the following estimate holds true:

(9) sup
t∈[0,T ]

|Xx
t | ≤ (1 + |x|) exp

(

cV,T‖B‖1/β0,T,β

)

.

Remark 2.3. The framework of fractional integrals is used in [19] in order to define integrals
with respect to B. It is however easily seen to be equivalent to the Young setting we have
chosen to work with.

When the Hurst parameter 1
3
< H < 1

2
, equation (6) can be solved, again by fixed point

argument, with the stochastic integral interpreted in the (pathwise) rough path theory
(see e.g. [14] and [22]). In this case, we obtain

Proposition 2.4. (Besalú-Nualart [4]) Consider equation (6) driven by a fBm B with
Hurst parameter 1

3
< H < 1

2
. Denote by Xx its unique β-Hölder continuous solution, for

any β < H. If the vector fields V are C∞-bounded, then for any λ > 0 and δ < H

E

(

expλ

(

sup
0≤t≤T

|Xt|δ
))

< ∞.

Once equation (6) is solved, the vector Xx
t is a typical example of random variable

which can be differentiated in the Malliavin sense. In fact, fix H ∈ (1
3
, 1), one gets the

following results (see [6] and [28] for further details):

Proposition 2.5. Let Xx be the solution to equation (6) and suppose Vi’s are C∞-bounded
vector fields on R

d. Then for every i = 1, . . . , d, t > 0, and x ∈ R
d, we have Xx,i

t ∈ D
∞(H)

and
D

j
sX

x
t = J0→tJ

−1
0→sVj(Xs), j = 1, . . . , d, 0 ≤ s ≤ t,

where D
j
sX

x,i
t is the j-th component of DsX

x,i
t , and J0→t =

∂Xx
t

∂x
.
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Finally the following approximation result, which can be found for instance in [13], will
also be used in the sequel:

Proposition 2.6. For m ≥ 1 and T > 0, let Bm = {Bm
t ; t ∈ [0, T ]} be the sequence

of linear interpolations of B along the dyadic subdivision of [0, T ] of mesh m; that is if
tmi = i2−mT for i = 0, ..., 2m; then for t ∈ (tmi , t

m
i+1],

Bm
t = Btmi

+
t− tim

tmi+1 − tmi
(Btmi+1

− Btmi
).

Consider Xm the solution to equation (6) restricted to [0, T ], where B has been replaced
by Bm. Set also D

j
sX

m
t = J0→tJ

−1
0→sVj(X

m
s ), for j = 1, . . . , d and 0 ≤ s ≤ t. Then almost

surely, for any γ < H and t ∈ [0, T ] the following holds true:

(10) lim
m→∞

(

‖Xx −Xm‖γ + ‖DjXx
t −D

jXm
t ‖γ

)

= 0.

3. Estimates for solutions of SDEs driven by fBm: the smooth case

Throughout this section, we fix H ∈ (1
2
, 1). Recall that Xx designates the solution

to (6). This section is devoted to get some further bounds for Xx
t and its Malliavin

derivatives, under Assumption 1.1.
Notice that among our set of hypothesis, the antisymmetric property (3) for the vector

fields V1, . . . , Vn is the most specific one. It will be mainly used through the following
lemma:

Lemma 3.1. Let A1, A2 be n × n matrices, whose exponential are defined by eAj =
∑∞

n=0A
n
j /n! for j = 1, 2. If we assume that A2 is skew symmetric, then

∥

∥eA1+A2
∥

∥ ≤ e‖A1‖,

where ‖A‖ stands for the Euclidean norm of a matrix A.

Proof. Let us first prove the following (presumably classical) identity:

(11) et(A1+A2) = etA2 −
∫ t

0

e(t−s)(A1+A2)AesA2ds.

Indeed, consider the function s 7→ ϕ(s) defined on [0, 1] by ϕ(s) = e(t−s)(A1+A2)esA2. Then
it is easily seen that ϕ is differentiable and

ϕ′(s) = e(t−s)(A1+A2)A1e
sA2 .

By writing

etA2 − et(A1+A2) = ϕ(t)− ϕ(0) =

∫ t

0

ϕ′(s) ds,

relation (11) is now easily obtained.
Let us see now the implications of (11): according to the fact that A2 is skew-symmetric,

we have ‖esA2‖ ≤ 1 for any s ≥ 0. Therefore,

∥

∥et(A1+A2)
∥

∥ ≤ 1 + ‖A1‖
∫ t

0

∥

∥e(t−s)(A1+A2)
∥

∥ ds.
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By denoting f(t) = ‖et(A1+A2)‖ we thus get

f(t) ≤ 1 + ‖A1‖
∫ t

0

f(s)ds.

This implies f(t) ≤ e‖A1‖t by a standard application of Gronwall’s lemma and finishes our
proof.

�

We are now ready to prove the main result of this section, which is an almost sure
deterministic bound for the Malliavin derivative of Xx

t :

Theorem 3.2. Under Assumption 1.1, the Malliavin derivative of the solution Xx
T to

equation (6) can be bounded as follows for any T ∈ [0, 1] (in the almost sure sense):

(12) ‖DXx
T‖∞ ≤ M exp (CT ) , with M = sup

x∈Rn
sup
‖λ‖≤1

∣

∣

∣

∣

∣

d
∑

i=1

λiVi(x)

∣

∣

∣

∣

∣

2

,

and where the constant C linearly depends on V0. In particular, one also has ‖DXx
T‖H ≤

M exp (CT ).

Proof. Let us focus on the proof of (12). Indeed, since ‖f‖H is dominated by the supremum
norm when H > 1

2
, this will be sufficient in order to prove the second claim of our theorem.

We now split our proof in two steps.

Step1: Matricial expression for the derivative. Let us first restate Proposition 2.5 in the
following form: DXx

T is solution to

D
j
sX

x
T = J0→T (Φ

∗
sVj)(x), 0 ≤ s ≤ T,

where Φ∗
sVj denotes the pullback action of the diffeomorphism Φs = X ·

s : R
d → R

d on the
vector field Vj . Now, a simple application of the change of variable formula for Young
type integrals yields

d(Φ∗
sVj)(x) = (Φ∗

s[V0, Vj])(x)ds+
d
∑

i=1

(Φ∗
s[Vi, Vj])(x)dB

i
s.

Moreover, recall that the Lie brackets [Vi, Vj] can be decomposed, according to Assump-
tion 1.1, into

[V0, Vj] =
d
∑

k=1

ωk
0jVk, and [Vi, Vj] =

d
∑

k=1

ωk
ijVk,

with ωk
ij = −ωj

ik for i, j, k ≥ 1. Hence,

d(Φ∗
sVj)(x) =

d
∑

k=1

ωk
0j(X

x
s )(Φ

∗
sVk)(x)ds+

d
∑

k=1

d
∑

i=1

ωk
ij(X

x
s )(Φ

∗
sVk)(x)dB

i
s.

By denoting Ms the d× d matrix with columns

Mj
s = D

j
sX

x
T = J0→T (Φ

∗
sVj)(x),
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we therefore obtain the equation

dMs = Ms

(

ω0(X
x
s )ds+

d
∑

i=1

ωi(X
x
s )dB

i
s

)

, MT = V (Xx
T ),(13)

where V (Xx
T ) is the matrix with columns Vj(X

x
T ), 1 ≤ j ≤ d and where ωi(X

x
s ) is the

skew symmetric matrix with entries ωk
ij(X

x
s ).

Step2: Approximation procedure. In order to show that the process M is uniformly
bounded, consider the dyadic approximation introduced at Proposition 2.6. By applying
(10) to the couple (X,M), it is sufficient to prove our uniform bounds on D

jXm
T , uniformly

in m. Let us thus consider Mm the solution of (13) where B is replaced by Bm, that is

dMm
s = Mm

s

(

ω0(X
m
s )ds+

d
∑

k=1

ωk(X
m
s )dBm,k

s

)

, Mm
T = V (Xm

T ).

In the sequel set also

∆Bk
tmn−1t

m
n
:=

Bk
tmn

− Bk
tmn−1

tmn − tmn−1

, for 1 ≤ n ≤ 2m and 1 ≤ k ≤ d.

Then, for s ∈ [tmn−1, t
m
n ), we have

dMm
s = Mm

s

(

ω0(X
m
s )ds+

d
∑

k=1

ωk(X
m
s )∆Bk

tmn−1t
m
n
ds

)

,

Therefore, for s ∈ [tmn−1, t
m
n ), we obtain

Mm
s = Mm

tmn
e
−
(

∫ tmn
s

ω0(Xm
u )du+

∑d
k=1

∫ tmn
s

ωk(X
m
u )∆Bk

tm
n−1

tmn
du

)

Proceeding inductively, we end up with the following identity, valid for t ∈ [tmn−1, t
m
n ) and

n = 0, ..., 2m:

(14) Mm
t = V (Xm

T )e
−
(

∫ tm
2m

tm
2m−1

ω0(Xm
s )ds+

∑d
k=1

∫ tm
2m

tm
2m−1

ωi(X
m
s )∆Bk

tm
2m−1

tm
2m

ds

)

×

· · · × e
−
(

∫ tmn
t ω0(Xm

s )ds+
∑d

k=1

∫ tmn
t ωk(X

m
s )∆Bk

tm
n−1

tmn
ds

)

.

Owing to the skew-symmetry of ωk for k ≥ 1, we can now apply Lemma 3.1 to expression
(14) in order to get

‖Mm
t ‖ ≤ exp

(

T

2m
‖ω0(X

m
tm
2m−1

)‖
)

· · · exp
(

(tmn − t)‖ω0(X
m
tmn−1

)‖
)

‖V (Xm
T )‖

≤ M exp (CT ) .(15)

This is our claimed uniform bound on Mm
t , from which the end of our proof is easily

deduced.
�

Once the bound (12) on ‖DXx
T‖∞ is obtained, one can also retrieve some information

on the Hölder norms of DXx
T improving the general estimate (9). This is the content of

the following proposition:
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Proposition 3.3. Consider 1
2
< γ < H and set cT0 = M exp(CT ), which is the constant

appearing in relation (12). Under Assumption 1.1, the Malliavin derivative of the solution
Xx

T to equation (6) can be bounded as follows for any T ∈ [0, 1]:

(16) ‖DXx
T‖γ ≤ cT,V,d

(

1 + |x|+ ‖B‖1/γγ

)

‖B‖(1−γ)/γ
γ ,

for a strictly positive constant cT,V,d.

Proof. We have shown at Theorem 3.2 that DXx
T is governed by equation (13), and that

‖M‖∞ ≤ cT0 . We will now separate our proof into a local and a global estimate, and
notice that the constants appearing in the computations below might change from line to
line.

Step1: Local estimate. Consider 0 ≤ s < t ≤ T and set ε = t − s. Let u < v be two
generic elements of [s, t]. Applying relation (8) to the expression of Mv −Mu given by
equation (13), we obtain

|Mv −Mu| ≤ cT0 cV |v − u|

+
d
∑

i=1

(

|Mu||ωi(X
x
u)|‖B‖γ|v − u|γ + ‖Mωi(X

x)‖s,t,γ‖B‖γ |v − u|2γ
)

.

We thus obtain, for a constant cV depending on the vector fields V ,

‖M‖s,t,γ ≤ cT0 cV |t− s|1−γ + d cT0 cV ‖B‖γ + cγ
[

cT0 cV ‖Xx‖γ + cV ‖M‖s,t,γ
]

‖B‖γ |t− s|γ

≤ cT0 cV
(

T 1−γ + d ‖B‖γ
)

+ d cT0 cV ‖Xx‖γ‖B‖γ |t− s|γ + d cV ‖B‖γ|t− s|γ‖M‖s,t,γ.
(17)

Take now t− s = ε such that d cV ‖B‖γεγ = 1/2, namely ε = [2d cV ‖B‖γ]−1/γ . Recall also

that ‖Xx‖γ ≤ c(1 + ‖B‖1/γγ ) according to [13]. It is then easily seen that relation (17)
yields

‖M‖s,t,γ ≤ cT0 cT,V,d
(

1 + |x|+ ‖B‖1/γγ

)

:= aT,V,d,B,

for a strictly positive constant cT,V,d.

Step2: Global estimate. We consider now s, t ∈ [0, T ] such that iε ≤ s < (i+ 1)ε ≤ jε ≤
t < (j+1)ε, where ε has been defined at Step 1. Set also ti = s, tk = kε for i+1 ≤ k ≤ j,
and tj+1 = t. Then

|Mt −Ms| =

∣

∣

∣

∣

∣

j
∑

k=i

Mtk+1
−Mtk

∣

∣

∣

∣

∣

≤ aT,V,d,B

j
∑

k=i

(tk+1 − tk)
γ

≤ aT,V,d,B(j − i+ 1)1−γ(t− s)γ,(18)

where we have used the fact that r 7→ rλ is a concave function. Note that the indices i, j
above satisfy (j − i+ 1) ≤ 2T/ε. Plugging this into the last series of inequalities, we end
up with our claim (16).

�
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3.1. Log-Sobolev inequality. In this section, we present some interesting functional in-
equalities which are usually studied in a Markov setting; namely, the logarithmic-Sobolev
inequality and Poincaré inequality. As we will see, these inequalities become available in
our non-Markov case when we have uniform boundedness for the Malliavin derivative of
XT (see Theorem 3.2).

We start with the following version of logarithmic Sobolev inequality for the law of XT .

Theorem 3.4. Let C and M be in Theorem 3.2. We have for all f ∈ C1 and T ∈ [0, 1],

Ef(XT )
2 ln f(XT )

2 −
(

Ef(XT )
2
)

ln
(

Ef(XT )
2
)

≤ 2M2e2CTT 2H
E|∇f(XT )|2.

provided the right hand side in the above is finite.

Proof. The proof is standard by applying Clark-Ocone formula (see e.g. [5]). First recall
the representation of fractional Brownian motion

Bt =

∫ t

0

KH(t, s)dWs.

Here W is a d-dimensional Wiener process. Denote by D
W the Malliavin derivative with

respect to the Wiener process W . We have

K∗
HD = D

W ,(19)

where K∗
H is the isometry from H, the reproducing kernel space of B, to L2. By Clark-

Ocone formula we have

f(XT )− Ef(XT ) =

∫ T

0

E
[

D
W
s f(XT )|Fs

]

dWs =

∫ T

0

E
[

K∗
H(Df(XT ))s|Fs

]

dWs.

Hence, if we denote Ms = E(f(XT )|Fs), 0 ≤ s ≤ T , we have

dMs = E
[

K∗
H(Df(XT ))s|Fs

]

dWs.

For simplicity we may assume that f ≥ ε for some ε > 0, which can be removed afterwards
by letting ε tend to 0. Applying Itô’s formula to Ms lnMs, we get

Ef(XT ) ln(f(XT ))− Ef(XT ) ln (Ef(XT )) = E(MT lnMT )− E(M0 lnM0)

=
1

2
E

∫ T

0

1

Ms

∣

∣E
[

K∗
H(Df(XT ))s|Fs

]∣

∣

2
ds.(20)

Replace now f by f 2 in the above. By the Cauchy-Schwarz inequality,
∣

∣E
[

K∗
H(Df(XT )

2)s|Fs

]∣

∣

2
= 4

∣

∣E
[

f(XT )〈∇f(XT ), K
∗
H(DXT )s〉|Fs

]∣

∣

2

≤ 4E
[

f(XT )
2|Fs

]

E
[

〈∇f(XT ), K
∗
H(DXT )s〉2|Fs

]

.

Substituting the above to (20), together with Theorem 3.2, we obtain the desired result.
�

As a corollary of the logarithmic Sobolev inequality obtained above, we have the fol-
lowing Poincaré inequality (see e.g. [18, Theorem 8.6.8]).

Theorem 3.5. Let C and M be in Theorem 3.2. We have for all f ∈ C1,

Ef(XT )
2 −

(

Ef(XT )
)2 ≤ M2e2CTT 2H

E|∇f(XT )|2,
provided the right hand side in the above is finite.
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Remark 3.6. In the above, assume further that the vector fields V1, ..., Vd form an uni-
form elliptic system, we obtain the following natural expression of logarithmic-Sobolev
inequality and Poincaré inequality when working on a Riemannian manifold

Ef(XT )
2 ln f(XT )

2 −
(

Ef(XT )
2
)

ln
(

Ef(XT )
2
)

≤ 2aM2e2CTT 2H
d
∑

i=1

E|Vif |2,

and

Ef(XT )
2 −

(

Ef(XT )
)2 ≤ aM2e2CTT 2H

d
∑

i=1

E|Vif |2.

3.2. Concentration inequality. It is classical that the boundedness of the Malliavin
derivative in H implies the Gaussian concentration inequality, more precisely (see [31,
Theorem 9.1.1] or [21]):

Lemma 3.7. Let F ∈ D
1,2(H) such that almost surely ‖DF‖H ≤ C, where C is a non

random constant. Then, for every θ ≥ 0,

E(eθF ) ≤ eE(F )θ+ 1
2
C2θ2

and therefore for every x ≥ 0,

(21) P (F − E(F ) ≥ x) ≤ e−
x2

2C2 .

As a corollary of this lemma, we deduce

Proposition 3.8. Assume that the Assumption 1.1 is satisfied, then there exist C and
M such that for every T ≥ 0 and λ ≥ 0,

P

(

sup
0≤t≤T

|Xx
t | − E

(

sup
0≤t≤T

|Xx
t |
)

≥ λ

)

≤ exp

(

− λ2

2M2e2CTT 2H

)

.

Proof. Let

F = sup
0≤t≤T

|Xx
t |.

By Theorem 3.2, it is not hard to see that (see e.g. [26])

‖DF‖H ≤ MeCTTH ,

where M and C are the same as in Theorem 3.2. Now an easy application of Lemma 3.7
completes our proof. �

Remark 3.9. Notice that this relation can only be obtained for H > 1
2
. Indeed, denote by

C0 the space of continuous functions endowed with the supremum norm. Then the norm
involved in [31, Theorem 9.1.1] is ‖DXt‖L∞(H). This norm is dominated by ‖DXt‖L∞(C0)

only if H > 1
2
.
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3.3. Gaussian upper bound. One natural way to estimate the density of Xt is to apply
the results in [26, Chapter 2]. More precisely, we first have the following integration by
parts formula for non-degenerate random vectors.

Proposition 3.10. Let F = (F 1, ..., F d) be a non-degenerate random vector and γF the
Malliavin matrix of F . Let G ∈ D

∞ and ϕ be a function in the space C∞
p (Rd). Then for

any multi-index α ∈ {1, 2, ..., d}k, k ≥ 1, there exists an element Hα ∈ D
∞ such that

E[∂αϕ(F )G] = E[ϕ(F )Hα].

Moreover, the elements Hα are recursively given by

H(i) =

d
∑

j=1

δ
(

G(γ−1)ijDF j
)

Hα = Hαk
(H(α1,...,αk−1)),

and for 1 ≤ p < q < ∞ we have

‖Hα‖Lp ≤ Cp,q‖γ−1
F DF‖kk,2k−1r‖G‖k,q,

where 1
p
= 1

q
+ 1

r
.

Remark 3.11. By the estimates for Hα above, one can conclude that there exist constants
β, γ > 1 and integers m,n such that

‖Hα‖Lp ≤ Cp,q‖ det γ−1
F ‖mLβ‖DF‖nk,γ‖G‖k,q.(22)

Remark 3.12. In what follows, we use Hα(F,G) to emphasize its dependence on F and
G.

As a consequence of the above proposition, one has

Proposition 3.13. Let F = (F 1, ..., F d) be a non-degenerate random vector. Then the
density pF (x) of F belongs to the Schwartz space, and

pF (x) = E[I{F>x}H(1,2,...,d)(F, 1)].

Now we state and prove a global Gaussian upper bound for the density function of Xx
t .

Theorem 3.14. Denote by pX(t, y) the density function of Xx
t . There exist positive

constants c
(1)
t , c

(2)
t,x , c3, and c4 such that for all t ∈ [0,∞),

pX(t, y) ≤ c
(1)
t exp






−

(

|y| − c
(2)
t,x

)2

c3ec4tt2H






.(23)

Here c
(1)
t is of the form

c
(1)
t = O

(

1

tα

)

as t ↓ 0,

for some positive number α; and c
(2)
t,x converges to a constant as t ↓ 0.
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Proof. Fix β ∈ (1
2
, 1). By (22) and Proposition 3.13, we have

pX(t, y) ≤ C(P{Xt > y}) 1
q ‖ det γ−1

Xt
‖mLα‖DXt‖nk,γ,(24)

for some constants α, γ > 1 and integers m,n. Without lose of generality, we may assume
yi ≥ 0 for 1 ≤ i ≤ d. Since otherwise, for example yj < 0, we can consider the alternative
expression for the density

pX(t, y) = E

[

Πi 6=jI{yi<Xi
t}I{yj>Xj

t }
H(1,2,...,d)(Xt, 1)

]

,

and deduce similar estimate. In the following, we provide estimate for ‖DXt‖nk,γ, ‖ det γ−1
Xt
‖mLα

and P{Xt > y} respectively.
By Proposition 2.2 there exist constants C > 0, depending on V, x and k, such that

sup
0≤t≤T

|X i
t | ≤ |xi|+ CT‖B‖1/β0,T,β,(25)

sup
0≤t≤T

‖γ−1
Xt
‖ ≤ C

T 2Hd

[

1 + eCT‖B‖1/β0,T,β

]

,(26)

sup
0≤t,ri≤T

|Djk
rk
...Dj1

r1
X i

t | ≤ CeCT‖B‖1/β0,T,β .(27)

On the other hand we have, for some constant Mβ (cf. [19]):

P {‖B‖0,T,β > r} ≤ Mβe
− r2

2T2(H−β) .(28)

Hence

‖ det γ−1
Xt
‖mLα < ∞ and ‖DXt‖nk,γ < ∞.

Moreover, by (26), (27) and the tail estimate (28), there exists constant C > 0 independent
of t such that

‖ det γ−1
Xt
‖mLα ≤ C

t2Hmd

(

1 + t
m
α F (t, 1/β − 1, 1/β, C)

m
α

)

,

and

‖DXt‖nk,γ ≤ C
(

1 + tnH(k+1))+n
γF (t, 1/β − 1, 1/β, C)

n
γ

)

.

In the above

F (t, a, b,M) =

∫ ∞

0

rae
− r2

2t2(H−β) eMtrbdr,

for any a,M > 0 and 2 > b > 0. Now set

c
(1)
t = ‖ det γ−1

Xt
‖mLα‖DXt‖nk,γ.

Elementary computation shows, for some constant α > 0

c
(1)
t ∼ O

(

1

tα

)

as t ↓ 0.(29)

Finally we estimate P{Xt > y}. Define

ξt = max
1≤i≤d

{

|X1
t |, |X2

t |, ..., |Xd
t |
}

.
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First note that
|Dξt| ≤ MeCt,

since the Malliavin derivative |DX i
t | ≤ MeCt for each i = 1, 2, ...d. Hence ξt has the same

concentration property as specified in Proposition 3.8.
By (25) and the concentration property for ζt, we conclude

P {Xt > y} ≤ P

{

ξt >
|y|√
d

}

≤ exp






−

(

|y|√
d
− Eξt

)2

2MeCtt2H






≤ exp






−

(

|y| − c
(2)
t,x

)2

2
√
dMeCtt2H






.(30)

Now (24), (29) and (30) give us the desired upper bound for the density pX(t, y). �

Remark 3.15. There is also an upper bound for the constant c
(1)
t in the above theorem as

t ↑ ∞. Indeed, by some elementary computation one can show that

c
(1)
t ≤ tαet

β

as t ↑ ∞,

for some α, β > 0.

4. Extension to the irregular case

From now on, our purpose is to extend the previous to the case of a fBm with Hurst
index 1

3
< H < 1

2
. This requires the introduction of some rough paths tools, which is

the aim of the current section. We shall use in fact the language of algebraic integration
theory, which is a variant of the rough paths theory introduced in [14] (we also refer to
[15] for a detailed introduction of the topic).

4.1. Increments. The extended pathwise integration we will deal with is based on the
notion of increments, together with an elementary operator δ acting on them. The al-
gebraic structure they generate is described in [14, 15], but here we present directly the
definitions of interest for us, for sake of conciseness. First of all, for an arbitrary real
number T > 0, a vector space V and an integer k ≥ 1 we denote by Ck(V ) the set of
functions g : [0, T ]k → V such that gt1···tk = 0 whenever ti = ti+1 for some i ≤ k− 1. Such
a function will be called a (k−1)-increment, and we set C∗(V ) = ∪k≥1Ck(V ). We can now
define the announced elementary operator δ on Ck(V ):

(31) δ : Ck(V ) → Ck+1(V ), (δg)t1···tk+1
=

k+1
∑

i=1

(−1)k−igt1···t̂i···tk+1
,

where t̂i means that this particular argument is omitted. A fundamental property of δ,
which is easily verified, is that δδ = 0, where δδ is considered as an operator from Ck(V )
to Ck+2(V ). We denote ZCk(V ) = Ck(V ) ∩ Kerδ and BCk(V ) = Ck(V ) ∩ Imδ.

Some simple examples of actions of δ, which will be the ones we will really use through-
out the paper, are obtained by letting g ∈ C1 and h ∈ C2. Then, for any s, u, t ∈ [0, T ],
we have

(32) (δg)st = gt − gs, and (δh)sut = hst − hsu − hut.

Furthermore, it is easily checked that ZCk(V ) = BCk(V ) for any k ≥ 1. In particular, the
following basic property holds:
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Lemma 4.1. Let k ≥ 1 and h ∈ ZCk+1(V ). Then there exists a (non unique) f ∈ Ck(V )
such that h = δf .

Proof. This elementary proof is included in [14], and will be omitted here. However, let
us mention that ft1...tk = (−1)k+1h0t1...tk is a possible choice.

�

Observe that Lemma 4.1 implies that all the elements h ∈ C2(V ) such that δh = 0
can be written as h = δf for some (non unique) f ∈ C1(V ). Thus we get a heuristic
interpretation of δ|C2(V ): it measures how much a given 1-increment is far from being an
exact increment of a function, i.e., a finite difference.

Notice that our future discussions will mainly rely on k-increments with k ≤ 2, for
which we will make some analytical assumptions. Namely, we measure the size of these
increments by Hölder norms defined in the following way: for f ∈ C2(V ) let

(33) ‖f‖µ = sup
s,t∈[0,T ]

|fst|
|t− s|µ , and Cµ

2 (V ) = {f ∈ C2(V ); ‖f‖µ < ∞} .

Obviously, the usual Hölder spaces Cµ
1 (V ) will be determined in the following way: for a

continuous function g ∈ C1(V ), we simply set

(34) ‖g‖µ = ‖δg‖µ,
and we will say that g ∈ Cµ

1 (V ) iff ‖g‖µ is finite. Notice that ‖ · ‖µ is only a semi-norm on
C1(V ), but we will generally work on spaces of the type

(35) Cµ
1,a(V ) = {g : [0, T ] → V ; g0 = a, ‖g‖µ < ∞} ,

for a given a ∈ V , on which ‖g‖µ defines a distance in the usual way. For h ∈ C3(V ) set
in the same way

‖h‖γ,ρ = sup
s,u,t∈[0,T ]

|hsut|
|u− s|γ|t− u|ρ(36)

‖h‖µ = inf

{

∑

i

‖hi‖ρi,µ−ρi ; h =
∑

i

hi, 0 < ρi < µ

}

,

where the last infimum is taken over all sequences {hi ∈ C3(V )} such that h =
∑

i hi and
for all choices of the numbers ρi ∈ (0, µ). Then ‖ · ‖µ is easily seen to be a norm on C3(V ),
and we set

Cµ
3 (V ) := {h ∈ C3(V ); ‖h‖µ < ∞} .

Eventually, let C1+
3 (V ) = ∪µ>1Cµ

3 (V ), and notice that the same kind of norms can be
considered on the spaces ZC3(V ), leading to the definition of some spaces ZCµ

3 (V ) and
ZC1+

3 (V ).

With these notations in mind the following proposition is a basic result, which belongs
to the core of our approach to pathwise integration. Its proof may be found in a simple
form in [15].
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Proposition 4.2 (The Λ-map). There exists a unique linear map Λ : ZC1+
3 (V ) → C1+

2 (V )
such that

δΛ = IdZC1+
3 (V ) and Λδ = IdC1+

2 (V ).

In other words, for any h ∈ C1+
3 (V ) such that δh = 0 there exists a unique g = Λ(h) ∈

C1+
2 (V ) such that δg = h. Furthermore, for any µ > 1, the map Λ is continuous from

ZCµ
3 (V ) to Cµ

2 (V ) and we have

(37) ‖Λh‖µ ≤ 1

2µ − 2
‖h‖µ, h ∈ ZCµ

3 (V ).

Let us mention at this point a first link between the structures we have introduced so
far and the problem of integration of irregular functions.

Corollary 4.3. For any 1-increment g ∈ C2(V ) such that δg ∈ C1+
3 , set δf = (Id−Λδ)g.

Then

(δf)st = lim
|Πst|→0

n−1
∑

i=0

gti ti+1
,

where the limit is over any partition Πst = {t0 = s, . . . , tn = t} of [s, t], whose mesh tends
to zero. Thus, the 1-increment δf is the indefinite integral of the 1-increment g.

4.2. Computations in C∗. Let us specialize now to the case V = R, and just write Cγ
k

for Cγ
k (R). Then (C∗, δ) can be endowed with the following product: for g ∈ Cn and h ∈ Cm

let gh be the element of Cn+m−1 defined by

(38) (gh)t1,...,tm+n+1 = gt1,...,tnhtn,...,tm+n−1 , t1, . . . , tm+n−1 ∈ [0, T ].

In this context, we have the following useful properties.

Proposition 4.4. The following differentiation rules hold true:

(1) Let g ∈ C1 and h ∈ C1. Then gh ∈ C1 and δ(gh) = δg h+ g δh.
(2) Let g ∈ C1 and h ∈ C2. Then gh ∈ C2 and δ(gh) = −δg h + g δh.
(3) Let g ∈ C2 and h ∈ C1. Then gh ∈ C2 and δ(gh) = δg h+ g δh.

The iterated integrals of smooth functions on [0, T ] are obviously particular cases of
elements of C, which will be of interest for us. Let us recall some basic rules for these
objects: consider f ∈ C∞

1 and g ∈ C∞
1 , where C∞

1 denotes the set of smooth functions on
[0, T ]. Then the integral

∫

f dg, which will be denoted indistinctly by
∫

f dg or J (f dg),
can be considered as an element of C∞

2 . Namely, let S2,T denote the simplex {(s, t) ∈
[0, T ]2 : 0 ≤ s < t ≤ T}, for (s, t) ∈ S2,T we set

Jst(f dg) =

(
∫

fdg

)

st

=

∫ t

s

fudgu.

The multiple integrals can also be defined in the following way: given a smooth element
h ∈ C∞

2 and (s, t) ∈ S2,T , we set

Jst(h dg) ≡
(
∫

hdg

)

st

=

∫ t

s

hsudgu.
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In particular, for f 1 ∈ C∞
1 , f 2 ∈ C∞

1 and f 3 ∈ C∞
1 the double integral Jst(f

3 df 2df 1) is
defined as

Jst(f
3 df 2df 1) =

(
∫

f 3 df 2df 1

)

st

=

∫ t

s

Jsu

(

f 3 df 2
)

df 1
u .

Now suppose that the nth order iterated integral of fn+1dfn · · · df 2, which is denoted by
J (fn+1dfn · · · df 2), has been defined for f j ∈ C∞

1 . Then, if f 1 ∈ C∞
1 , we set

(39) Jst(f
n+1dfn · · ·df 2df 1) =

∫ t

s

Jsu

(

fn+1dfn · · · df 2
)

df 1
u ,

which recursively defines the iterated integrals of smooth functions. Observe that an nth
order integral J (dfn · · · df 2df 1) can be defined along the same lines, starting with

J (df) = δf, Jst(df
2 df 1) =

∫ t

s

Jsu(df
2) df 1

u =

∫ t

s

(

δf 2
)

su
df 1

u ,

and so on.

The following relations between multiple integrals and the operator δ will also be useful.
The reader is sent to [15] for its elementary proof.

Proposition 4.5. Let f ∈ C∞
1 and g ∈ C∞

1 . Then it holds that

δg = J (dg), δ (J (fdg)) = 0, δ (J (dfdg)) = (δf)(δg) = J (df)J (dg),

and

δ
(

J (dfn · · · df 1)
)

=
n−1
∑

i=1

J
(

dfn · · · df i+1
)

J
(

df i · · · df 1
)

.

4.3. Weakly controlled processes. The rough path theory allows to define and solve
differential equations driven by a generic Hölder continuous path B provided enough
iterated integrals of this function can be defined. We shall briefly recall how this is done,
in the simplest nontrivial case of a Hölder continuity exponent 1

3
< γ < 1

2
. Observe that

we keep here the notation B for the underlying path as in the fBm case for notational
sake, while the theory can be applied to much more general situations.

The basic assumption one has to add in order to define our objects when γ > 1
3

is the
existence of an (abstract) double iterated integral of B with respect to itself, which can
be defined as follows:

Hypothesis 4.6. The path B is R
d-valued γ-Hölder with γ > 1

3
and admits a Lévy area,

that is a process B
2 ∈ C2γ

2 (Rd,d) satisfying

δB2 = B
1 ⊗B

1, i. e. B
2,ij
sut = [B1,i]su[B

1,j]ut,

for s, u, t ∈ S3,T and i, j ∈ {1, . . . , d}. We also assume that B
2 can be obtained in the

following way: consider the sequence of linear dyadic approximation Bm of B defined
like in Proposition 2.6. For 0 ≤ s < t ≤ 1 and i1, i2 ∈ {1, . . . , d}, set B

2,m,i1i2
st =

∫

s<u1<u2<t
dBm,i1

u1
dBm,i2

u2
, which is defined as a Riemann-Stieljes integral. Then we suppose

that B2,m converges to B
2 in the norm of C2γ

2 .

It should be noticed at this point that fBm satisfies the above assumption, as shown
in [9, 13, 25]:
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Proposition 4.7. Let B be a d-dimensional fBm with H > 1
3

as defined in Section 2.
For the linear dyadic approximation Bm of B defined at Proposition 2.6, the increment
B

2,m almost surely converges to an element B2 satisfying Hypothesis 4.6. The convergence
holds in any C2γ

2 norm for γ < H.

The first difference between the Young case and the situation of a Hölder continuity
exponent 1

3
< γ ≤ 1

2
is that a restriction has to be imposed on the class of allowed

integrands with respect to B. This class is called the class of weakly controlled processes,
and is defined as follows:

Definition 4.8. Let z be a process in Cγ
1 (R

n) with 1
3
< γ ≤ 1

2
(that is, N := ⌊1/γ⌋ = 2).

We say that z is a weakly controlled path based on B and starting from a if z0 = a, which
is a given initial condition in R

n, and δz ∈ Cγ
2 (R

n) can be decomposed into

(40) δzi = ζ ii1B1,i1 + ri, i. e. (δzi)st = ζ ii1s B
1,i1
st + rist,

for all (s, t) ∈ S2,T . In the previous formula, we assume ζ ∈ Cγ
1 (R

n,d), and r is a regular

part such that r ∈ C2γ
2 (Rn). The space of weakly controlled paths starting from a will be

denoted by Qγ,a(R
n), and a process z ∈ Qγ,a(R

n) can be considered in fact as a couple
(z, ζ). The natural semi-norm on Qγ,a(R

n) is given by

N [z;Qγ,a(R
n)] = N [z; Cγ

1 (R
n)] +N [ζ ; C∞

1 (Rn,d)] +N [ζ ; Cγ
1 (R

n,d)] +N [r; C2γ
2 (Rn)],

with N [g; Cκ
1 ] defined by (34) and N [ζ ; C∞

1 (V )] = sup0≤s≤T |ζs|V .

Two basic steps in order to define and solve differential equations with respect to B are
then:

(1) Study the decomposition of f(z) as weakly controlled process, when f is a smooth
function and z a weakly controlled process.

(2) Define rigorously the integral
∫

zudBu = J (zdB) for a weakly controlled path z
and compute its decomposition (40).

We shall now detail a little this program.

Let us see then how to decompose f(z) as a controlled process when f is a smooth
enough function, a step for which we first introduce a convention which will hold true until
the end of the paper: for any smooth function f : Rn → R, k ≥ 1, (i1, . . . , ik) ∈ {1, . . . , d}k
and ξ ∈ R

n, we set

(41) ∂k
i1...ik

f(ξ) =
∂kf

∂xi1 · · ·∂xik

(ξ).

With this notation in hand, our decomposition result is the following:

Proposition 4.9. Let f : Rn → R be a C2
b function such that f(a) = â, z a controlled

process as in Definition 4.8 and set ẑ = f(z). Then ẑ ∈ Qγ,â(R), and it can be decomposed

into δẑ = ζ̂ i1B1,i1 + r̂, with

ζ̂ i1 = ∂if(z) ζ
ii1 and r̂ =

[

δf(z)− ∂if(z) δz
i
]

+ ∂if(z) r
i.

Furthermore,

(42) N [ẑ;Qγ,â(R)] ≤ cf,T
(

1 +N 2[z;Qγ,a(R
n)]
)

.
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Let us now turn to the integration of weakly controlled paths, which is summarized in
the following theorem.

Theorem 4.10. For a given 1
3
< γ ≤ 1

2
, let B be a process satisfying Hypothesis 4.6.

Furthermore, let m ∈ Qγ,b(R
d) with m0 = b ∈ R

d and decomposition

(43) δmi = µii1 B
1,i1 + ri, where µ ∈ Cγ

1 (R
d,d), r ∈ C2γ

2 (Rd).

Define z by z0 = a ∈ R and

(44) δz = mi
B

1,i + µii1 B
2,i1i − Λ

(

riB1,i + δµii1 B
2,i1i
)

.

Finally, set

Jst(mdB) =

∫ t

s

〈mu, dBu〉Rd , δzst.

Then:

(1) z is well-defined as an element of Qγ,a(R), and coincides with the Riemann-Stieltjes
integral of m with respect to B whenever these two functions are smooth.

(2) The semi-norm of z in Qγ,a(R) can be estimated as

(45) N [z;Qγ,a(R)] ≤ cB
(

1 +N [m;Qγ,b(R
d)]
)

,

for a positive constant cB which can be bounded as follows:

cB ≤ c
(

N [B1; Cγ
2 (R

d)] +N [B2; C2γ
2 (Rd2)]

)

, for a universal constant c.

(3) It holds

(46) Jst(mdx) = lim
|Πst|→0

n−1
∑

q=0

[

mi
tq B

1

tq,tq+1
(i) + µii1

tq B
2,i1i
tq ,tq+1

]

,

for any 0 ≤ s < t ≤ T , where the limit is taken over all partitions Πst = {s = t0, . . . , tn =
t} of [s, t], as the mesh of the partition goes to zero.

4.4. Rough differential equations. Recall that we are concerned with equations of the
form (2). In our algebraic setting, we will rephrase this as follows: we will say that Xx is
a solution to (2) if Xx

0 = x, Xx ∈ Qγ,x(R
d) and for any 0 ≤ s ≤ t ≤ 1 we have

(47) δXx
st =

∫ t

s

V0(X
x
u)du+ Jst

(

Vi(X
x) dBi

)

,

where the integral J (Vi(X
x) dBi) has to be understood in the sense of Proposition 4.10.

The following existence and uniqueness result is then classical in rough paths theory.

Theorem 4.11. Let B be a process satisfying Hypothesis 4.6 and V0, . . . , Vn a collection
of vector fields which fulfill Hypothesis 1.1. Then

(i) Equation (47) admits a unique solution Xx in Qγ,x(R
d).

(ii) Consider the linear approximation Bm of B introduced in Hypothesis 4.6, and set X̃m

for the solution of the (ordinary) differential equation (47) driven by the piecewise smooth
function Bm. Then X̃m converges to Xx in Cγ

1 norm.
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(iii) Consider the sequence of dyadic partitions of Proposition 2.6. Define a process Xn

on the points tnk by Xn
0 = x and

(48) δXn
tktk+1

=
V0(X

n
tk
)

2n
+ Vi(X

n
tk
)B1,i

tktk+1
+ Vi1Vi2(X

n
tk
)B2,i1i2

tktk+1
.

Complete the definition of Xn on [0, 1] by linear interpolation. Then as n → ∞, the
process Xn converges to Xx in Cγ

1 norm.

Proof. We refer to [22] for the proof of the existence and uniqueness part, as well as to [14]
for the same result in the algebraic integration setting. Part (ii) of our proposition stems
from the continuity of the Itô map, which is also stated and proved in both [22, 14]. The
approximation statement (iii) has first been stated by Davie [10] and then been generalized
in [13].

In the sequel we will simply try to relate the decomposition of the solution to Equa-
tion (47) as a controlled process and the numerical scheme given by (48), a relation which
turns out to be useful in the sequel. For this, we shall denote by r any increment in C2γ

2

and by r♯ any increment in C1+

2 in the computations below, independently of their values.
Observe then that, according to the right hand side of (47), the decomposition of Xx as
a controlled process is given by

δXx,j = ζjj1B1,j1 + r, with ζjj1 = V j
j1
(Xx).

Hence, owing to Proposition 4.9, one has

(49) δVi(X
x) = ζ̂ ij1B1,j1 + ri, with ζ̂ ij1 = ∂jVi(X

x)ζjj1 = Vj1Vi(X
x).

Now, if one desires an expansion of δXx up to increments of regularity 1+, consider
again the right hand side of (47), and compute it by a direct application of Theorem 4.10.
This yields

δXx
st = V0(X

x
s )(t− s) + Vi(X

x
s )B

1,i
st + ζ̂ ij1B2,j1i

st + r♯

= V0(X
x
s )(t− s) + Vi(X

x
s )B

1,i
st + Vj1Vi(X

x
s )B

2,j1i
st + r♯.

Thanks to identity (46), it is now easily seen that (48) is a natural candidate for our
numerical scheme.

�

We show now how to get efficient bounds on the solution to equation (47) out of its
numerical scheme. This step is understood as a warmup for the same kind of estimates
concerning the Malliavin derivative of the solution.

Proposition 4.12. Under the assumptions of Theorem 4.11, the solution to equation (47)
satisfies:

(50) ‖Xx‖γ ≤ cV

(

1 + ‖B1‖1/γγ + ‖B2‖1/2γ2γ

)

,

where cV is a constant which only depends on the vector fields V0, . . . , Vn.

Remark 4.13. This proposition is shown in [13] by identifying the signature of B with
the signature of a certain finite variation process, plus some easy estimates for ordinary
differential equations. We have included here a direct elementary proof of (50) because
we haven’t been able to find them in the literature under this form, and mostly because
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the generalization of our estimates to linear cases will be obvious from the considerations
below.

Proof of Proposition 4.12. Theorem 4.11 part (iii) asserts the convergence of the approx-
imation Xn towards Xx as n → ∞. It is thus sufficient to prove relation (50) for Xn,
uniformly in n. One can also be easily reduced to prove

sup
0≤i<j≤2n

|δXn
tni t

n
j
|

|tnj − tni |γ
≤ cV

(

1 + ‖B1‖1/γγ + ‖B2‖1/2γ2γ

)

,

which is what we shall proceed to do. We now divide our proof in several steps.

Step 1: Expression for δXn. Set

(51) qnst = V0(X
n
s ) (t− s) + Vi(X

n
s )B

1,i
st + Vi1Vi2(X

n
s )B

2,i1i2
st ,

so that δXn
tni t

n
j
=
∑j−1

l=1 q
n
tnl t

n
l+1

. For i < j, we also construct a dyadic partition {τkl ; 0 ≤
k ≤ K, 0 ≤ l ≤ 2k} of the set {tni , . . . , tnj } inductively in the following way: set τ 00 = ti
and τ 01 = tj . Now, if the τkl ’s are known, we set τk+1

2l = τkl . Furthermore, if τk+1
2l = tm

and τk+1
2l+2 = tm′ , then take τk+1

2l+1 = tm∗ , with m∗ = ⌊(m +m′)/2⌋. This procedure is then

non trivial as long as j − i ≥ 2k, which means that we stop at K = ⌈log2(j − i)⌉. Here is
then a simple example of construction: consider i = 1, j = 4. Then we have:

τ 00 = 1, τ 01 = 4; τ 10 = 1, τ 11 = 2, τ 12 = 4; τ 20 = 1, τ 21 = 1, τ 22 = 2, τ 23 = 3, τ 24 = 4.

With these notations in hand, it is easily checked that the relation δXn
tni t

n
j
=
∑j−1

l=1 q
n
tnl t

n
l+1

can also be written as δXn
tni t

n
j
=
∑2K−1

k=0 qn
τKk τKk+1

. Furthermore,

qnτk2lτk2l+1
+ qnτk2l+1τ

k
2l+2

= qn
τk−1
l τk−1

l+1

− (δqn)τk2lτk2l+1τ
k
2l+2

,

and summing this equality for k = K and l = 0, . . . , 2K − 1 we get

2K−1
∑

l=0

qnτKl τKl+1
=

2K−1
∑

l=0

qn
τK−1
l τK−1

l+1
−

2K−1
∑

l=0

(δqn)τK−1
2l τK−1

2l+1 τK−1
2l+2

.

Iterating, we obtain

(52) δXn
tni t

n
j
= qntni tnj −

K
∑

k=1

2k−1
∑

l=0

δqnτk2lτk2l+1τ
k
2l+2

.

Step 2: Expression for δqn. Denote by I the identity function on R, so that δIst = t− s.
Start then from expression (52) and use Proposition 4.4 in order to get, for any s, u, t in
the dyadic partition,

δqnsut = δV0(X
n)su (t− u) + δVi(X

n)suB
1,i
ut + δ [Vi1Vi2(X

n)]suB
2,i1i2
ut − Vi1Vi2(X

n
s )δB

2,i1i2
sut ,

or otherwise stated thanks to convention (38),

(53) δqn = δV0(X
n) δI + δVi(X

n)B1,i + δ [Vi1Vi2(X
n)]B2,i1i2 − Vi1Vi2(X

n)δB2,i1i2 .

Observe now that one can prove, as for (49), that

δVi(X
n) = Vi1Vi(X

n)B1,i1 + ri,n, with |ri,nst | ≤ cV |δXn
st|2.
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Thus, according to the fact that δB2,i1i2 = B
1,i1B

1,i2, one can recast (53) into

(54) δqn = δV0(X
n) δI + ri,nB1,i + δ [Vi1Vi2(X

n)]B2,i1i2 := ρ1,n + ρ2,n + ρ3,n.

Notice that for j = 1, 2, 3, the increment ρj,n lies into C3γ
3 . Furthermore, it is readily

checked that

(55) |ρ1,nsut| ≤ cV |δXn
su| |t− u|1+γ, |ρ2,nsut| ≤ cV |δXn

su|2‖B1‖γ|t− u|γ,
and |ρ3,nsut| ≤ cV |δXn

su|‖B2‖2γ |t− u|2γ.
Step 3: An induction procedure. Let us consider an integer ℓ ≥ 1 and the quantity:

Nn
ℓ = sup

0≤i<j≤ℓ

|δXn
tni t

n
j
|

|tnj − tni |γ
.

We localize now our study to an interval of the form [a, a + η] with an arbitrary positive

number a, and η small enough. We will prove that if η is of order (1 + ‖B1‖1/2γγ +

‖B2‖1/2γ2γ )−1, then Nℓ ≤ cV (1 + ‖B1‖γ + ‖B2‖1/22γ ) by induction.

The case ℓ = 1 being trivial, let us assume that the hypothesis is true up to a given
ℓ ≥ 1. Take now 1 ≤ i ≤ ℓ and j = ℓ+ 1. According to (52), write

δXn
tni t

n
j
− qntni tnj = −

K
∑

k=1

2k−1
∑

l=0

δqnτk2lτk2l+1τ
k
2l+2

.

In the right hand side of this decomposition, all the points τk2l, τ
k
2l+1 are of the form tnp

with p ≤ ℓ. Thus (54), our bounds (55) on ρj,n and the induction hypothesis entail
∣

∣

∣
δXn

tni t
n
j
− qntni tnj

∣

∣

∣
≤ cV

(

Nℓ +N2
ℓ ‖B1‖γ +Nℓ‖B2‖2γ

)

|tnj − tni |3γ.
Furthermore, it is obvious from (51) that

|qntni tnj |
|tnj − tni |γ

≤ cV
(

1 + ‖B1‖γ + ‖B2‖2γ|tnj − tni |γ
)

.

Hence, putting together the last two inequalities, taking into account that we work on
an interval of size η and that we have chosen j = ℓ + 1, we end up with the following
induction relation: Nℓ+1 ≤ Fη(Nℓ), where the function Fη : R+ → R+ is defined by

Fη(ξ) = ξ ∨ cV
[(

1 + ‖B1‖γ + ‖B2‖2γ ηγ
)

+
(

1 + ‖B2‖2γ ξ + ‖B1‖γξ2
)

η2γ
]

.

By separating the cases ηγξ ≤ 1 and ηγξ > 1, one can also prove that Fη(ξ) ≤ ξ ∨ ϕη(ξ),
with

ϕη(ξ) = cV
(

‖B2‖2γ η3γ + ‖B1‖γη2γ
)

ξ2 +
(

1 + ‖B1‖γ + ‖B2‖2γ ηγ
)

:= a ξ2 + c.

In order to obtain a bound of the form Nℓ ≤ M which remains valid for all ℓ, it is now
sufficient to have the interval [0,M ] left invariant by ϕη.

We let the reader check the following elementary fact: whenever 4ac is of order 1, the
interval [0,M ] is left invariant by the application ξ 7→ a ξ2+c, with M of order c. Applying
this to ϕη, we obtain that

(56) η ≍
[

1 + ‖B1‖γ + ‖B2‖1/22γ

]−1/γ

=⇒ Nℓ . ‖B1‖γ + ‖B2‖1/22γ .
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Step 4: Conclusion. We have thus obtained that on any interval of length η given by (56),

we have ‖Xn‖γ . ‖B1‖γ + ‖B2‖1/22γ . Our claim (50) is now easily deduced by dividing an
arbitrary interval [s, t] into subintervals of length η as in (18).

�

4.5. Estimates for the Malliavin derivative. We are now interested in extending
Proposition 3.3 beyond the Young setting. Recall thus that we are concerned with equa-
tion (13), which can be written in our algebraic integration setting as

(57) δMst =

∫ t

s

Muω0(X
x
u) du+ Jst

(

Mωi(X
x) dBi

)

, 0 ≤ s < t ≤ T,

with final condition MT = V (Xx
T ). Then we have the following equivalent of Theorem

4.11:

Proposition 4.14. Theorem 4.11 holds true for equation (57) under Hypothesis 1.1
and 4.6. The discretization scheme for M can be written as:
(58)

δMn
tktk+1

= Mn
tk

[

ω0(X
n
tk
)

2n
δItktk+1

+ ωi(X
n
tk
)B1,i

tktk+1
+
(

ωi1ωi2(X
n
tk
) + Vi1ωi2(X

n
tk
)
)

B
2,i2i1
tktk+1

]

.

Proof. As in the case of Xx, we only justify expression (58). Note that, according to

equation (57), we have δMst = ζ lsB
1,l
st + r, with ζ ls = Msωl(X

x
s ). Hence, invoking Propo-

sition 4.4 and relation (49), we get

δ[Mωi2] = M [ωi1ωi2(X
x) + Vi1ωi2(X

x)]B1,i1 + r.

Expanding now the right hand side of equation (57) with the help of Theorem 4.10, one
easily gets

δM = M
[

ω0(X
x) δI + ωi(X

x)B1,i + (ωi1ωi2(X
x) + Vi1ωi2(X

x))B2,i2i1
]

+ r♯,

which gives the desired justification of our scheme (58).
�

We are now ready to state and prove our bounds for the process M:

Proposition 4.15. Let M be the unique solution to (57) under Hypothesis 1.1 and 4.6.
Then

(i) The bound (12) on ‖M‖∞ still holds true in our irregular context.

(ii) ‖M‖γ satisfies inequality (50).

Proof. By the continuity property of Itô’s map for M, the approximation procedure of
M by Mm described in the proof of Theorem 3.2 is still valid. The desired bound for
‖M‖∞ is thus obtained just like in (15).

Once a bound on ‖M‖∞ is available, ‖M‖γ can be bounded by considering the Davie
type scheme (58), along the same lines as for Xx. Details are left to the reader for sake
of conciseness.

�
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4.6. Density upper bound. We finish this section by extending the density estimate
and functional inequalities obtained in the smooth case (when H > 1

2
) to the irregular case

(when 1
3
< H < 1

2
). We first show that in the rough case, we can obtain the smoothness

of density of Xt under Hypothesis 1.2. Indeed, for this purpose, we only need to show the
following integrability of Malliavin matrix.

Theorem 4.16. Fix H ∈ (1
3
, 1
2
). Assume Hypothesis 1.2. Let γX be the Malliavin matrix

of Xx
1 , we have | det γX |−1 ∈ L∞(P). Therefore Xx

1 admits a smooth density.

Proof. It suffices to show that there exists C > 0 such that for all v ∈ R
d,

vTγXv ≥ C|v|2.
Recall that

γij
X = 〈D.X

i,D.X
j〉H

and that the d× d matrix M is such that its j-th column Mj is given by

Mj
t = Dj

tX1.

We have

vTγXv =

d
∑

j=1

‖vTMj
. ‖2H

≥C

d
∑

j=1

∫ 1

0

(vTMj
s)

2ds = C

∫ 1

0

vTMsMT
s vds ≥ Cmin

m

∫ 1

0

vTMm
s (Mm

s )
Tvds.

In the above, we used that H ⊂ L2([0, 1]) for the second step, and Mm is that described
in Theorem 3.2.

On the other hand one can show, according to the description of Mm in Theorem 3.2

vTMm
s (Mm

s )
Tv ≥ C|v|2

uniformly for some constant C > 0, if we assume Hypothesis 1.2. The proof is therefore
completed. �

Another consequence of the above boundedness of the Malliavin Matrix γX is the fol-
lowing.

Theorem 4.17. Fix H ∈ (1
3
, 1
2
). Assume Hypothesis 1.2. Let pX(t, y) denote the density

function of Xx
t . There exist constants c

(1)
t and c

(2)
t such that

pX(t, y) ≤ c
(1)
t exp

(

−c
(2)
t |y|δ

)

y ∈ R
d,

for any δ < H.

Proof. The proof is similar to that of Theorem 3.14. We apply Theorem 4.15 and Theo-
rem 4.16 to obtain bounds for ‖DXt‖nk,γ and ‖ det γ−1

Xt
‖mLα. The tail estimate for P{Xt > y}

is derived by Proposition 2.4. The rest of the proof is then clear. �
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Remark 4.18. We are not able to obtain log-Sobolev inequality as in Theorem 3.4 in the
rough case, since when H < 1

2
the Hilbert norm H is not controlled by L∞([0, 1]). On

the other hand, by reproducing the proof in Theorem 3.4 together with the following
interpolation inequality

‖ · ‖H ≤ C(‖ · ‖∞ + ‖ · ‖γ),
and estimates in Proposition 4.15, we are able to prove the following version of a log-
Sobolev type inequality: for T ∈ [0, 1] we have

Ef(XT )
2 ln f(XT )

2 −
(

Ef(XT )
2
)

ln
(

Ef(XT )
2
)

≤ Cp,T

(

E|∇f(XT )|2p
)1/p

,

For all p > 1. Here Cp,T is a universal constant independent of f .
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